《随机过程》第3章-泊松过程
第三章泊松过程
定理 设是{N (t), t≥0}一个强度为l的泊松过程,则对任 意固定的t, N(t)服从泊松分布,即
P(N (t) = k ) = (lt)k e-l t
k!
k = 0,1, 2,L
二、泊松过程的数字特征与特征函数
1. 泊松过程的均值函数
mN (t) = E[N(t)]= lt
2. 泊松过程的方差函数
DN (t) = D[N(t)]= lt
3. 泊松过程的均方值函数
y
2 N
(t)
=
E[N
2
(t)]
=
DN
(t)
+
mN2
(t)
=
lt
+
(lt)2
4. 泊松过程的自相关函数
E(N (t1)N (t2 ))
令t2 ³ t1E{[N (t1)- N (0)][N (t2 )- N (t1)+ N (t1)]} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]+ [N(t1)- N(0)]N(t1)} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]}+ E{[N(t1)- N (0)]N (t1)} 增量独立E{[N(t1)- N(0)][N(t2 )- N(t1)]}+ E{[N(t1)- N(0)]N(t1)} 增量独立E[N (t1)- N (0)]E[N (t2 )- N (t1)]+ E{[N (t1)- N (0)]N (t1)}
mN (t) = 4t = DN (t)
RN (t1,t2 ) = 4 min(t1,t2 ) + 16t1t2 , t1,t2 Î T
CN (t1,t2 ) = 4 min(t1,t2 )
随机过程——泊松过程(习题讲解)
n ( x t )n
n!
e ( x t )
因此,
dP( Sn k
k 1 n ( x t )n ( x t ) d 1 e k k 1 n! x | N (t ) n) n 0 ( x t ) e ( x t ) dx dx (k 1)!
即,在 N (t ) n 条件下,在时刻 t 之后首次事件发生的平均时间为 t
1 .
下面求 E{Sn k | N (t ) n} , ( k 1) : E ( Sn k | N (t ) n)
t
xdP(Sn k x | N (t ) n) ,而
由于在 N(t)=n 的条件下,n 个到达时刻 < < …< 区 间 [0 , t] 上 均 匀 分 布
( )<
与时间
,
,… ,
的 顺 序 统 计量
<…<
有相同分布,所以
故
= 习题九:假设车站有两辆客车准备开出,乘客以速率为 泊松过程登上 A 车,当 A 车坐满 的事件,乘客以速率为 的
个乘客就开出;与此独立
P( Sn k x, N (t ) n) P( N ( x) N (t ) k , N (t ) n) P( N (t ) n) P( N (t ) n) P( N ( x) N (t ) k ) P( N (t ) n) P( N ( x t ) k ) 1 P( N ( x t ) k 1) P( N (t ) n) P( Sn k x | N (t ) n) 1
t
e ( x t )
第三章 泊松过程
第一节、泊松过程的基本概念
证明: (1) 0 N (0) N1 (0) N2 (0) 可得 N1 (0) N2 (0) 0 (2)由N(t)的独立增量性可得,N1 (t ), N2 (t ) 也为独立增量过程; (3)记 N (t s) N (t ) N (t , t s) P[ N1 (t , t s ) k1 ]
泊松过程(Poisson process)最早由法国人Poisson于 1837年引入。
主 要 内 容
第一节 第二节 第三节 第四节 第五节 第六节
泊松过程的基本概念 相邻时间的时间间隔 剩余寿命与年龄 非时齐泊松过程 复合泊松过程 更新过程
第一节、泊松过程的基本概念
一、定义 一随机过程N (t ), t 0 ,若满足条件: (1)是一计数过程,且N(0)=0; (零初值性) (2)任取 0 t1 t2 tn , (独立增量过程) N (t1 ), N (t2 ) N (t1 ), , N (tn ) N (tn1 ) 相互独立; (3)s, t 0, n 0, P[ N (s t ) N (s) n] P[ N (t ) n] (增量平稳性) (4)对任意 t 0 和充分小的 t 0 ,有 P[ N (t t ) N (t ) 1] t o(t ) P[ N (t t ) N (t ) 2] o(t ) 称N (t ), t 0 是强度 为的时齐泊松过程。 其中 0 称 为强度常数。
即 N (s t ) N ( s) 是参数为 t 的泊松分布。
证明
第一节、泊松过程的基本概念
泊松过程的等价定义: 一计数过程N (t ), t 0 ,若满足条件: (1)N(0)=0; (2)N(t)是独立增量过程; (3)对 s, t 0, N (s t ) N (s) P(t ) ,即
随机过程第三章 泊松过程 ppt课件
第 n次事件发生的时刻, X n 是第 n次与第n 1 次事件发生
的时间间隔.
一. X n和 T n 的分布
定理3.2 X n (n 1)服从参数为 的指数分布,且相互独立.
证 当 t 0时,有
F 1 ( t ) P { X 1 t } 1 P { X 1 t } ቤተ መጻሕፍቲ ባይዱ1 P { N ( t ) 0 }
重复以上的推导可证定理之结论.
定理3.3 Tn ~(n,)
n
证 由于 Tn
Xi
i 1
故由定理3.2以及引理的结论马上可得本定理之结论.
注:1 (n,)的概率密度为
fTn (x) et
(t)n1
(n1)!
2. {T nt} {N (t)n}
(t 0)
由定理3.2,我们给出泊松过程的另一个等价定义.
p 的泊松过程.
证 M (t)满足定义3.2中的前两个条件是显然的,下证它也 满足第三个条件.
显然, M (t)的可能取值为 0,1,2, ,并且由全概率公式,有
P { M (t) m } P { M (t) m |N (t) n } P { N (t) n } n 0
而 P { M (t) m |N (t) n } 0 若 nm
f (x)() x1ex, x0
0,
x0
则称 X服从参数为 , 的 分布,记为 X~(,)
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X~(1,),
Y~(2,),且 X与 Y独立,则
X Y~ (1 2,)
指数引分理布,则设有X1,X2, ,Xn 相互独立且均服从参数为 的 X 1 X 2 X n ~ ( n ,)
随机过程第三章 泊松过程
解:设一年开始为 0 时刻,1 月末为时刻 1,则年末为时刻 12,依泊松过程的定义可知
PN (12) N (0) n e412 (412)n
n!
平均索赔请求次数及金额
E[N(12) N(0)] 412 48
3.2 与泊松过程相联系的若干分布
记 Tn , n 1, 2,表示第 n 次事件发生的时刻,规定T0 0 。记 Xn , n 1,2, 表示第 n
即
N(t) n Tn t
因此
PTn
T
P N (t )
n
in
et
(t)i i!
对上式求导,得到Tn 的概率密度函数
f (t)
et (t)i
et
(t)i1
et
(t )( n 1)
in
i! in
(i 1)!
(n 1)!
命题得证。
注:Tn 的数字特征
ETn
n
,
DTn
n 2
;且
ETn
nEX n
P ti Ti ti hi ,i 1, 2,, n N (t) n
PN (ti
hi )
N (ti )
1,
N (ti1) N (ti hi )
PN (t) n
0,1
i
n,
N (t1)
0
h1e h1
h e e hn (th1h2 hn ) n et (t)n / n!
n! tn
-2-
P0 (t) et
类似地,当 n 1时
Pn (t h) PN (t h) n PN (t) n, N (t h) N (t) 0 PN (t) n 1, N (t h) N (t) 1
第3讲第三章泊松过程
P Tn t T1 s1,,Tn1 sn1 P Nt s1 sn1 Ns1 sn1 1T1 s1,,Tn1 sn1
PN t s1 sn1 N s1 sn1 1
1 PN t s1 sn1 N s1 sn1 0
(2) N(t)是独立增量过程;
(3) 对一切0≤s,t, N(t+s) -N(s) ~P(λt),即
P[N (t s) N (s)] k et [t]k , k 0,1, 2,
k! 称{N( t ),t≥0)是参数为λ的齐次泊松过程.
注1 从增量分布知:齐次泊松过程也是平稳增量过程.
注2 N(t) ~P(λt).
et (t)k1 dt
t0
(k 1)!
例3.3 设N1(t)和N2( t )分别是强度为λ1和λ2的相互独立的
泊松过程, Wk1为过程N1(t)的第k个事件的到达时间,
W12 为过程N2(t)的第1个事件的到达时间,求 P Wk1 W12
解: fwk1
x
e1x 1
1 x k1
(k 1)!
所以3.2→定义3.3
再证 由定义3.3 → 定义3.2
即:需证明 N(t s) N(s) ~ t 由于是平稳增量故只需证 N(t) ~ t
记:Pn t PN(t) n
下面我们依次求Po(t), P1(t),…, Pk(t) ,…
首先,由定义3.3中的条件(3):
P1 h h oh
P0
0
1,由条件1
N
0
0
解得p0 (t) et , t 0
当n≥1时, n
pn (t h) pk (h)pnk (t) k 0 p0 (h) pn (t) p1(h) pn1(t) oh
随机过程 第3章 泊松过程
泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程, 若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的次 数服从参数 >0的泊松分布,即对任意 s , t 0 ,有
3.2 泊松过程的基本性质
泊松分布:
( t ) n t P{ X (t s ) X ( s ) n} e , n!
n 0, 1,
( t ) n t P{ X (t ) n} e , n 0, 1, 2, n!
Φ X ( ) E[e
假设在[0 , t ]内事件A已经发生一次,确定这一事件到 达时间W1的分布 ——均匀分布
P{W1 s, X (t ) 1} P{W1 s X (t ) 1} P{ X (t ) 1} P{ X ( s ) 1, X (t ) X ( s ) 0} P{ X (t ) 1} P{ X ( s ) 1} P{ X (t ) X ( s ) 0} P{ X (t ) 1}
故仪器在时刻 t0 正常工作的概率为:
k 1 ( t ) P P (T t 0 ) e t dt t0 ( k 1)! n k 1 ( t ) 0 P [ X (t 0 ) k ] e t
0
n0
n!
(3) 到达时间的条件分布
P{ X k }
k e
k!
, k 0, 1, 2, ( 0为常数 )
则随机变量X 服从参数为 的泊松分布,简记为 ()。
E(X ) ,
随机过程3-泊松分布
3.2 泊松过程的性质
(3)n 1
T1=s1 T2=s2 0 Tn-1 =sn-1 Tn t
PX ( s1 sn1 t ) X ( s1 sn1 ) 0 e
t
PTn t | T1 s1 ,, Tn1 sn1
W1
W2
第三章 泊松过程
3.1 泊松过程的定义
• 定义3.1随机过程{N(t),t 0 }是计数过 程,如果 N(t) 表示到时刻 t为止已发生 的事件A的总数,且N(t)满足条件 (1) N(t) 0 ; (2) N(t)取整数; (3)若s < t ,则N(s) N(t); (4)当s < t时,N(t) - N(s)等于区间(s, t]中 发生事件A的次数。
3.1 泊松过程的定义
(3)当n 1时,
由于P 0) P X(0) 1 0 ( 1 所以C 0,P (t ) te 1
t
d t e P (t ) et P0 (t ) et e t 1 dt t P (t ) (t C )e 1
3.1 泊松过程的定义
• 独立增量计数过程 对于t1< t2 < < tn,N(t2) - N(t1), N(t3) -N(t2), , N(tn)-N(tn-1) 独立 • 平稳增量计数过程 在(t, t+s]内(s>0),事件A发生的次数 N(t+s) -N(t)仅与时间间隔s有关,而与 初始时刻t无关
3.1 泊松过程的定义
Pn (t h) Pn (t ) o(h) Pn (t ) Pn1 (t ) h h 当h 0时,Pn (t ) Pn (t ) Pn1 (t ) e t Pn (t ) Pn (t ) e t Pn1 (t ) d t t e Pn (t ) e Pn1 (t ) dt
第3章 泊松过程
第一节 泊松过程的定义
一、计数过程
N(t)表示到时刻t为止以发生的“事件”的总数,称{N(t), t≥0}为计数过程。 N(t)满足 1, N(t) ≥0
2, N(t)为整数
3,若s < t , 则 N(s) ≤N(t) 4,当s < t 时,N(t)- N(s) 为区间(si 1
n
则
X i Ti Ti 1
称Tn为事件A第n 次出现的等待时间(到达时间).
定理1 设{Xn, n≥1}是参数为λ的泊松过程 {N(t), t≥0}的时间间隔序列, 则{Xn, n≥1}相互 独立同服从指数分布, 且E{X}=1/λ. 证 (1) 因 {X1>t}={(0, t)内事件A不出现} P{X1>t}=P{N(t)=0}=e-λt
P0 t h P0 t o h P0 t h h dP0 t P0 t 令h 0, 得 dt P 0 1, 条件1N 0 0 0
解得
p0 ( t ) e
t
,
t 0.
Fn t P X n t 1 e t , t 0.
注 (1)上述定理的结果应该在预料之中,因为泊
松过程有平稳增量,过程在任何时刻都“重新开 始”,这恰好就是“无记忆性”的体现,正好与指 数 分布的“无记忆性”是对应的.
(2)泊松过程的另一个等价定义:
独立,且服从同一参数 的指数分布,则记数过
两边同乘以eλt 后移项整理得
d [e t Pn ( t )] t e pn 1 ( t ) dt
当n=1, 则
( 2)
d [e t P1 ( t )] e t P0 t e t e t dt P 0 0 1
随机过程Ch3泊松过程ppt课件-48页PPT精选文档
13
n
P [ N (t) N (0)] n j P N (t h) N (t) j j0
n
Pn j (t )Pj (h) j0
n
Pn (t ) P0 (h) Pn1 (t ) P1 (h) Pn j (t )Pj (h) j2
设随机过程{ N(t) , t 0 }是一个计数过程,
0
满足
08.10.2019
9
(1) N (0) 0
2
(3) P{N(h) 1} h (h)
(4) P{N(h) 2} (h)
其 中 ( h ) 表 示 当 h 0 时 对 h 的 高 阶 无 穷 小 ,
则 随机过程{ N(t), t 0 }称为一个计数过程
且满足:
(1) N(t) 0 (2) N(t)是整数值
(3)对任意两个时刻 0 t1 t2 ,有 N (t1) N (t2 ) ( 4 ) 对 任 意 两 个 时 刻 0 t 1 t 2 ,
N (t2 ) N (t1)等于在区间 (t1 , t2 ] 中发生的事件的个数
则称 N(t) 为具有参数 的 Poisson(泊松)过程
注意 从条件(3)可知泊松过程有平稳增量,且
E[N(t)]t 并称
速率或强度
(单位时间内发生的事件的平均个数)
08.10.2019
8
说明
要确定计数过程是Poisson过程,必须证明 它满足三个条件。(条件3很难验证)
为此给出一个与Poisson过程等价的定义
P0 (t )
o(h) h
,
当h
0时 有 P0(t )
随机过程第三章泊松过程
随机过程第三章泊松过程泊松过程是随机过程中的一类重要过程,在许多领域都有广泛应用,如排队论、可靠性分析、金融工程等。
泊松过程的概念由法国数学家泊松提出,它具有无记忆性、独立增量和平稳增量等重要特征。
在本文中,我们将介绍泊松过程的定义、性质以及一些实际应用。
泊松过程的定义:设N(t)是在区间[0,t]内发生的事件个数,若满足以下三个条件,则称N(t)是具有独立增量和平稳增量的泊松过程:1.N(0)=0,表示在时间0之前没有事件发生;2.对于任意的s<t,N(t)-N(s)的分布只与时间间隔t-s有关,与s时刻之前的事件个数无关,这表明泊松过程具有无记忆性;3.对于任意的s<t,N(t)-N(s)的分布是一个参数为λ(t-s)的泊松分布,其中λ是过程的强度参数。
泊松过程具有很多重要的性质。
首先,泊松过程的均值和方差等于其强度参数λ。
其次,泊松过程的增量独立,即在非重叠区间上的增量相互独立。
此外,泊松过程的时间间隔也是独立同分布的指数分布。
泊松过程具有广泛的应用。
在排队论中,泊松过程可用于描述到达队列的顾客数量。
在可靠性分析领域,泊松过程可用于描述设备的故障次数。
在金融工程中,泊松过程可用于模拟股票价格的变动和交易的发生。
在实际应用中,对于给定的泊松过程,我们通常感兴趣的是估计其强度参数λ。
常用的估计方法有最大似然估计和矩估计。
最大似然估计通过最大化观测到的事件发生次数和估计的事件发生率之间的似然函数,来估计λ的值。
矩估计则是通过将观测到的事件个数的平均值等于λ的估计值,来确定λ的值。
此外,在泊松过程的应用中,我们还可能遇到泊松过程的两个重要扩展:非齐次泊松过程和二维泊松过程。
非齐次泊松过程是指强度参数λ是时间的一个函数,而不是常数。
二维泊松过程是指同时考虑两个独立的泊松过程,其事件发生次数可能影响到对方的发生次数。
综上所述,泊松过程是一种重要的随机过程,具有无记忆性、独立增量和平稳增量等特征。
泊松过程
9 December 2015
随机过程
§3.1 泊松过程概念
一维分布
定理 设{N(t), t∈T=[0,+∞)}是一强度为λ的泊松过程,
则对任意固定的t >0, N(t)服从泊松分布π(λt ),即
P(N(t)
k)
(t)k k!
et
,
k 0,1,2,
证明:略。
注 该定理指明了泊松过程的一维分布,即在每个固定
P(N(t) 2) o(t), ( 0是常数)
普通性
则称{N(t), t∈T=[0,+∞)}是强度为λ的泊松过程。
9 December 2015
随机过程
《随机过程》
1
2015/12/9
§3.1 泊松过程概念
例1 设N(t)为[0 , t)时段内某电话交换台收到的呼叫次 数,t∈[0 , +∞),N(t)的状态空间为{0 , 1 , 2 ,···}, 且具有如下性质:
(4)在足够小的时间间隔△t内, P(t时间间隔内无呼叫) P(N(t) 0) 1 t o(t) P(t时间间隔内有一次呼叫) P(N(t) 1) t o(t) P(t时间间隔内收到2次以上呼叫) P(N(t) 2) o(t)
则计数过程{N(t), t∈[0,+∞)}是强度为λ的泊松过程。
-N(t1)服从参数为λ(t2-t1)的泊松分布, 即 增量平稳性
或齐次性
P(N(t1,
t2
)
k)Βιβλιοθήκη [(t2 t1 k!)]k
e(t2t1
)
,
k 0,1,2,( 0)
则称{N(t), t∈T=[0,+∞)}是强度为λ的泊松过程。
试利用定理说明上述两个泊松过程定义的等价性。
chapter 3泊松过程
3.1 泊松过程的定义
3.1 泊松过程的定义
3.1 泊松过程的定义
Poisson 过程的常见例子
• • • • • • 排队论:到达的顾客数 一个地区的降雨量 撞击光电探测器的光子数 (自动)电话交换机的接入电话数, 长时间内川大网络服务器的网页请求 服务台接到咨询电话的次数
3.1 泊松过程的定义
j=0
= Pn ( t ) P0 ( h ) + Pn −1 ( t ) P1 ( h ) + ∑ Pn − j ( t ) P j ( h )
j=2
n
= Pn ( t ) P0 ( h ) + Pn −1 ( t ) P1 ( h ) + o ( h ) = (1 − λ h ) Pn ( t ) + λ hPn −1 ( t ) + o ( h ) n ⎛ n ⎞ ⎜ ∑ Pn − j (t ) Pj (h) ≤ ∑ Pj (h) ≤ ⎟ j =2 ⎜ j =2 ⎟ ⎜ ∞ ⎟ ⎜ ∑ Pj (h) = P ( N (h) − N (0) ≥ 2) = o(h) ⎟ ⎝ j =2 ⎠
(参数λ>0)
3.1 泊松过程的定义
定理:泊松过程两种定义等价。 证明:定义A⇒定义B 。由定义A(3)知平稳 性,下证定义B(3)。当h充分小有 P { N (t + h) − N (t ) = 1} = P { N ( h) − N (0) = 1}
( −λ h) n =e = λ h∑ 1! n! n =0 = λ h[1 − λ h + o(h)] = λ h + o(h)
N(t) 第三个信号到达 … … … … 第二个信号到达 第一个信号到达
0
第三章 泊松(Poisson)过程
DN (t ) Var[ N (t )] t
E[
N (t ) ]. t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2014年6月18日星期三
(2)
协方差函数:
C N ( s, t ) mins, t , s, t 0.
基础部张守成 2014年6月18日星期三
(1) 7时至9时为t(2,4],则由非齐次泊松过程的 性质可得7时至9时乘车人数的数学期望为
E[ N (4) N (2)] m(4) m(2)
( t )dt
2
4
(200 400t )dt 1400dt
2 3
3
4
由于Wn Ti , 利用矩母函数容易证明
i 1
n
Wn ~ (n, ), 即Wn具有概率密度
t ( t )n 1 ,t 0 e fWn ( t ) ( n 1)! 0 , t 0
基础部张守成 2014年6月18日星期三
二、泊松过程的推广
由于 N ( s, t ) N ( t ) N ( s) ~ ( (t s )) , (1) E[ N (t ) N ( s )] Var[ N (t ) N ( s )] (t s ).
令 s 0, 根据假设 N (0) 0 可得
均值函数: 方差函数:
P Yn 2 0.4,P Yn 3 0.4, P Yn 4 0.1.
设X (t)表示 [0, t )时间内移民到该地的人口数, 求在五周内移民到该地人口数的的期望和方差.
X ( t ) Yn 是复合泊松过程, 解: 由Yn的分布律可得
随机过程第三章-泊松过程
N (t)
定理3.6 设 X (t) Yi 是一复合泊松过程,其中泊松 i 1
过程 N(t) 的强度为 ,则
(1) X (t) 具有独立增量;
(2)若E(Yi ) 1, E(Yi2 ) 2 均存在,则
E[ X (t)] t1,
D[ X (t)] t2
证 (1) 令 t0 t1 tn ,由于N(t)具有独立增量性,故
的泊松分布,故
P{N (10) N (0) 1} (4.5)e4.5
二.复合泊松过程
定义3.6 称随机过程 {X (t),t 0}为复合泊松过程,如果对
于 t 0 ,它可以表示为如下形式
N (t)
X (t) Yi i 1
其中 {N(t),t 0} 是一个泊松过程, Y1, ,Yn 是一族独立同 分布的随机变量,并且与 {N(t),t 0} 独立.
(5)4 e5 4!(7)5 e7 (12)9 e12 9!
5! C94
5 12
4
1
5 12
94
.
(5) E[N(5)]=5, D N 5 5,
Cov[N(5), N(12)] D N 5 5.
例2 事件A的发生形成强度为 的泊松过程 {N(t),t 0}.如 果每次事件发生时以概率 p能够记录下来,并以 M (t)表示到 t时刻被记录下来的事件总数,证明{M (t),t 0} 是一个强度为
(1) N(0) 0;
(2) N(t) 有独立增量;
(3)对任意的 s,t 0,有
P{N (t s) N (s) n} (t)n et ,
n!
n 0,1,2,
由条件(3)可知泊松过程有平稳增量并且在任一长度为t
的区间中事件的个数服从参数(均值)为 t 的泊松分布.
第三章泊松过程(随机过程刘次华版本)
P
W (1) k
W1(2)
0
e
1 x
x1
(1x)k 1
(k 1)!
2e2 ydydx
1k
x e dx k 1 (1 2 ) x
(k 1)! 0
1
1 2
k
32
3.2.3 到达时间Wn的条件分布
3.2 泊松过程的性质
假设在[0, t]内事件A已经发生1次,确定这一事
件到达时间W1的条件分布密度
求
P
W (1) k
W (2) 1
即第一个泊松过程第k次事件发生比第二个泊松过 程第1次事件发生早的概率.
29
3.2 泊松过程的性质
解
设
W (1) k
的取值为x,W1(2)
的取值为y,
fWk(1)
(
x)
1e
0
1 x
,
(1
(k x
x ) k 1 1)! 0
,
x
0
fW1( 2)
(
y)
2e
2
0 ,
y, y
nn
P
P[X[(Xt) (tX(0h))]
nX(tj)|]X([tX (ht))XX(t()0)]j
j0j 0
PnX|(tX(ht )hX)(t)X (jt) j PX(t h) X(t)
n
P[X(t) X(0)] n j | X(t h) X(t)10 j j0
3.1 泊松过程的定义
D[ X (s)] (E[ X (s)])2
s(t s) s (s)2 s(t 1)
17
3.2 泊松过程的性质
BX (s, t) RX (s, t) mX (s)mX (t) s 若t s,则BX (s, t) t, 从而 BX (s, t) min(s, t)
应用随机过程3-泊松过程
3.1 Poisson过程 3.2 与Poisson过程相联系的若干分布 3.3 Poisson过程的推广
2010-9-2
理学院 施三支
3.1 泊松过程
1.计数过程 定义3.1.1 如果用 X (t ) 表示 [0,t]内某一特定事件发生的次数,则
随机过程{ X (t ) , t 0 }称为一个计数过程。 且满足:
2010-9-2 理学院 施三支
到达时间的条件分布
定理3.2.3 设 {X (t), t 0 }是泊松过程,已知在[0, t]内事件A 发生n次,则这n次到达时间W1< W2< …< Wn与相应于 n个[0, t]上均匀分布的独立随机变量的顺序统计量有相 同的分布,即
n! n , 0 t1 t n t f (t1 , , t n X (t ) n ) t 其它 0,
/小时的泊松过 顾客到达某 商店服从 参数 4 人 程,
已知商店上午9:00开门,试求到9:30时仅到一 位顾客,而到11:30时总计已达5位顾客的概率。
2010-9-2
理学院 施三支
3.2 与Poisson过程相联系的若干分布
1.到达时间间隔Tn和等待时间Wi的分布 定义3.2.1
设 { X (t ) , t 0 } 为 泊 松 过 程 ,
P { X ( t h ) X ( t ) 2} o ( h )
非齐次泊松过程的均值和方差函数为:
m X (t ) D X (t )
2010-9-2 理学院 施三支
t
0
(s) d s
非齐次泊松过程的分布
定理3.3.1 设{ X (t) , t 0 }为具有均值函数 m ( t ) 的非齐次泊松过程,令 N * (t ) X (m 1 (t )) ,则有
随机过程课件-第三章 泊松过程
1. N(t) ≥0;
2. N(t)取正整数值; 3. 若s<t,则N(s) ≤N(t);
4. 当s<t时,N(t)-N(s)等于区间(s,t]中发生的“事件A”的次数。
计数过程N(t)是独立增量过程 如果计数过程在不相重叠的时间间隔内,事件A发生的次数是相互独立的。 计数过程N(t)是平稳增量过程 若计数过程N(t)在(t,t+s]内(S>0),事件A发生的次数N(t+s)-N(t)仅与时 间差s有关,而与t无关。
2
泊松过程定义1: 称计数过程{X(t),t≥0}为具有参数λ >0的泊松过程,若它满足下列条件: 1、X(0)=0; 2、X(t)是独立增量过程; 3、在任一长度为t的区间中,事件A发生的次数服从参数λ>0的泊松分布, 即对任意s,t≥0,有 n t ( t )
P{ X (t s ) X ( s ) n} e n! , n 0,1,
1 e t , t 0 FTn (t ) P{Tn t} t0 0,
概率密度为
e t , f Tn (t ) 0,
t 0 t 0
10
等待时间的分布
等待时间Wn是指第n次事件A到达的时间分布
Wn
T
i 1
n
i
因此Wn是n个相互独立的指数分布随机变量之和。
第三章 泊松过程
泊松过程定义 泊松过程的数字特征 时间间隔分布、等待时间分布及到达时间的 条件分布 复合泊松过程 非齐次泊松过程 滤过泊松过程
1
计数过程: 称随机过程{N(t),t≥0}为计数过程,若N(t)表示到时刻t为止已发生的“事 件A”的总数,且N(t)满足下列条件:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南民族大学经济学院
43
.随机过程》第3章-泊松过程
2 非齐次Poisson过程
中南民族大学经济学院
44
.随机过程》第3章-泊松过程
随机过程
第三章 泊松过程
1 齐次Poisson过程 2 非齐次Poisson过程 3 复合Poisson过程 4 年龄与剩余寿命 5 更新过程
中南民族大学经济学院
37
.随机过程》第3章-泊松过程
2 非齐次Poisson过程
中南民族大学经济学院
38
.随机过程》第3章-泊松过程
2 非齐次Poisson过程
中南民族大学经济学院
39
.随机过程》第3章-泊松过程
证明:
2 非齐次Poisson过程
中南民族大学经济学院
40
.随机过程》第3章-泊松过程
22
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
23
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
24
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
25
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
1 齐次Poisson过程
中南民族大学经济学院
9
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
10
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
11
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
12
ห้องสมุดไป่ตู้
33
.随机过程》第3章-泊松过程
1 齐次Poisson过程
解:
中南民族大学经济学院
34
.随机过程》第3章-泊松过程
1 齐次Poisson过程
解:
中南民族大学经济学院
35
.随机过程》第3章-泊松过程
随机过程
第三章 泊松过程
1 齐次Poisson过程 2 非齐次Poisson过程 3 复合Poisson过程 4 年龄与剩余寿命 5 更新过程
中南民族大学经济学院
26
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
27
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
28
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
29
.随机过程》第3章-泊松过程
证明(续1):
2 非齐次Poisson过程
中南民族大学经济学院
41
.随机过程》第3章-泊松过程
证明(续2):
2 非齐次Poisson过程
中南民族大学经济学院
42
.随机过程》第3章-泊松过程
2 非齐次Poisson过程
例:某路公共汽车从早晨5时到晚上9时有车发出,乘客流量如下:5时按 平均乘客为200人/小时计算;5时至8时乘客平均到达率线性增加,8时到 达率为1400人/小时;8时至18时保持平均到达率不变;18时到21时到达率 线性下降,到21时为200人/小时,假定乘客数在不重叠的区间内是相互独 立的,求12时至14时有2000人乘车的概率,并求这两个小时内来站乘车人 数的数学期望。 解:
中南民族大学经济学院
3
.随机过程》第5章-布朗运动
前置知识
中南民族大学经济学院
4
.随机过程》第5章-布朗运动
1 齐次Poisson过程
• 一种累计随机事件发生次数的最基本的独立增量过程; • 由法国著名数学家泊松证明; • 1943年帕尔姆在电话业务问题的研究中运用了泊松过程,
辛钦于50年代在服务系统的研究中进一步发展; • 是具有连续时间参数和离散状态空间的一类随机过程; • 在金融和保险领域中广泛应用,如证券价格波动。
随机过程
第三章 泊松过程
1 齐次Poisson过程 2 非齐次Poisson过程 3 复合Poisson过程 4 年龄与剩余寿命 5 更新过程
前置知识
中南民族大学经济学院
2
.随机过程》第5章-布朗运动
前置知识
• 任意不相交时间间隔上的增量都是相互独立的
• 任意相等时间间隔上的增量都是同分布的
1 齐次Poisson过程
中南民族大学经济学院
19
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
20
.随机过程》第3章-泊松过程
说明: 问题:
中南民族大学经济学院
1 齐次Poisson过程
21
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
13
.随机过程》第3章-泊松过程
证明(续):
中南民族大学经济学院
1 齐次Poisson过程
独立增量
14
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
15
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
16
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
17
.随机过程》第3章-泊松过程
证明: (1)独立平稳增量性
1 齐次Poisson过程
中南民族大学经济学院
~
~
18
.随机过程》第3章-泊松过程
证明: (2)过程服从泊松分布
2 非齐次Poisson过程
齐次Poisson过程,其强度λ为一常数,意味着在不同的
时刻,事件发生的速率都是一个恒定值。 而实际中,事件发生的速率可能会因时而变。 比如,公交车站到达的乘客流,早晚高峰期的速率明显比
其他时段要大;研究某地发生地震的次数,夏秋季的速率也 会比冬春季的高。
因此,为了描述这些现象,将齐次Poisson过程推广到非 齐次Poisson过程。
中南民族大学经济学院
5
.随机过程》第5章-布朗运动
1 齐次Poisson过程
中南民族大学经济学院
6
.随机过程》第3章-泊松过程
1 齐次Poisson过程
直观意义
中南民族大学经济学院
7
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
8
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
解:
中南民族大学经济学院
30
.随机过程》第3章-泊松过程
1 齐次Poisson过程
解:
中南民族大学经济学院
31
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
32
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院