数轴上的动点问题专项练习

合集下载

专题1.4 数轴中的简单动点问题(强化)(原卷版)

专题1.4 数轴中的简单动点问题(强化)(原卷版)

专题1.4 数轴中的简单动点问题【例题讲解】【例1】已知:b 是最小的正整数且a ,c 满足2|3|(8)0a c ++-=,点A 、B 、C 在数轴上对应的数分别是a 、b 、c ,试回答问题.(1)请直接写出a 、b 、c 的值.a = ,b = ,c = .(2)若点B 不动,点A 、C 同时向左运动,点A 的速度为每秒2个单位,点C 的速度为每秒1个单位,经过几秒后B 为线段AC 的中点?【题组训练】1.已知,数轴上三个点A 、O 、B .点O 是原点,固定不动,点A 和B 可以移动,点A 表示的数为a ,点B 表示的数为b .(1)若AB 移动到如图所示位置,计算a b +的值.(2)在图的情况下,B 点不动,点A 向左移动3个单位长,写出A 点对应的数a ,并计算||b a -.(3)在图的情况下,点A 不动,点B 向右移动15.3个单位长,此时b 比a 大多少?请列式计算.2.如图,点A从原点O出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,5秒后,两点相距15个单位长度,已知点B的速度是点A的速度的2倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度;并在数轴上标出A、B两点从原点O出发运动5秒时的位置.(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,①再过几秒,A、B两点重合?②再过几秒,可以让A、B、O三点中一点是另外两点所成线段的中点?3.一个动点M从一水平数轴上距离原点4个单位长度的位置向右运动2s,到达A后立即返回,向左运动7s到达点B,若动点M的运动速度为2.5个单位长度,求此时点B在数轴上所表示的数的相反数.4.如图,数轴的单位长为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是、(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由.(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?5.已知:a是最大的负整数,b是最小的正整数,且c a b=+,请回答下列问题:(1)请直接写出a,b,c的值:a=;b=;c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB BC-的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB BC-的值.6.数轴上有两条AB和CD线段,线段AB长为4个单位长度,线段CD的长度为2个单位长度,点A在数轴上表示的数是5,且AD两点之间的距离为11.(1)点B在数轴上表示的数是,点C在数轴上表示的数是.(2)若线段CD以每秒3个单位的速度向左匀速运动,当点D运动到点A时,线段CD与线段AB开始有重叠部分,此时线段CD运动了秒.(3)在(2)的条件下,线段CD继续向左运动,问再经过秒后,线段CD与线段AB 不再有重叠部分.7.A点坐标为20-,C点坐标为40,一只电子蚂蚁甲从C点出发向左移动,速度为2个单位长度/秒.B为数轴上(线段AC之间)一动点,D为BC的中点.(1)这只电子蚂蚁甲由D点走到AB的中点E处,需要几秒钟?(2)在(1)的条件下,当电子蚂蚁甲从E点返回时,另一只蚂蚁乙同时从C点出发向左移动,速度为3个单位长度/秒,如果两只蚂蚁相遇于H点离B点5个单位长度,求B 点对应的数.8.在学习了||a为数轴上表示数a的点到原点的距离之后,爱思考和探究的爱棣同学想知道数轴上分别表示数a和数b的两个点A,B之间的距离该如何表示.小明采取了数学上常用的从特殊到一般的归纳法,请聪明的你和爱棣同学一起完成如下问题:(1)选取特例:AB=;①当3b=时,A,B之间的距离4a=,7②当3b=时,A,B之间的距离AB=;a=-,7③当3b=-时,A,B之间的距离AB=;a=-,7(2)归纳总结:数轴上分别表示有理数a,b的两点A,B之间的距离表示为AB=;(3)应用:数轴上,表示x和2的两点P和Q之间的距离是4,试求x的值.9.(1)小明从家出发(记为原点)O向东走3m,他在数轴上3+位置记为点A,他又向东走了5m,记为点B,B点表示什么数?接着他又向西走10m到点C,点C表示什么数?请你在数轴上标出点A、B的位置,这时如果小明要回家,则小明应如何走?-,3,若要使点E表示的数是点F表示的(2)若数轴上的点E和点F所表示的数分别是1数的2倍,保持F点不动,应将点E怎样移动?10.如图,点A从原点出发向数轴负方向运动,同时点B也从原点出发向数轴正方向运动,3秒后,A,B两点相距15个单位长度.已知点A与点B的速度之比是1:4(速度单位:长度/秒).(1)求出A,B两点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒后的位置;(2)如果A,B两点从(1)中求得的位置开始同时向数轴的负方向运动,经过几秒表示1-的点恰好在A,B两点的正中间?11.如图,已知动点P从原点O出发,沿数轴的负方向以每秒1 个单位长度的速度运动,动点Q从原点O出发,沿数轴的正方形以每秒 2 个单位长度的速度运动,运动的时间为t(秒).t=时,求PQ的长,若点A是线段PQ的中点,则点A表示的数是多少?(1)当2t=时,求PQ的长,若点A是线段PQ的中点,则点A表示的数是多少?(2)当3=时,求PQ的长,若点A是线段PQ的中点,则点A表示的数是多少?(3)当t n(用含n的代数式表示)12.如图,已知A、B、C是数轴(O是原点)上的三点,点C表示的数是6,点A与点B 的距离为12,点B与点C的距离为4.(1)写出数轴上A、B两点表示的数;(2)若点B移动后与点A的距离为20,求点B与点C的距离.13.如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?:A;:B;C.:(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?14.如图,数轴上点A,B表示到2-的距离都为6,P为线段AB上任一点,C,D两点分别从P,B同时向A点移动,且C点运动速度为每秒2个单位长度,D点运动速度为每秒3个单位长度,运动时间为t秒.(1)A点表示数为,B点表示数为,AB=.(2)若P点表示的数是0,①运动1秒后,求CD的长度;②当D在BP上运动时,求线段AC,CD之间的数量关系式.15.已知A,B两地相距30米,小猪佩奇从A地出发前往B地,第一次它后退1米,第二次它前进2米,第三次再后退3米,第四次又向前进4米,按此规律行进,如果A地在数轴上表示的数为16-.(1)求出B地在数轴上表示的数;(2)小猪佩奇从A地出发经过第七次行进后到达点P,第八次行进后到达点Q,点P点Q 到A地的距离相等吗?说明理由?(3)若B地在原点的左侧,那么经过100次行进后小猪佩奇到达的点与点B之间的距离是多少?16.已知A ,B 两点在数轴上分别示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离||AB a b =-.已知数轴上A ,B 两点对应的数分别为1-,3,P 为数轴上一动点,A ,B 两点之间的距离是 .设点P 在数轴上表示的数为x ,则点P 与4-表示的点之间的距离表示为若点P 到A ,B 两点的距离相等,则点P 对应的数为若点P 到A ,B 两点的距离之和为8,则点P 对应的数为现在点A 以2个单位长度/秒的速度向右运动,同时点B 以0.5个单位长度/秒的速度向右运动,当点A 与点B 之间的距离为3个单位长度时,求点A 所对应的数是多少?17.如图,周长为2个单位长度的圆片上有一点Q 与数轴上的原点重合.(1)把圆片沿数轴向左滚动1周,点Q 到达数轴上点A 的位置,点A 表示的数是 ;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:计次第1次第2次第3次第4次第5次第6次滚动周数3+1-2-4+3-a ①第6次滚动a 周后,Q 点距离原点4,请求出a 的值;②当圆片结束六次滚动时,求Q 点一共运动的路程.18.如图所示,在数轴上有三个点A,B,C,请回答:(1)将点B向左移动4个单位后,三个点中,点所表示的数最小,是.(2)将点A向右移动3个单位后,三个点中,点所表示的数最小,是.(3)将点C向左移动5个单位后,这时点B所表示的数比点C所表示的数大.(4)怎样移动点A,B,C中的两个点,才能使三个点表示的数相同?有几种移动方法?AB=,119.在一条不完整的数轴上从左到右有点A,B,C,其中2BC=,如图所示,设点A,B,C所对应数的和是P.(1)若以B为原点,写出点A,C所对应的数,并计算P的值;若以C为原点,P又是多少?(2)若原点O在图中数轴上点C的右边,且38CO=,求P.20.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,b 是最小的正整数,且a ,c 满足2|2|(7)0a c ++-=.(1)a = ,b = ,c = ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,则AB = ,AC = ,BC = .(用含t 的代数式表示)(4)请问:32BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.21.如图,已知数轴上两点A 、B 对应的数分别为1-、3,(1)点P 为数轴上一动点,其对应的数为x .①若点P 到点A 、点B 的距离相等,则x = ;②若点P 到点A 、点B 的距离之和为10,则x = ;(2)若将数轴折叠,使1-与3表示的点重合.①则3-表示的点与数 表示的点重合;②若数轴上M 、N 两点之间的距离为2021,且M 、N 两点经过折叠后互相重合,求M ,N 两点表示的数.22.如图,已知数轴上A 点表示数a ,B 点表示数b ,C 点表示数c .(1)当数a 、c 满足2|4|(8)0a c ++-=时,a = ,c = .(2)若点P 为数轴上一动点,其对应的数为x ,认真观察图形并结合(1)的条件发现,随着点P 在数轴上左右移动,代数式||||x a x c -+-可以取得最小值,这个最小值为 .(3)结合图形及条件(1)可知点A 与点C 之间的距离可表示为||AC a c =-,同样,点A 与点B 之间的距离可表示为||AB a b =-,点B 与点C 之间的距离表示为||BC b c =-,若点B 在直线AC 上,且满足BC AB =,求b 的值.23.如图A 在数轴上所对应的数为2-.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右运动,当点A 运动到6-所在的点处时,求A ,B 两点间距离.24.已知M 、N 在数轴上,M 对应的数是3-,点N 在M 的右边,且距M 点4个单位长度,点P 、Q 是数轴上两个动点:(1)写出点N 所对应的数;(2)点P 到M 、N 的距离之和是6个单位长度时,点P 所对应的数是多少?(3)如果P 、Q 分别从点M 、N 同时出发,均沿数轴向同一方向运动,点P 每秒走2个单位长度,点Q 每秒走3个单位长度,3秒后,点P 、Q 之间的距离是多少?25.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足2|2|(7)0a c ++-=.(1)a = ,b = ,c = ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,那么32BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.26.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”.例如数轴上点A ,B ,C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点A ,C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点1D ,2D ,3D 分别对应0,3.5和11,则点 是点M ,N 的“倍联点”,点N 是 这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点P ,M 的倍联点,求此时点P 表示的数.27.如图,半径为1个单位长度的圆片上有一点Q 与数轴上的原点重合(计算结果保留)p (1)把圆片沿数轴向左滚动1周,点Q 到达数轴上点A 的位置,点A 表示的数是 ;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:计次第1次第2次第3次第4次第5次第6次滚动周数3+1-2-4+3-a ①第6次滚动a 周后,Q 点距离原点4p ,请直接写出a 的值;②当圆片结束运动时,求Q 点运动的路程.28.如图,点A 表示的数为3-,线段12AB =(点B 在点A 右侧),动点M 从点A 出发,以每秒1个单位的速度,沿线段AB 向终点B 运动,同时,另一个动点N 从点B 出发,以每秒3个单位的速度在线段AB 上来回运动(从点B 向点A 运动,到达点A 后,立即原速返回,再次到达B 点后立即调头向点A 运动).当点M 到达B 点时,M 、N 两点都停止运动.设点M 的运动时间为x 秒.(1)当2x =时,线段MN 的长为 .(2)当M 、N 两点第一次重合时,求线段BN 的长;(3)是否存在某一时刻,使点BN 的中点恰好与点M 重合,若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.29.阅读下面的材料并解答问题:A 点表示数a ,B 点表示数b ,C 点表示数c ,且点A 到点B 的距离记为线段AB 的长,线段AB 的长可以用右边的数减去左边的数表示,即AB b a =-.若b 是最小的正整数,且a 、b 满足2(5)||0c a b -++=.(1)a = ,b = ,c = .(2)若将数轴折叠,使得A 与C 点重合:①点B 与数 表示的点重合;②若数轴上P 、Q 两点之间的距离为2020(P 在Q 的左侧),且P 、Q 两点经折叠后重合,则P 、Q 两点表示的数是 、 .30.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为10-,点B在原点的右边,且3=.点M以每秒3个单位长度的速度从点A出发向右运动.点N以BO AO每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是,点B到点A的距离是;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?。

数轴上的移动点问题训练(10题)

数轴上的移动点问题训练(10题)

数轴上的移动点问题训练(10题)以下是一份包含10个数轴上的移动点问题的训练题目。

通过解答这些问题,你可以增强数轴上移动点的理解和运用能力。

1. 问题:小明从数轴上的点A出发,向右移动5个单位,到达点B,再向左移动3个单位,到达点C。

请问点C与点A之间的距离是多少?2. 问题:数轴上的点D与点E相距8个单位。

如果点E在点D 的左侧4个单位处,那么点E的坐标是多少?3. 问题:数轴上的点F在点G的左侧3个单位处,点G在数轴上的坐标是8,请问点F的坐标是多少?4. 问题:小红从数轴上的点H出发,向左移动9个单位,到达点I,再向右移动6个单位,到达点J。

请问点J与点H之间的距离是多少?5. 问题:数轴上的点K在点L的右侧7个单位处,点L在数轴上的坐标是12,请问点K的坐标是多少?6. 问题:数轴上的点M与点N相距15个单位。

如果点N在点M的右侧3个单位处,那么点N的坐标是多少?7. 问题:小明从数轴上的点P出发,向右移动6个单位,到达点Q,再向左移动4个单位,到达点R。

请问点R与点P之间的距离是多少?8. 问题:数轴上的点S在点T的左侧9个单位处,点T在数轴上的坐标是20,请问点S的坐标是多少?9. 问题:数轴上的点U与点V相距10个单位。

如果点V在点U的右侧2个单位处,那么点V的坐标是多少?10. 问题:小红从数轴上的点W出发,向左移动12个单位,到达点X,再向右移动8个单位,到达点Y。

请问点Y与点W之间的距离是多少?这些问题旨在帮助你巩固数轴上移动点的知识和技能。

通过阅读和解答这些问题,你将更好地理解数轴上点的坐标和距离之间的关系。

希望这份练习题对你有所帮助!。

专题02 数轴上动点问题专项训练(解析版)

专题02 数轴上动点问题专项训练(解析版)
(3)解:由题意得,运动 t 秒后,点 P 表示的数为 -8 + 2t ,
当 0 < t £ 6 时,则 AP = -8 + 2t - -8 = 2t,CP = 4 - -8 + 2t = 12 - 2t ,
∵点 P 是线段 AC 的“二倍关联点”, ∴ AP = 2CP 或 AP = 1 CP ,
解得 t = 170 ; 7
110 170
由上可得,经过 秒或 秒的时间两只电子蚂蚁在数轴上相距 30 个单位长度.
7
7
【点睛】本题考查了数轴上两个数的大小比较,有理数的加减及乘法运算,绝对值的意义,数轴上
动点的运动,熟练运用方程思想及分类思想是解题关键.
2.(2023 上·广东韶关·七年级统考期末)如图,数轴上点 A 在原点 O 的左侧,点 B 在原点的右侧,

【分析】(1)根据数轴上两点间的距离公式求解即可; (2)用 AO 除以点 P 运动的速度即可求出 t 的值,进而可求出点 Q 表示的数; (3)分三种情况:①点 B 为 PQ 中点,则 BP = BQ ;②点 P 为 BQ 中点,则 BP = PQ ;③若点 Q 为 BP 中点,则 BQ = PQ ,根据数轴上两点间的距离可得到关于 t 的方程,解方程即可求出结果.
(1)求出 a,b 的值; (2)现有一只电子蚂蚁 P 从点 A 出发,以 4 个单位长度/秒的速度向右运动,同时另一只电子蚂蚁 Q 从点 B 出发,以 3 个单位长度/秒的速度向左运动. ①设两只电子蚂蚁在数轴上的点 C 相遇,求出点 C 对应的数是多少? ②经过多长时间两只电子蚂蚁在数轴上相距 30 个单位长度? 【答案】(1) a = -20 , b = 120
【详解】(1) AB = 8 - -6 = 14 ;

初一数学动点问题20题及答案

初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。

七年级数轴动点问题经典例题

七年级数轴动点问题经典例题

七年级数轴动点问题经典例题
数轴动点问题是七年级数学中的一个重要知识点,通过解决这类问题,可以帮
助学生加深对数轴和正数、负数的理解,培养学生的逻辑思维能力和解决问题的能力。

下面将介绍一些经典的数轴动点问题例题,希望能帮助同学们更好地掌握这一知识点。

1. 问题描述:小明从数轴上的0点出发,向右走3个单位,再向左走4个单位,最后再向右走2个单位,他最后停在了数轴上的哪个点?
解析:小明从0点出发,向右走3个单位,到达3点;再向左走4个单位,回
到-1点;最后再向右走2个单位,到达1点。

所以小明最后停在数轴上的点是1。

2. 问题描述:小红站在数轴上的点A,向右走5个单位到达点B,再向左走3
个单位到达点C,再向右走2个单位到达点D,最后向左走4个单位到达点E,小
红最后停在了哪个点?
解析:小红从点A向右走5个单位,到达点B;再向左走3个单位,到达点C;再向右走2个单位,到达点D;最后向左走4个单位,到达点E。

所以小红最后停
在数轴上的点是E。

3. 问题描述:小明站在数轴上的点P,向左走7个单位到达点Q,再向右走4
个单位到达点R,最后向左走3个单位到达点S,小明最后停在了哪个点?
解析:小明从点P向左走7个单位,到达点Q;再向右走4个单位,到达点R;最后向左走3个单位,到达点S。

所以小明最后停在数轴上的点是S。

通过解答上面的例题,我们可以发现,数轴动点问题的解决过程其实就是在数
轴上进行正数和负数的加减运算,通过对问题的分析和计算,可以得到最后点的位置。

希望同学们通过练习这些经典例题,掌握数轴动点问题的解题方法,提高数学能力,为学习数学打下坚实的基础。

七年级数学动点题50道

七年级数学动点题50道

七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。

(1)当t = 1时,求PQ的长度。

(2)求经过多少秒后,PQ = 5。

解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。

所以公式。

(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。

则公式。

当公式时,即公式。

则公式或公式。

当公式时,公式,公式(舍去,因为时间不能为负)。

当公式时,公式,公式。

2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。

解析:因为点C在点A、B之间,公式,公式。

又因为公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式。

解得公式。

3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。

(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。

解析:(1)点P表示的数为公式。

当点P到点B的距离为2时,公式。

则公式或公式。

解得公式或公式。

(2)点Q表示的数为公式,公式。

当公式时,公式。

即公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。

(1)求t秒后,点M表示的数和点N表示的数。

(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。

(2)当点M与点N相距4个单位长度时,公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

专题02 数轴上动点问题的三种考法(解析版)(人教版)

专题02 数轴上动点问题的三种考法(解析版)(人教版)

专题02数轴上动点问题的三种考法【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求值(速度、时间、距离)(1)请直接写出=a______,b=______;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点点O出发沿数轴向左运动,运动时间为t,点P为线段(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为O,A为端点的所有线段的长度和为109时,求出此时点(1)直接写出点B表示的数;(2)一动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动;另一动点(1)若点Q运动速度为8cm/s,当点P和点Q都运动到线段中点时,求点Q运动的时间;AB=,当(2)如图2,若点B也为射线OM上一点,且30cm(1)动点P从点A运动至E点需要秒,此时点(2)P,Q两点在点M处相遇,求出相遇点M(3)求当t为何值时,P,B两点在数轴上相距的长度与(1)数轴上A点表示的数为______,B点表示的数为______.(2)数轴上在B点右边有一点C,点C到A、B两点的距离和为(1)直接写出数a,b的值;(2)A,两点相距多少个单位长度?(1)求a、b的值;(1)请直接写出a、b、c的值.=a______,(1)求m、n的值;(2)①情境:有一个玩具火车AB如图1所示,放置在数轴上,将火车沿数轴左右水平移动,(1)若使C、B两点的距离是A、B两点的距离的(2)点A、B、C开始在数轴上运动,若点(1)填空,a=_______________,b=_______________(2)若点A与点C之间的距离表示为AC(1)AB=、BC=、AC=;(1)求点B和点D分别表示的数;例.已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且12AB =.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向点B 匀速运动,动点Q 从点B 同时出发,以每秒2个单位长度的速度沿着数轴向点A 匀速运动,规定其中一个动点到达终点时,另一个动点也随之停止运动.设运动时间为t 秒.(1)【解决问题】:①当1t =秒时,写出数轴上点P ,Q 所表示的数;②问点P 运动多少秒与点Q 相距3个单位长度?(2)【探索问题】:若M 为AQ 的中点,N 为BP 的中点,直接写出线段MN 与线段PQ 的数量关系.【答案】(1)①点P 表示的数为5;点Q 所表示的数为2-;②点P 运动1.8秒或3秒时与点Q 相距3个单位长度;(2)212MN PQ +=或212MN PQ -=.【分析】(1)①根据已知可得B 点表示的数为812-;根据点的运动方式即可得出点P 、Q 表示的数t ;②点P 运动x 秒时,与Q 相距2个单位长度,则3AP x =,2BQ x =,根据3AP BQ AB +=-,或3AP BQ AB +=+,列出方程求解即可;(2)根据点P 在点A 、B 两点之间运动,故MN MQ NP PQ +-=,由此可得出结论.【详解】(1)①∵点A 表示的数为8,B 在A 点左边,12AB =,∵3AP BQ AB +=-,∴32123x x +=-,解得: 1.8x =,当Q 在P 右侧时,与Q 相距3个单位长度,如图:∵3AP BQ AB +=+,∴32123x x +=+解得:3x =.∴点P 运动1.8秒或3秒时与点Q 相距3有:MN MQ NP PQ+-=11且12AB=.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P的运动时间为t秒.(1)解决问题:t=时,写出数轴上点B,P所表示的数;①当1②若点P,Q分别从A,B两点同时出发,问点P运动多少秒与点Q相距3个单位长度?(2)探索问题:若M为AQ的中点,N为BP的中点.当点P在A,B两点之间运动时,探索线段MN与线段PQ的数量关系(写出过程).【答案】(1)①点B表示-4,点P表示5;②1.8秒或3秒(2)2MN+PQ=12或2MN-PQ=12,过程见解析【解析】(1)解:①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8-12=-4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴点P表示的数是8-3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB-3,∴3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∴3x+2x=15,解得:x=3.∴点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN-PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP-PQ=12AQ+12BP-PQ=12(AQ+BP-PQ)-12PQ=12AB-12PQ=12(12-PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN-PQ=12.课后训练t=时,线段PQ的长度是(1)当2PQ=5(1)直接写出:a=______,②点Q 、点P 向右运动,点P 在点Q 右侧,316410t t -=-+,点P 到达点C 的时间为32(364)33-÷=,32113>,11t ∴=不合题意,舍去;④点P 向左运动,点P 在点Q 左侧,121033232t t +-+-=,解得:312t =,综上所述,当10PQ =时,P 点运动的时间为:1或212或312【点睛】本题考查了绝对值的非负性,数轴上动点问题,一元一次方程的应用,数形结合,(1)填空;a=,b=,(2)现将点A,点B和点C分别以每秒数轴上同时向右运动,设运动时间为。

专题04数轴动点问题专题探究(原卷版)

专题04数轴动点问题专题探究(原卷版)

专题04 数轴动点问题专题探究【知识点睛】❖数轴动点问题解题步骤总结:①画图形:在数轴上分析标注动点的起始点、运动方向、运动速度②表示线段:根据动点的运动情况,表示出动点所表示的数,再根据数之间的左右关系表示所需线段的表达式③列方程:根据题目要求的线段间的数量关系,列出符合题意的方程;其中,点的位置不确定的,注意分类讨论④求正解,并写答:解出方程中未知数的值,勿忘写“答”。

另外,不是所有求出来的值都可取的,根据题目要求的范围,不符合题意的答案需舍去。

【类题训练】1.一只蜗牛沿数轴从原点向右移动了5个单位长度到达点A,则点A表示的数是()A.5B.﹣5C.0D.±52.已知点A是数轴上的一点,它到原点的距离为3,把点A向左平移7个单位后,再向右平移5个单位得到点B,则点B到原点的距离为()A.1B.﹣5C.﹣5或1D.1或53.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合.将圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是()A.π﹣1B.﹣π﹣1C.﹣π+1D.π﹣1或﹣π﹣14.小明把有理数a,b表示在数轴上,对应点的位置如图所示,下列式子中正确的是()①﹣a>﹣b;②|a|<|﹣b|;③ab>0;④b﹣a<b+a.A.①②B.①④C.②③D.③④5.在数轴上,点A,B在原点O的两侧,分别表示数a和b(b>2),将点A向右平移2个单位长度得到点C.若OC=OB,则a,b的关系是()A.a+b=2B.a﹣b=2C.a+b=﹣2D.a﹣b=﹣26.纸片上有一数轴,折叠纸片,当表示﹣1的点与表示5的点重合时,表示3的点与表示数的点重合.7.有如下定义:数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A表示数﹣4,点B表示数8,M为数轴一个动点.若点M在线段AB上,且点M是点A、点B的“关键点”,则此时点M表示的数是.8.如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,动点P从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为t(t>0)秒,则下列结论中正确的有()①B对应的数是2;②点P到达点B时,t=3;③BP=2时,t=2;④在点P的运动过程中,线段MN的长度不变.A.①③④B.②③④C.②③D.②④9.已知数轴上的点A,B所对应的数分别为﹣2,6,点Q是数轴上的动点,且对应的数为x.(1)点Q到点A和点B的距离和的最小值是;(2)若点Q是线段AB的中点,则x的值是;(3)若点Q到点A和点B的距离和是12,求x的值.10.如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16,线段AB的中点表示的数是,若点C是数轴上的一个动点,当2AC﹣BC=10时,点C表示的数是.11.如图是某一条东西方向直线上的公交线路的部分路段,西起A站,东至L站,途中共设12个上下车站点,某天,小明参加该线路上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣3,+4,﹣5,+8,﹣2,+1,﹣3,﹣4,+1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若小明开始志愿服务活动时该汽车油量占油箱总量的,每行驶1千米耗油0.2升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能存储油多少升?12.如图,在数轴上有三个不同的点A,B,C,点C对应有理数10;原点O为线段AB的中点,且线段AB的长度是BC的3倍.(1)求点A,B所对应的有理数;(2)动点P从点A出发,以每秒1个单位的速度向右移动,当点P到点A的距离是到点B距离的2倍时,直接写出此时点P所对应的有理数.13.数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.点A、B 对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)a=,b=,并在数轴上面标出A、B两点;(2)若P A=2PB,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB﹣P A的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.14.定义:数轴上有A,B两点,若点A到原点的距离为点B到原点的距离的两倍,则称点A为点B的2倍原距点.已知点A,M,N在数轴上表示的数分别为4,m,n.(1)若点A是点M的2倍原距点,①当点M在数轴正半轴上时,则m=;②当点M在数轴负半轴上,且为线段AN的中点时,判断点N是否是点A的2倍原距点,并说明理由;(2)若点M,N分别从数轴上表示数10,6的点出发向数轴负半轴运动,点M每秒运动速度为2个单位长度,点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时,点A恰好也是点N 的2倍原距点,请直接写出a所有可能的值.15.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是﹣5,那么点B所表示的数是;②在图1中标出原点O的位置.(2)图2是小敏所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小敏提供的信息,标出隐藏的原点O的位置,并写出此时点C所表示的数是.(3)如图3,数轴上标出若干个点,其中点A,B,C所表示的数分别为a,b,c.若数轴上标出的若干个点中每相邻两点相距1个单位(如AB=1),且c﹣2a=8.①试求a的值;②若点D也在这条数轴上,且CD=2,求出点D所表示的数.16.在如图所示的数轴上,点P为原点.点A、点B距离﹣2都为6个单位长度,且点A在点B的左侧,若现在有点C、点D两点分别从点P、点B同时向点A移动,且已知点C、点D分别以每秒2个单位长度和每秒3个单位长度的速度移动了t秒.请回答下列问题:(1)A点表示数为,B点表示数为;(2)当t=2时,CD的长度为多少个单位长度?(3)当D在线段BP上运动时,线段AC、CD之间存在何种数量关系式?17.已知数轴上两点A,B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,则点P对应的数是.(2)数轴的原点右侧有点P,使点P到点A,点B的距离之和为8.请你求出x的值.(3)现在点A,点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,直接写出点P对应的数.。

数轴上的动点问题71题(含答案)

数轴上的动点问题71题(含答案)

数轴上的动点问题73题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()A.在点A,B之间B.在点B,C之间C.在点C,D之间D.在点D,E 之间2.下列说法正确的是A.在数轴上与原点的距离越远的点表示的数越大B.在数轴上-9与-7之间的有理数为-8C.任何一个有理数都可以在数轴上表示出来D.比-1大6的数是73.如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2007将与圆周上的数字()重合.A.0 B.1 C.2 D.34.如图,数轴上点A,B表示的数分别为−40,50.现有一动点P以2个单位每秒的速度从点A向B运动,另一动点Q以3个单位每秒的速度从点B向A运动.当AQ=3PQ时,运动的时间为 ( )A.15秒B.20秒C.15秒或25秒D.15秒或20秒二、解答题5.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=2CQ.设运动的时间为t(t>0)秒.3①数轴上点M、N表示的数分别是(用含t的式子表示);②t为何值时,M、N两点到原点的距离相等?6.阅读思考我们知道,在数轴上|a|表示数a所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q两点表示的数分别是﹣1和2,那么P,Q两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0 (1)求线段AB的长;x﹣8的解,(2)如图,点C在数轴上对应的数为x,且x是方程2x+1=12①求线段BC的长;②在数轴上是否存在点P使PA+PB=BC?若存在,直接写出点P对应的数:若不存在,说明理由.7.如图,在数轴上有A、B、C、D四个点,且线段AB=4,CD=6,已知A表示的数是﹣10,C表示的数是8,若线段AB以每秒6个单位长度的速度,线段CD以每秒2个单位长度的速度在数轴上运动(A在B左侧,C在D左侧)(1)B,D两点所表示的数分别是、;(2)若线段AB向右运动,同时线段CD向左运动,经过多少秒时,BC=2;(3)若线段AB、CD同时向右运动,同时点P从原点出发以每秒1个单位长度的速度向右运动,经过多少秒时,点P到点A,C的距离相等?8.已知a、b满足(a−2)2+|ab+6|=0,c=2a+3b,且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则a=______,b=______,c=______.(2)点D是数轴上A点右侧一动点,点E、点F分别为CD、AD中点,当点D运动时,线段EF的长度是否发生变化,若变化,请说明理由,若不变,请求出其值;(3)若点A、B、C在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A 和点B分别以每秒3个单位和每秒2个单位的速度向右运动.请问:是否存在一个常数m 使得m⋅AB−2BC不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.9.如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示什么数?它们到原点的距离分别是多少?(2)将点B向左移动3个单位长度后,三个点所表示的数中最小的数是多少?(3)将点A向右移动4个单位长度后,三个点所表示的数中最小的数是多少?(4)要怎样移动A、B、C三点中的两个点,才能使三个点表示的数相同?移动方法唯一吗?若不是,请任意选择一种回答,10.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.11.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?12.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?13.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A表示的数是________,点B表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.14.如图,数轴上有三个点A,B,C,请回答下列问题:(1)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大多少?(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?15.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,试求几秒后点A与点C距离为12个单位长度?16.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?17.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.18.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为,经t秒后点P走过的路程为(用含t的式子表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.19.A,B两点在数轴上的位置如图所示,其中O为原点,点A对应的有理数为﹣4,点B对应的有理数为6.(1)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0).①当t=1时,AP的长为,点P表示的有理数为;②当PB=2时,求t的值;(2)如果动点P以每秒6个单位长度的速度从O点向右运动,点A和B分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,且三点同时出发,那么经过几秒PA=2PB.20.如图,在数轴上点A表示数a,点B表示数b,点C表示数c.b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0(1)填空:a= ,b= .(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B 与C之间的距离表示为BC.则BC= .(用含t的代数式表示)(3)请问:|2AB﹣3BC|的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,请求其值.21.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac 的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.22.已知,A,B在数轴上对应的数分别用a,b表示,且(12ab+100)2+|a﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?23.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C在数轴上表示的数是4,若线段AB以3个单位长度/秒的速度向右匀速运动,同时线段CD以1个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时BC=2(单位长度)?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.24.已知数轴上A ,B 两点对应的数分别为a ,b ,且a ,b 满足|a+20|=﹣(b ﹣13)2,点C 对应的数为16,点D 对应的数为﹣13. (1)求a ,b 的值;(2)点A ,B 沿数轴同时出发相向匀速运动,点A 的速度为6个单位/秒,点B 的速度为2个单位/秒,若t 秒时点A 到原点的距离和点B 到原点的距离相等,求t 的值; (3)在(2)的条件下,点A ,B 从起始位置同时出发.当A 点运动到点C 时,迅速以原来的速度返回,到达出发点后,又折返向点C 运动.B 点运动至D 点后停止运动,当B 停止运动时点A 也停止运动.求在此过程中,A ,B 两点同时到达的点在数轴上对应的数.25.(1)在如图所示的数轴上,把数﹣2,13,4,﹣12,2.5表示出来,并用“<“将它们连接起来;(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t (秒). 请从A ,B 两题中任选一题作答.A .当t=3时,求甲、乙两小球之间的距离.B .用含t 的代数式表示甲、乙两小球之间的距离.26.如图,己知数轴上点A表示的数为8, B是数轴上—点(B在A点左边),且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数;(2)点P所表示的数;(用含t的代数式表示);(3)C是AP的中点,D是PB的中点,点P在运动的过程中,线段CD的长度是否发生化?若变化,说明理由,若不变,请你画出图形,并求出线段CD的长.27.已知A、B是数轴上的两个点,点A表示的数为13,点B表示的数为-5,动点P 从点B出发,以每秒4个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)BP= ,点P表示的数(分别用含t的代数式表示);(2)点P运动多少秒时,PB=2PA?(3)若M为BP的中点,N为PA的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.28.点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= ;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?29.A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=,y=,并请在数轴上标出A、B两点的位置.(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=.(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t 秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B 之间的距离为AB,且AC+BC=1.5AB,则t=.30.如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).的值;②若点P为数轴上一点,且PA﹣PB=OP,求OPAB(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?31.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD 的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.32.已知多项式2x3y﹣xy+16的次数为a,常数项为b,a,b分别对应着数轴上的A、B 两点.(1)a= ,b= ;并在数轴上画出A、B两点;(2)若点P从点A出发,以每秒3个单位长度单位的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍;(3)数轴上还有一点C的坐标为30,若点P和Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P到达C点后,再立即以同样的速度返回,运动的终点A,求点P和点Q运动多少秒时,P,Q两点之间的距离为4,并求出此时点Q的坐标.33.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.34.如图,线段 AB=24,动点 P 从 A 出发,以每秒 2 个单位的速度沿射线 AB 运动,运动时间为 t 秒(t>0),M 为 AP 的中点. (1)当点 P 在线段 AB 上运动时,①当 t 为多少时,PB=2AM ?②求2BM-BP 的值.(2)当 P 在 AB 延长线上运动时,N 为 BP 的中点,说明线段 MN 的长度不变,并 求出其值.(3)在 P 点的运动过程中,是否存在这样的 t 的值,使 M 、N 、B 三点中的一个点 是以其余两点为端点的线段的中点,若有,请求出 t 的值;若没有,请说明理 由.35.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结 合.研究数轴我们发现了许多重要的规律:若数轴上点 A 、点 B 表示的数分别为 a 、b ,则A 、B 两点之间的距离 AB= a b -,线段 AB 的中点表示的数为2a b+ . 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点 A 出发, 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒 2个单 位长度的速度向左匀速运动,设运动时间为t 秒(t >0). 【综合运用】(1) 填空:①A 、B 两点之间的距离AB=__________,线段AB 的中点表示的数为_______; ②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为_____. (2) 求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数; (3)求当t 为何值时,PQ=12AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点 P 在运动过程中,线段MN 的长度是否发 生变化?若变化,请说明理由;若不变,请求出线段MN 的长.36.如图,已知点A 、B 、C 是数轴上三点,点C 表示的数为9,BC=6,AB=18. (1)数轴上点A 表示的数为______;点B 表示的数为______.(2)若动点P 从A 出发沿数轴匀速向右运动,速度为每秒6个单位,M 为AP 中点,设运动时间为t (t>0)秒,则数轴上点M 表示的数为____________;(用含t 的式子表示) (3)若动点P 、Q 同时从A 、C 出发,分别以6个单位长度每秒和3个单位长度每秒的速度,沿数轴匀速向右运动.N 在线段PQ t (t>0)秒,则数轴上点N 表示的数为____________(用含t 的式子表示).37.如图,点A 、B 、C 是数轴上三点,点C 表示的数为6, 4BC =, 12AB =. (1)写出数轴上点A 、B 表示的数:__________,__________.(2)动点P , Q 同时从A , C 出发,点P 以每秒4个单位长度的速度沿数轴向右匀速运动,点Q 以2个单位长度的速度沿数向左匀速运动,设运动时间为(0)t t >秒. ①求数轴上点P , Q 表示的数(用含t 的式子表示); ②t 为何值时,点P , Q 相距6个单位长度.38.已知:b是最小的正整数,且a、b满足(1)请直接写出a、b、c的值:a=__________,b=__________,c=__________.(2)数轴上a,b,c所对应的点分别为A,B,C,点M是A,B之间的一个动点,其对应的数为m,请化简.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动....同时,点B和点C分别以每秒2个.单位长度和5个.单位长度t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B 的速度向右运动...,假设-的值是否随着时间t的变化而改变?若变化,之间的距离表示为AB.请问:BC AB请说明理由;若不变,请求其值.39.如图1,已知在数轴上有A、B两点,点A表示的数是6-,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.t=时,点Q表示的数是;当P、Q两点相(1)AB= ;1遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为________;点T表示的数为________ ;MT=_________ .(用含t的代数式填空)40.已知: a 是最大的负整数, b 是最小的正整数,且c a b =+,请回答下列问题: (1)请直接写出a , b , c 的值, a =__________; b =__________; c =__________.(2)a , b , c 在数轴上所对应的点分别为A , B , C ,请在数轴上表示A ,B ,C 三点.(3)在(2)的情况下,点A , B , C 开始在数轴上运动,若点A 、点C 都以每秒1个单位的速度向左运动,同时,点B 以每秒5个单位长度的速度向右运动,假设t 秒过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问AB BC -的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求出AB BC -的值.41.已知数轴上有两点A , B ,点A 对应的数是40,点B 对应的数是80-. (1)如图1,现有两动点P , Q 分别从B , A 出发同时向右运动,点P 的速度是点Q 的速度2倍少4个单位长度/秒,经过10秒,点P 追上点Q ,求动点Q 的速度.(2)如图2, O 表示原点,动点P , T 分别从B , O 两点同时出发向左运动,同时动点Q 从点A 出发向右运动,点P , T , Q 的速度分别为5个单位长度/秒、1个单位长度/秒、2个单位长度/秒;如果点M 为线段PT 的中点,点N 为线段OQ 的中点,试说明在运动过程中等量关系2PQ OT MN +=始终成立.42.如图,数轴上点A、B所表示的数分别是4,8,(1)请用尺规作图的方法确定原点O的位置(不写做法,保留作图痕迹)(2)已知动点M从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点N从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.①运动1秒后,点M表示的数是_____,点N表示的数为______②运动t秒后,点M表示的数是_____,点N表示的数为______③若线段BN=2,求此时t的大小以及相应的M所表示的数.43.43.已知,A,B在数轴上对应的数分别用a,b表示,且(12ab+100)2+|a-20|=0, P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点M从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7 个单位长度,…,点M能移动到与A 或B重合的位置吗?若都不能,请直接回答,若能,请直接指出,第几次移动与哪一点重合.44.如图,O为原点,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0.(1)a=________,b=_________;(2)若点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(秒).①当点P运动到线段OB上,且PO=2PB时,求t的值;②先取OB的中点E,当点P在线段OE上时,再取AP的中点F,试探究AB OPEF的值是否为定值?若是,求出该值;若不是,请用含t的代数式表示.③若点P从点A出发,同时,另一动点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,到达点O后立即原速返回向右匀速运动,当PQ=1时,求t的值.45.如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数为__________;(2)当点P运动到达点A处时运动时间t为秒__________;(3)运动过程中点P表示的数的表达式为_____________;(用含字母t的式子表示)(4)当t等于多少秒时,P、C之间的距离为2个单位长度.46.46.如图,已知数轴上点B 表示的为-5,点A 是数轴上一点,且AB=12,动点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,动点H 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t (0t >)秒. (1)写出数轴上点A 表示的数 ;(2)当动点P ,H 同时从点A 和点B 出发,运动t 秒时,点P 表示的数 ;点H 表示的数 ;(用含t 的代数式表示) (3)动点P 、H 同时出发,问点H 运动多少秒时追上点P ?47..A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就称点C 是【A ,B 】的和谐点.例如:图1中,点A 表示的数为-1,点B 表示的数为2。

数轴上的动点问题训练(10题)

数轴上的动点问题训练(10题)

-1-2-3321O BAP 0123-3-2-1B A数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。

(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。

2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO .(1)写出数轴上点A 、C 表示的数;(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=32CQ .设运动的时间为t (t >0)秒.①数轴上点M 、N表示的数分别是(用含t 的式子表示);②t 为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程91x 的两根(ab ),2(16)c 与20d 互为相反数。

(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。

问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。

七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。

在数轴上,数与点是一一对应的关系。

2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。

例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。

3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。

二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。

(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。

解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。

又因为公式,所以公式。

当公式时,方程无解。

当公式时,公式,公式,解得公式。

所以点公式对应的数为公式。

(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。

解析:因为公式,公式,且公式,所以公式。

因为点公式在公式、公式之间,即公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式,解得公式。

所以点公式对应的数为公式。

(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。

问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。

根据公式,公式。

当公式时,即公式。

当公式时,公式,公式,解得公式。

当公式时,公式,公式,公式,解得公式。

2. 数轴上点公式表示的数为公式,点公式表示的数为公式。

(1)求线段公式的长。

解析:根据两点间距离公式公式。

(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。

初中数学数轴动点问题12例

初中数学数轴动点问题12例

数学《时分秒》的应用题01起始时刻+经过的时间=结束时刻结束时刻-起始时刻=经过的时间结束时刻-经过的时间=起始时刻一. 求起始时刻1、早训练上午8:05结束,训练40分钟,早训练是从()开始的。

2、妈妈8:00上班,路上要花25分钟,她至少应在()从家里出发。

3、今天的0时也是昨天的()时,也可以说是昨天夜里的()时。

二. 求结束时刻1、一艘轮船晚上10:50从上海出发,行了1小时20分,轮船()时到达目的地。

2、一节课40分钟,从上午9:50开始上课,()结束。

小明早上7:05分从家里出发,路上需花15分钟,他()能到学校3、一场排球赛从19:30开始,进行了155分钟。

结束的时间是()4、小红的学校8:15开始上第一节课,每节课40分钟,课间休息10分钟。

(1)第二节课()下课;(2)9:10分小明在()【上课/休息】5、一列火车11:25发车,路上行驶了4小时45分,到达时刻是( )6、小明上写字课,从下午2点开始,40分钟一节课,应该在()下课。

7、一节课40分钟,第一节从8时50分开始上课,课间休息10分钟,第三节课几点下课()三. 求经过时间1、刷牙需要5分钟,烧水需要10分钟,完成这些最少需要的时间是()2、妈妈早上7:30上班,中午12:00~1:30午餐和午休,下午5:00下班。

妈妈一天共工作()小时。

3、一辆汽车9:10从无锡开往南京,11:30到达,途中行驶了()。

4、李明每天上午7:50到校,11:30离校;下午2:00到校,下午4:40放学。

李明一天在校的时间是()小时()分。

5、一列火车20点30分从甲站出发,次日12点30分到达乙城,火车共行驶了多少小时()。

6、王军晚上9是睡觉,次日6点起床,他睡了多长时间()。

7、王达晚上7时20分到8时40分做作业,他做了多长时间()。

02一.求经过的时间例如:14:00—晚上8:00经过(6 )时计算:8+12-14=6(时)。

7年级动点题10道

7年级动点题10道

7年级动点题10道一、数轴上的动点问题。

1. 已知数轴上点A表示的数为 -2,点B表示的数为4,点P从点A出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。

- 当t = 1时,求点P和点Q所表示的数。

- 求经过多少秒,点P与点Q相遇?- 求经过多少秒,点P与点Q之间的距离为2个单位长度?解析:- 点P从 - 2出发,速度为每秒2个单位长度,当t = 1时,点P表示的数为-2 + 2×1=0;点Q从4出发,速度为每秒1个单位长度,当t = 1时,点Q表示的数为4-1×1 = 3。

- 设经过t秒点P与点Q相遇。

点P向右运动的路程为2t,点Q向左运动的路程为t,相遇时2t + t=4 - (-2),即3t = 6,解得t = 2秒。

- 分两种情况:- 相遇前相距2个单位长度:2t+t+2 = 4-(-2),3t+2 = 6,3t = 4,解得t=(4)/(3)秒。

- 相遇后相距2个单位长度:2t + t-2=4 - (-2),3t-2 = 6,3t = 8,解得t=(8)/(3)秒。

2. 数轴上点A对应的数为 -1,点B对应的数为3,点P为数轴上一动点,其对应的数为x。

- 若点P到点A、点B的距离相等,求点P对应的数。

- 数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,求出x的值;若不存在,请说明理由。

- 当点P以每分钟1个单位长度的速度从原点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A、点B的距离相等?解析:- 因为点P到点A、点B的距离相等,所以x=(-1 + 3)/(2)=1。

- 存在。

当点P在点A左侧时,-1 - x+3 - x = 5,-2x+2 = 5,-2x = 3,解得x =-(3)/(2);当点P在点B右侧时,x - (-1)+x - 3 = 5,2x - 2 = 5,2x = 7,解得x=(7)/(2)。

专题02 数轴上的动点问题专练

专题02 数轴上的动点问题专练

编者小k 君小注:本专辑专为2022年初中沪教版数学第二学期研发,供中等及以上学生使用。

思路设计:重在培优训练,分选择、填空、解答三种类型题,知识难度层层递进,由中等到压轴,基础差的学生选做每种类型题的前4题;基础中等的学生必做前4题、选做5-8题;尖子生全部题型必做,冲刺压轴题。

专题02 数轴上的动点问题专练(原卷版)错误率:___________易错题号:___________一、单选题1.如图,数轴上点M 、N 表示的数是m 、n ,点M 在表示-3,-2的两点(包括这两点)之间移动,点N 在表示-1,0的两点(包括这两点之间)移动,则以下对四个代数式的值判断正确的是( )A .2m n -的值一定小于3B .2m n +的值一定小于-7C .1n m -值可能比2018大D .11m n-的值可能比2018大2.电子虫落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3向右跳4个单位到K 4…,按以上规律跳了100步时,电子虫落在数轴上的点K 100所表示的数恰是19.94,则K 0表示的数是( )A .﹣19.94B .30.06C .19.94D .﹣30.063.一动点P 从数轴上的原点出发,沿数轴的正方向以每前进5个单位,后退3个单位的程序运动,已知P 每秒前进或后退1个单位,设n x 表示第n 秒点P 在数轴的位置所对应的数如4x =4,5x =5,6x =4,则2012x 为( )A .504B .505C .506D .5074.如图,在数轴上,点A 表示数1,现将点A 沿数轴作如下移动,第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,…,按照这种移动规律进行下去,第2021次移动到点2021A ,那么点2021A 所表示的数为( )A .3029-B .3032-C .3035-D .3038-5.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ=6.如图,一个动点从原点O 开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2021秒时所对应的数是( )A .-406B .-405C .-2020D .-20217.有一题目:点P 、Q 、M 分别表示数-1、1、5,三点在数轴上同时开始运动,点P 运动方向是向左,运动速度是2/s ;点Q 、M 的运动方向是向右,运动速度分别1/s 、3/s ,如图,在运动过程中,甲、乙两位同学提出不同的看法,甲:35PM PQ -的值不变;乙:53QM PQ -的值不变;下列选项中,正确的是( )A .甲、乙均正确B .甲正确、乙错误C .甲错误、乙正确D .甲、乙均错误8.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1-,若正方形ABCD 绕着顶点逆时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2-:则翻转2019次后,数轴上的数2020-所对应的点是( )A .点AB .点BC .点CD .点D9.如图,一个动点从原点O 开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2021秒时所对应的数是( )A .406-B .-405C .1010-D .1011-10.已知有理数,a b 满足:2|2|(2)0a b b -+-=.如图,在数轴上,点O 是原点,点A 所对应的数是a ,线段BC 在直线OA 上运动(点B 在点C 的左侧),BC b =,下列结论①4,2a b ==;②当点B 与点O 重合时,3AC =;③当点C 与点A 重合时,若点P 是线段BC 延长线上的点,则2PO PA PB +=;④在线段BC 运动过程中,若M 为线段OB 的中点,N 为线段AC 的中点,则线段MN 的长度不变.其中正确的是()A .①③B .①④C .①②③④D .①③④二、填空题11.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是___________.12.如图,A 点的初始位置位于数轴上的原点,现对A 点做如下移动:第1次从原点向右移动1个单位长度至B 点,第2次从B 点向左移动4个单位长度至C 点,第3次从C 点向右移动7个单位长度至D 点,第4次从D 点向左移动10个单位长度至E 点,…以此类推,移动5次后该点对应的数为_________,这样移动2019次后该点到原点的距离为_______.13.数轴上两点A ,B 所表示的数分别为a 和b ,且满足()2280a b ++-=.点E 以每秒1个单位的速度从原点O 出发向右运动,同时点M 从点A 出发以每秒7个单位的速度向左运动,点N 从点B 出发,以每秒10个单位的速度向右运动,P ,Q 分别为ME ,ON 的中点.思考,在运动过程中,MN OE PQ-的值______________.14.数轴上有A 、B 两点,点A 表示6的相反数,点B 表示绝对值最小的数,一动点P 从点B 出发,沿数轴以1单位长度/秒的速度运动,4秒后,点P 到点A 的距离为_____单位长度.15.如图,在数轴上点P 、点Q 所表示的数分别是17-和3,点P 以每秒4个单位长度的速度,点Q 以每秒3个单位长度的速度,同时沿数轴向右运动.经过______秒,点P 、点Q 分别与原点的距离相等.16.点P 从原点向距离原点左侧2个单位的A 点处跳动,第一次跳动到OA 的中点A 处,第二次从A 1点跳动到AA 1的中点A 2处,第三次从A 2点跳动到AA 2的中点A 3处,如此不断跳动下去,则第6次跳动后,P 点表示的数为___.17.一只小球落在数轴上的某点0P ,第一次从0P 向左跳1个单位到1P ,第二次从1P 向右跳2个单位到2P ,第三次从2P 向左跳3个单位到3P,第四次从3P 向右跳4个单位到4P ……若按以上规律跳了100次时,它落在数轴上的点100P 所表示的数恰好是2021,则这只小球的初始位置点0P所表示的数是_____.18.一把刻度尺在数轴上的位置摆放如图所示,刻度尺右端点B 的刻度为“0”,刻度“10cm”和“25cm ”分别与数轴上表示数0和2-的点重合,现将该刻度尺沿数轴向右平移4个单位,如图 2,使刻度尺的左端点A 与数轴上表示的数1重合,则该刻度尺的长度为_______ cm .19.如图所示,在数轴上,点A 表示1,现将点A 沿轴做如下移动,第一次点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_______.20.已知点O 是数轴的原点,点A 、B 、C 在数轴上对应的数分别是﹣12、b 、c ,且b 、c 满足(b ﹣9)2+|c ﹣15|=0,动点P 从点A 出发以2单位/秒的速度向右运动,同时点Q 从点C 出发,以1个单位/秒速度向左运动,O 、B 两点之间为“变速区”,规则为从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速,从点B 运动到点O 期间速度变为原来的3倍,之后立刻恢复原速,运动时间为 _____秒时,P 、Q 两点到点B 的距离相等.三、解答题21.如图,已知数轴上点A表示的数为60,B是数轴上一点,AB=100.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ;当t=3时,OP= (2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R 运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,且当点P,R均在A点左侧时,是否存在常数k,使式子kAP+AR的值与时间t的取值无关?若存在,请求出k 值,若不存在,请说明理由22.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为6,A、B两点所对应的数分别为a、b,且满足(a+10)2+|b﹣2|=0.(1)求a、b的值;(2)动点P、Q分别同时从A、C出发,分别以每秒6个单位和3个单位的速度沿数轴正方向运动,M为AP的中点,N在线段CQ上,且CN=13CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②当t为何值时,OM=2BN.23.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+4|+(c﹣9)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.试表示出AB,AC,BC.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.24.如图,半径为1个单位长度的圆形铁片上有一点R与数轴上的原点重合.(p取3.14)(1)把铁片沿数轴向右滚动一周,点R 到达数轴上点Q 的位置,则点Q 表示的数是________;(2)将铁片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次运动情况记录如下:3+,2-,5-,4+,1+,3-.当铁片结束运动时,R 点运动的路程共是多少?此时点R 所表示的数是多少?25.点A 、B 、C 为数轴上三点,如果点C 在A 、B 之间且到A 的距离是点C 到B 的距离3倍,那么我们就称点C 是{},A B 的奇点.例如,点A 表示的数为3-,点B 表示的数为1.表示0的C 点到点A 的距离是3,到点B 的距离是1,那么点C 是{},A B 的奇点;又如,表示2-的点D 到点A 的距离是1,到点B 的距离是3,那么点D 就不是{},A B 的奇点,但点D 是{},B A 的奇点.(1)P 、Q 为数轴上两点,点P 所表示的数为5-,点Q 所表示的数为7.则数_______所表示的点是{},P Q 的奇点;数_______所表示的点是{},Q P 的奇点;(2)M 、N 为数轴上两点,点M 所表示的数为m ,点N 所表示的数为n ,m n <.现有一动点H 从点M 出发向右运动,当H 点运动到数轴上的什么位置时,H 、M 、N 中恰有一个点为其余两点的奇点?26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离可以表示为|m ﹣n |.那么,数轴上表示数x 与5两点之间的距离可以表示为 ,表示数y 与﹣1两点之间的距离可以表示为 .(2)如果表示数a 和﹣2的两点之间的距离是3,那么a = ;(3)若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(4)当a = 时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是 .。

专题02 数轴及数轴上的动点问题之七大题型(原卷版)

专题02 数轴及数轴上的动点问题之七大题型(原卷版)

专题02数轴及数轴上的动点问题之七大题型用数轴上的点表示有理数【变式训练】(1)点A表示的数是___________,点B表示的数是17数轴上两点之间的距离【变式训练】根据点在数轴的位置判断式子的正负A .0a b +>B .【变式训练】数轴上的动点问题中求运动时间例题:(2023上·河南鹤壁·七年级统考期末)数轴上有A,B两点,点B在点A的右边,若点A表示的数为2AB=.-,线段12(1)点B表示的数为__________;(2)点P从A点出发,以每秒1个单位长度速度向右运动,点Q从B点出发,以每秒2个单位长度的速度向左运动.若点P,Q同时出发,当P,Q两点重合时对应的数是多少?(3)在(2)的条件下,P,Q两点运动多长时间相距6个单位长度?【变式训练】-,1.(2023上·河南郑州·七年级统考期末)已知数轴上有A、B、C三个点,分别表示有理数208-,8,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为x秒.x=时,点P到点A的距离PA=______ ;此时点P所表示的数为______ ;(1)当6(2)当点P运动到B点时,点Q同时从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后也停止运动,则点Q出发5秒时与P点之间的距离QP=______ ;(3)在(2)的条件下,当点Q到达C点之前,请求出点Q移动几秒时恰好与点P之间的距离为2个单位?2.(2023上·辽宁沈阳·七年级统考期末)如图:在数轴上,点A对应的数是3-,点B对应的数是16,两动点M、N同时从原点O出发,点M以每秒1个单位的速度沿数轴向点B运动;点N以每秒3个单位的速度沿数轴向左运动,到达点A后停留1秒,再从点A沿数轴向右到达点B后停止运动.设点M 的运动时间为()0116t <<秒.(1)当1t =时,线段MN 的长为________(直接填空);当3t =时,线段MN 的长为________(直接填空);(2)在运动过程中,当点M 与点N 重合时,求t 的值;(3)当线段MN 的长为7时,直接写出t 的值.数轴上的动点问题中求定值例题:(2022上·湖南长沙·七年级校考期末)如图,线段AB 和CD 在数轴上运动,开始时,点A 与原点O 重合,且32CD AB =-.(1)若8AB =,且B 为AC 线段的中点,求点D 在数轴上表示的数.(2)在(1)的条件下,线段AB 和CD 同时开始向右运动,线段AB 的速度为3个单位/秒,线段CD 的速度为2个单位/秒,经过t 秒恰好有24AC BD +=,求t 的值.(3)若线段AB 和CD 同时开始向左运动,且线段AB 的速度大于线段CD 的速度,在点A 和C 之间有一点P (不与点B 重合),且有AB AP AC DP ++=,此时线段BP 为定值吗?若是,请求出这个定值,若不是,请说明理由.【变式训练】1.(2021上·江苏无锡·七年级校考期末)如图,O 为原点,在数轴上点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足|a +2|+(3a +b )2=0.数轴上的动点问题中找点的位置(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数【变式训练】数轴上的动点问题中几何意义最值【变式训练】A .b c >B .2a ->A .12B .8C .2-A .1-或5B .3-或二、填空题5.(2022上·四川宜宾·七年级统考期末)数轴上三、解答题7.(2022上·福建龙岩·七年级校考期末)将下列各数在数轴上表示出来,并用2(1)①若点A表示的数为0,则点B、点C表示的数分别为:(1)AB=______;①若点B表示的数为2,则在数轴上点(1)直接写出a= ___________,b= ___________。

人教版2024七年级数学上册专项练习专项3数轴动点问题(原卷版)

人教版2024七年级数学上册专项练习专项3数轴动点问题(原卷版)

专项3数轴动点问题1.已知数轴上有A、B、C 三点,分别对应有理数-26、-10、10,动点P 从B 出发,以每秒1个单位的速度向终点C 移动,同时,动点Q 从A 出发,以每秒3个单位的速度向终点C 移动,设点P 的移动时间为t 秒.(1)当t=5秒时,数轴上点P 对应的数为,点Q 对应的数为;P、Q 两点间的距离为.(2)用含t 的代数式表示数轴上点P 对应的数为.(3)在点P 运动到C 点的过程中(点Q 运动到C 点后停止运动),请用含t 的代数式表示P、Q 两点间的距离.2.已知数轴上A,B 两点表示的数分别为4-,8.如图,若点P 和点Q 分别从点A,B 同时出发,都沿数轴的负方向运动,点P 的运动速度为每秒2个单位长度,点Q 的运动速度为每秒6个单位长度,设运动的时间为t 秒.(1)运动2秒时P,Q 两点对应的数分别为______,______;(2)运动t 秒时P,Q 两点对应的数分别为______,______;(用含t 的代数式表示)(3)当P,Q 两点相遇时,求点P 在数轴上对应的数;(4)当P,Q 两点之间的距离为4时,求t 的值.3.已知多项式()32102053a x x x ++-+是关于x 的二次多项式,且二次项系数为b,数轴上两点A,B 对应的数分别为a,b.(1)a =,b =,线段AB =;(2)若数轴上有一点C,使得32AC BC =,点M 为AB 的中点,求MC 的长;(3)有一动点G从点A出发,以3个单位每秒的速度向右方向运动,同时动点H从点B出发,以1个单位每秒的速度在数轴上作同方向运动,设运动时间为t秒(10t<),点D为线段GB的中点,点F为线段DH的中点,点E在线段GB上且13GE BG=,在G,H的运动过程中,求DE DF+的值.(用含t的代数式表示)4.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为-7,点N所表示的数为2(1)点E,F,G表示的数分别是3-,6.5,11,其中是【M,N】美好点的是______;写出【N,M】美好点H所表示的数是______.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?。

七年级上册数学数轴动点问题

七年级上册数学数轴动点问题

七年级上册数学数轴动点问题一、数轴动点问题题目。

1. 已知数轴上点A表示的数为 -2,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动。

设运动时间为t秒。

- 当t = 2时,求PQ的长度。

- 当PQ = (1)/(2)AB时,求t的值。

- 在点P、Q运动的过程中,是否存在某一时刻t,使得点P是线段BQ的中点?若存在,求出t的值;若不存在,请说明理由。

解析:- 当t = 2时,点P表示的数为-2 + 1×2=0,点Q表示的数为6-2×2 = 2,则PQ=|0 - 2|= 2。

- AB=|-2 - 6| = 8,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,当PQ=(1)/(2)AB = 4时,即|3t-8| = 4,则3t-8 = 4或3t - 8=-4,解得t = 4或t=(4)/(3)。

- 若点P是线段BQ的中点,则BP = PQ,点P表示的数为-2+t,点Q表示的数为6-2t,BP=|(-2 + t)-6|=| t-8|,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,所以| t - 8|=|3t - 8|,即t-8=3t - 8(无解)或t - 8=-(3t - 8),解得t=(8)/(2)=4。

2. 数轴上点A对应的数为 -1,点B对应的数为3,点C对应的数为5,点P在数轴上对应的数为x。

- 若点P到点A、点B的距离相等,求x的值。

- 若PA + PB = PC,求x的值。

- 设点P在点A左侧,点M从点P出发,以每秒1个单位长度的速度向点A运动;同时点N从点A出发,以每秒2个单位长度的速度向点B运动,设运动时间为t 秒。

当点M与点N之间的距离为1个单位长度时,求t的值。

解析:- 因为点P到点A、点B的距离相等,所以| x-(-1)|=| x - 3|,即x + 1=-(x - 3)或x+1=x - 3(无解),解得x = 1。

专题02 数轴上的动点问题(解析版)(人教版)

专题02 数轴上的动点问题(解析版)(人教版)

专题02 数轴上的动点问题点的往返运动1.一个动点P从数轴上的原点O出发开始移动,第1次向右移动1个单位长度到达点P1,第2次向右移动2个单位长度到达点P2,第3次向左移动3个单位长度到达点P3,第4次向左移动4个单位长度到达点P4,第5次向右移动5个单位长度到达点P5…,点P按此规律移动,则移动第158次后到达的点在数轴上表示的数为()A.159B.-156C.158D.1【答案】A【分析】根据数轴,按题目叙述的移动方法即可得到点前五次移动后在数轴上表示的数;根据移动的规律即可得移动第158次后到达的点在数轴上表示的数.【详解】解:设向右为正,向左为负,则P表示的数为+1,1P表示的数为+32P表示的数为03P表示的数为-44P表示的数为+1……5运动时间问题,的值;(1)求a b(2)求AB的长;如图2所示,当N在A点左侧,M在A点右侧时,【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,数轴上的动点问题,熟知数轴的点表示的数②一个机器人从数轴上表示﹣1的点出发,并在数轴上移动2次,每次移动3个单位后到达B 点,则B 点表示的数是______;③数轴上点A 表示的数为m .则点A 向左移动n 个单位长度所表示的数为______;(2)翻折:将一个图形沿着某一条直线折叠的运动.①若折叠纸条,表示﹣2的点与表示1的点重合,则表示﹣4的点与表示______的点重合;②若数轴上A 、B 两点之间的距离为8,点A 在点B 的左侧,A 、B 两点经折叠后重合,折痕与数轴相交于表示﹣2的点,则A 点表示的数为______;③在数轴上,点P 表示的数为4,点Q 表示的数为x ,将点P 、Q 两点重合后折叠,折痕与数轴交于M 点;将点P 与点M 重合后折叠,新的折痕与数轴交于N 点,若此时点P 与点N 的距离为3,数x 的值为______.【答案】(1)①1;②7-或5或1-;③m n -;(2)①3;②6-;③16或8-.【分析】(1)平移:①根据右加左减的平移规律即可求解;②分四种情况:①两次向左移动;②两次向右移动;③第一次向左移动,第二次向右移动;④第一次向右移动,第二次向左移动.根据右加左减的平移规律分别求解即可;③设需将点P 向左移动x 个单位,根据P ,A 两点的距离是A ,B 两点距离的2倍列出方程,解方程即可;(2)翻折:①设所求数为x ,根据重合点相同列出方程,解方程即可;②设A 点表示的数为x ,根据A 与表示2-的点之间的距离等于4列出方程,解方程即可;③根据中点坐标公式得出点M 、N 表示的数,根据点P 与点N 的距离为3列出方程,解方程即可.【详解】(1)①由题意可得,笔尖的位置表示的数是:02+3=1-.故答案为:1;②分四种情况:①如果两次向左移动,那么B 点表示的数是:133=7----;②如果两次向右移动,那么B 点表示的数是:1335-++=;③如果第一次向左移动,第二次向右移动,那么B 点表示的数是:13+3=1---;④如果是第一次向右移动,第二次向左移动,那么B 点表示的数是:1+33=1---.(2)把点C到点A的距离记为CA,则CA=_______cm.(2)817 =1+(2)=33 CA--17(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档