高中数学-公式-排列组合与概率
高中数学排列组合公式大全_高中数学排列组合重点知识
高中数学排列组合公式大全_高中数学排列组合重点知识1.排列及计算公式从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示.pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1.2.组合及计算公式从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号cn,m 表示.cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m;3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/n1!*n2!*...*nk!.k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m.排列Pnmn为下标,m为上标Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n组合Cnmn为下标,m为上标Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM 分步②加法原理:N=n1+n2+n3+…+nM 分类2. 排列有序与组合无序Anm=nn-1n-2n-3…n-m+1=n!/n-m! Ann =n!Cnm = n!/n-m!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=k+1!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法集团元素法,把某些必须在一起的元素视为一个整体考虑插空法解决相间问题间接法和去杂法等等在求解排列与组合应用问题时,应注意:1把具体问题转化或归结为排列或组合问题;2通过分析确定运用分类计数原理还是分步计数原理;3分析题目条件,避免“选取”时重复和遗漏;4列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①a+bn=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn特别地:1+xn=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
高考数学总复习------排列组合与概率统计
1项) 的二项公式系数最大,其值为
n
;若 n 是奇 Cn2 数,
则中间两项 ( 第 n
1 项和第 n 3 项) 的二项式系数相等,并且最大,其值为Cn
2
2
n1
n1
2 =Cn 2.
③所有二项式系数和等于
2n,即 C0n+C1n+ C2n+?+Cnn=2n.
④奇数项的二项式系数和等于偶数项的二项式系数和,
一是对立事件
( 4)古典概型与几何概型: 古典概型:具有“等可能发生的有限个基本事件
”的概率模 型.
几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.
两种概型中每个基本事件出现的可能性都是相等
的,
但古典概型问题中所有可能出现的
基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.
xi yi
xi
i
i1 1
第二步:计算回归系数的 a,b,公式为
n
n
n
n xi yi ( xi )( yi )
i1
i1 i 1
b
n
n
,
n xi 2 ( xi ) 2
i1
i1
; a y bx
第三步:写出回归直线方 程 ( 4)独立性检 验
y bxa.
① 2 2列联表:列出的两个分类变量
X 和 Y,它们的取值分别为
( 6)概率基本性质与公式 ①事件 A 的概率 P(A) 的范围为: 0≤ P(A) ≤ 1.
②互斥事件 A 与 B 的概率加法公式:
P(A
B)P(A) P(B) .
专业资料整理分享
WORD格式可以任意编辑
③对立事件 A 与 B 的概率加法公式:
高中数学排列组合相关公式3篇
高中数学排列组合相关公式第一篇:排列组合基本概念和公式排列和组合是数学中的重要概念,属于初中和高中数学中的基础知识。
这两个概念通常用于处理有关选择或安排事物的问题。
排列:从n个不同的元素中任选r个元素排成一列,称为从n个不同元素中选r个元素的排列。
排列的基本公式如下:An^r = n(n-1)(n-2) …… (n-r+1)其中An^r表示从n个不同的元素中任选r个元素排成一列的方案数。
例如,从5个不同的元素中任选3个元素排成一列,即为5选3的排列。
根据排列的基本公式,5选3的排列数为An^r=5×4×3=60。
组合:从n个不同的元素中任选r个元素,不考虑元素之间的顺序,称为从n个不同元素中选r个元素的组合。
组合的基本公式如下:Cn^r = n!/r!(n-r)!其中Cn^r表示从n个不同的元素中任选r个元素的组合方案数。
n!表示n的阶乘,即n×(n-1)×(n-2)×……×2×1。
例如,从5个不同的元素中任选3个元素的组合数,即为5选3的组合。
根据组合的基本公式,5选3的组合数为C5^3=5!/(3!2!)=10。
排列和组合的关系:排列和组合有很多类似的性质,但是也有不同点。
其中最重要的一点是:一个排列中,每个元素的位置不同,导致不同的排列。
而在一个组合中,元素之间是不考虑顺序的,所以如果元素相同,不同的顺序算作同一种组合。
第二篇:排列组合的应用排列组合在数学中有着广泛的应用,下面将介绍几个常见的例子。
1. 生日问题如果有23个人在一起,那么至少有两个人生日相同的概率是多少?将每一个人的生日当做一个元素,一共有365个不同的生日(不考虑闰年的情况)。
这时我们要求的其实是在这23个人中选取2个或2个以上有相同生日的概率,也就是不出现任何两个人生日相同的概率。
按照组合的计算方法,我们可以得到不出现任何两个人生日相同的概率为:P = C365^23/365^23 ≈ 0.493所以至少有两个人生日相同的概率为:1-P ≈ 0.5072. 球队比赛现在有5个球队进行比赛,每个球队需要和其他球队各打一场比赛,问总共需要打几场?我们可以将这个问题看作是5个不同的元素进行排列组合。
2068-高中数学必修三排列组合二项式定理概率加法公式-课件
讲课人:吕梁高中 孟雪梅
一 排列组合二项式定理
(一) 解读《考试大纲》
1.考试内容
分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二 项展开式的性质.
2.考试要求
掌握分类计数原理与分步计数原理,并能用它们 分析和解决一些简单的应用题.理解排列的意义,掌握 排列数计算公式,并能用它解决一些简单的应用问题.
例(2019年新课程卷) 某赛季足球比赛的计分规则是:胜一 场,得3分;平一场,得1分;负一场,得0分.一球队打完15场, 积33分.若不考虑顺序,该队胜、负、平的情况共有 A 3种 B 4种 C 5种 D 6种.
同时,我们不应忽视组合数性质的复习,也不应忽视有关应用 二项式定理和二项展开式的性质证明问题的复习.
外要要求学生在解答概率大题时书写应规范,引入符号意义让
人容易领会,如将3人同时上网的事件记为A3是好的记号,但写 成P(A3)就不行.
教材中的统计知识,要考的较少,不考的却不少,而且数 据、表格、图形又较多,从它们中较难提取出有用的信息.因 此,学生不大愿看书,从而造成统计知识的复习不仔细.我们 要明确告知学生研读课本哪几页书.统计中的知识点不多,要 一一复习.统计试题的背景是数据图表.
目的调查常采用一种逆抽样的调查,即事先规定
一个正整数m,进行随机抽样,当抽得的样本中 有m个稀少项目时,抽样停止,问正好抽取了n次
的概率是多少?
对于概率的求解策略是:紧扣概念—准确把握 各类事件概率的概念及计算公式(1,2,4题); 化繁为简—将复杂事件的概率转化为简单事件的 概率(3题);正难则反—灵活运用对立事件的概 率的关系简化问题(如3,4题).
高中数学排列组合概率统计
排列组合:1.排列及计算公式.排列及计算公式从n 个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列;从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号用符号 p(n,m)表示. p(n,m)=n(n-1)(n-p(n,m)=n(n-1)(n-2)……(n 2)……(n 2)……(n-m+1)= n!/(n-m)!(-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式.组合及计算公式从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合;从n 个不同元素中取出m(m m(m≤n)≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式.其他排列与组合公式从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为个元素的全排列数为 n!/(n1!*n2!*...*nk!). k 类元素,每类的个数无限,从中取出m 个元素的组合数为c(m+k-1,m). 排列(Pnm(n 为下标,m 为上标))Pnm=n×(n-1)(n-m+1);Pnm=n !/(n-m )!(注:!是阶乘符号);Pnn (两个n 分别为上标和下标)分别为上标和下标) =n !;0!=1;Pn1(n 为下标1为上标)=n 组合(Cnm(n 为下标,m 为上标)) Cnm=Pnm/Pmm Cnm=Pnm/Pmm ;;Cnm=n Cnm=n!!/m /m!(!(!(n-m n-m n-m)!;)!;)!;Cnn Cnn Cnn(两个(两个n 分别为上标和下标)分别为上标和下标) =1 =1 =1 ;;Cn1Cn1((n 为下标1为上标)为上标)=n =n =n;;Cnm=Cnn-m排列定义 从n 个不同的元素中,取r 个不重复的元素,按次序排列,称为从n 个中取r 个的无重排列。
高中数学排列组合讲解
高中数学排列组合讲解
一、概念介绍
排列组合是一种统计学中常见的概念, 指的是从一组有限的物体中抽取满足一定要求的组合方式。
它涉及从一系列物体中按照一定的规律去选择其中的某几个物体而组合成一个新的组合,并且这种组合总数取决于初始物体个数。
排列组合解决的问题有很多,如从n个数中取出m个数使得它们和最多,最少;从n 个数中取出m个数使得它们积最多,最少等等。
二、排列组合基本公式
(1)排列组合的基本公式为A m n =n×(n-1)×(n-2)……×(n-(m-1)),由此可见,如果m=n时,排列组合的概念与阶乘n! 相同,可以将阶乘式写成A m n 的形式,即A n n = n!。
(2)从n个物体中取出m(m≤n)个物体,排列组合的个数称为组合数,组合数的基本公式为 C m n=A m n/A m m = n!/(m!×(n-m)!)。
三、排列组合的应用
(1)在实际的实验研究中,通常会对实验因素采用设置不同的处理水平,来研究其对实验结果的影响,此时每个处理水平中的每个因素必须设置多种不同的组合,并将其均匀的分散到每类处理中,这里就需要引入排列组合技术。
(2)对于寻找一组数中满足要求的组合问题,也可以应用排列组合方法。
例如,一个长度为 n 的正整数序列,要求任意挑选 k 个数,使它们的和最大或最小,这是一个组合问题。
(3)排列组合在抽奖、普查、实验设计等中占有重要的作用,如抽取实验样本时,如果采用随机抽取的方式,就要使用到排列组合的思想。
高中数学公式大全排列组合与概率计算公式
高中数学公式大全排列组合与概率计算公式高中数学公式大全:排列组合与概率计算公式一、排列组合1. 排列公式排列是指从一个有限元素集合中选取若干元素按照一定的顺序进行排列的方法。
当从n个不同元素中选取r个元素进行排列时,排列数可以用以下公式表示:P(n, r) = n! / (n-r)!其中,P(n, r)表示从n个元素中选取r个元素进行排列的总数,n!表示n的阶乘。
2. 组合公式组合是指从一个有限元素集合中选取若干元素,不考虑元素的顺序进行组合的方法。
当从n个不同元素中选取r个元素进行组合时,组合数可以用以下公式表示:C(n, r) = n! / [r! * (n-r)!]其中,C(n, r)表示从n个元素中选取r个元素进行组合的总数。
二、概率计算1. 概率公式概率是指某个事件在所有可能事件中发生的可能性大小。
一般用P(A)表示事件A的概率。
当事件 A、B 互斥且独立时,可以使用以下概率公式:P(A ∪ B) = P(A) + P(B)其中,P(A ∪ B)表示事件 A 或事件 B 发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。
2. 条件概率公式条件概率是指在已知事件 B 发生的条件下,事件 A 发生的概率。
可以使用以下条件概率公式计算:P(A|B) = P(A ∩ B) / P(B)其中,P(A|B)表示在事件 B 发生的条件下,事件 A 发生的概率,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B)表示事件 B 发生的概率。
3. 乘法定理乘法定理是指在一系列独立事件中,它们同时发生的概率等于每个事件发生的概率的乘积。
可以使用以下乘法定理计算:P(A ∩ B) = P(A) * P(B)其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。
4. 加法定理加法定理是指当两个事件互斥时,它们其中一个事件发生的概率等于两个事件发生概率的和。
排列组合公式排列组合计算公式高中数学!
排列组合公式/排列组合计算公式公式P就是指排列,从N个元素取R个进行排列。
公式C就是指组合,从N个元素取R个,不进行排列。
N-元素得总个数R参与选择得元素个数!-阶乘 ,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)、、(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123与213就是两个不同得排列数。
即对排列顺序有要求得,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类得组合, 我们可以这么瞧,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个得乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合与312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序得,属于“组合C”计算范畴。
上问题中,将所有得包括排列数得个数去除掉属于重复得个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合得概念与公式典型例题分析例1设有3名学生与4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中得任何一个,而不限制每个课外小组得人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四得不同排法共有多少种?解依题意,符合要求得排法可分为第一个排、、中得某一个,共3类,每一类中不同排法可采用画“树图”得方式逐一排出:∴ 符合题意得不同排法共有9种.点评按照分“类”得思路,本题应用了加法原理.为把握不同排法得规律,“树图”就是一种具有直观形象得有效做法,也就是解决计数问题得一种数学模型.例3判断下列问题就是排列问题还就是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长与一名副组长,共有多少种不同得选法?②从中选2名参加省数学竞赛,有多少种不同得选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们得商可以有多少种不同得商?②从中任取两个求它得积,可以得到多少个不同得积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同得选法?②从中选出2盆放在教室有多少种不同得选法?分析(1)①由于每人互通一封信,甲给乙得信与乙给甲得信就是不同得两封信,所以与顺序有关就是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手就是同一次握手,与顺序无关,所以就是组合问题.其她类似分析.(1)①就是排列问题,共用了封信;②就是组合问题,共需握手(次).(2)①就是排列问题,共有(种)不同得选法;②就是组合问题,共有种不同得选法.(3)①就是排列问题,共有种不同得商;②就是组合问题,共有种不同得积.(4)①就是排列问题,共有种不同得选法;②就是组合问题,共有种不同得选法.例4证明.证明左式右式.∴ 等式成立.点评这就是一个排列数等式得证明问题,选用阶乘之商得形式,并利用阶乘得性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式得阶乘形式,并利用阶乘得性质;解法二选用了组合数得两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解 (1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即 ,解得第六章排列组合、二项式定理一、考纲要求1、掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单得问题、2、理解排列、组合得意义,掌握排列数、组合数得计算公式与组合数得性质,并能用它们解决一些简单得问题、3、掌握二项式定理与二项式系数得性质,并能用它们计算与论证一些简单问题、二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理就是学习排列组合得基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据、例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同得报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同得报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列得应用题,在中学代数中较为独特,它研究得对象以及研究问题得方法都与前面掌握得知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列得应用题,都就是选择题或填空题考查、例2由数字1、2、3、4、5组成没有重复数字得五位数,其中小于50 000得偶数共有( )A、60个B、48个C、36个D、24个解因为要求就是偶数,个位数只能就是2或4得排法有P12;小于50 000得五位数,万位只能就是1、3或2、4中剩下得一个得排法有P13;在首末两位数排定后,中间3个位数得排法有P33,得P13P33P12=36(个)由此可知此题应选C、例3将数字1、2、3、4填入标号为1、2、3、4得四个方格里,每格填一个数字,则每个方格得标号与所填得数字均不同得填法有多少种?解: 将数字1填入第2方格,则每个方格得标号与所填得数字均不相同得填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种)、例四例五可能有问题,等思考三)组合、组合数公式、组合数得两个性质说明历届高考均有这方面得题目出现,主要考查排列组合得应用题,且基本上都就是由选择题或填空题考查。
高中数学排列组合及概率的基本公式概念及应用
高中数学排列组合及概率的基本公式概念及应用一、排列组合的基本公式1.排列的基本公式:排列是从一组物体中选取一部分物体按照一定的顺序进行排列的方式。
对于n个不同的物体,如果选取其中的r个进行排列,那么排列的总数为P(n,r)=n!/(n-r)!,其中n!表示n的阶乘,即n!=n×(n-1)×(n-2)×...×2×12.组合的基本公式:组合是从一组物体中选取一部分物体,不考虑排列顺序的方式。
对于n个不同的物体,如果选取其中的r个进行组合,那么组合的总数为C(n,r)=n!/(r!×(n-r)!)。
1.排列的概念:排列是指从一组物体中选取若干个物体按照一定的顺序进行排列的方式。
在实际问题中,排列常常用于涉及位置、次序和顺序的计数问题。
应用举例:a.选取n个人中的r个人进行座位的排列问题。
b.选取n个数字中的r个数字进行排列组合的问题。
2.组合的概念:组合是指从一组物体中选取若干个物体,不考虑排列顺序的方式。
在实际问题中,组合常常用于涉及选择、挑选和组合的问题。
应用举例:a.随机抽取n张纸牌中的r张纸牌的组合问题。
b.从n个人中选取r个人进行团队的组合问题。
三、排列组合的应用1.定理应用:排列组合的概率问题中,常常可以利用排列组合的基本公式结合概率计算的定理来解决问题。
比如,使用乘法原理、加法原理、条件概率等定理来计算问题中所需的概率。
应用举例:a.在一副牌中,抽取连续的三张牌均为红桃的概率问题。
b.在一群人中,选取两个人的组合中至少有一名男性的概率问题。
2.实际问题应用:排列组合的概念和基本公式在实际问题中有着广泛的应用。
它们常常用于计数问题、组合问题、选择问题、排列问题等等。
应用举例:a.排队问题:计算n个人进行排队的方式有多少种。
b.选课问题:计算从n门课程中选择r门课程的组合有多少种。
总结起来,排列组合是高中数学中非常重要的概念和公式,可以用来解决许多实际问题。
第十三章排列组合与概率(高中数学竞赛标准教材)
第十三章排列组合与概率(高中数学竞赛标准教材)第十三章排列组合与概率一、基础知识.加法原理:做一件事有n类办法,在第1类办法中有1种不同的方法,在第2类办法中有2种不同的方法,……,在第n类办法中有n种不同的方法,那么完成这件事一共有N=1+2+…+n种不同的方法。
.乘法原理:做一件事,完成它需要分n个步骤,第1步有1种不同的方法,第2步有2种不同的方法,……,第n步有n种不同的方法,那么完成这件事共有N=1×2×…×n种不同的方法。
.排列与排列数:从n个不同元素中,任取个元素,按照一定顺序排成一列,叫做从n个不同元素中取出个元素的一个排列,从n个不同元素中取出个元素的所有排列个数,叫做从n个不同元素中取出个元素的排列数,用表示,=n…=,其中,n∈N,≤n,注:一般地=1,0!=1,=n!。
.N个不同元素的圆周排列数为=!。
.组合与组合数:一般地,从n个不同元素中,任取个元素并成一组,叫做从n个不同元素中取出个元素的一个组合,即从n个不同元素中不计顺序地取出个构成原集合的一个子集。
从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出个元素的组合数,用表示:.组合数的基本性质:;;;;;。
.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。
[证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。
反之B中每一个解,将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。
故定理得证。
推论1不定方程x1+x2+…+xn=r的非负整数解的个数为推论2从n个不同元素中任取个允许元素重复出现的组合叫做n个不同元素的可重组合,其组合数为.二项式定理:若n∈N+,则n=.其中第r+1项Tr+1=叫二项式系数。
高中数学知识点总结及公式大全排列组合与概率的组合与排列问题
高中数学知识点总结及公式大全排列组合与概率的组合与排列问题高中数学知识点总结及公式大全:排列组合与概率一、排列与组合基础知识在学习排列组合与概率之前,我们首先需要了解一些基础的排列与组合知识。
1. 排列排列是从一组元素中选取出若干元素按照一定的顺序排列的方式。
这些元素可以是数字、字母、物品等。
如果从 n 个元素中选取 m 个进行排列,则表示为 P(n, m) 或 nPm,排列的公式为:P(n, m) = n! / (n - m)!2. 组合组合是从一组元素中选取出若干元素而不考虑顺序的方式。
与排列不同,组合只关心元素的选择而不涉及元素的顺序。
如果从 n 个元素中选取 m 个进行组合,则表示为 C(n, m) 或 nCm,组合的公式为:C(n, m) = n! / [m! * (n - m)!]二、排列组合的应用排列组合的应用广泛,不仅限于数学领域,在实际生活中也能见到许多与排列组合相关的问题。
下面列举几个常见的应用场景:1. 抽奖问题在抽奖活动中,我们常会遇到从一堆奖品中抽取若干个奖品的问题,这就涉及到组合的应用。
2. 选课问题学校的选课系统通常会要求学生从众多课程中选择若干门进行学习,这就是一个排列问题。
3. 组队问题在进行体育竞赛或其他集体活动时,我们需要将一群人分成几个小组,这就是一个组合问题。
三、排列组合的公式总结在实际应用中,我们常常需要用到排列组合的公式来解决问题。
下面是一些常见的排列组合公式:1. 排列公式:- 样本不放回排列:P(n, m) = n * (n - 1) * (n - 2) * ... * (n - m + 1)- 样本放回排列:P(n, m) = n^m2. 组合公式:- C(n, m) = C(n, n - m)- C(n, m) = P(n, m) / m!- C(n, m) * C(m, k) = C(n, k) * C(n - k, m - k)四、概率与排列组合的关系排列组合与概率有着密切的关系,概率问题常常需要借助排列组合的概念来求解。
高中数学概率与统计( 排列组合)
排列组合一 、分类、分步原理(一)分类原理:12n N m m m =+++.分类原理题型比较杂乱,须累积现象。
几种常见的现象有:1.开关现象:要根据开启或闭合开关的个数分类.2.数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数. 3.球赛得分:根据胜或负场次进行分类. (二)分步原理:12n N m m m =⨯⨯⨯.两种典型现象: 1.涂颜色(1)平面图涂颜色:先涂接触区域最多的一块(2)立体图涂颜色:先涂具有同一顶点的几个平面,其他平面每步涂法分类列举. 2.映射按步骤用A 集合的每一个元素到B 集合里选一个元素,可以重复选.二 、排列、组合(一)常规题型求情况数1.直接法:先排(选)特殊元素,再排(选)一般元素。
捆绑法,插空法.2.间接法:先算总情况数,再排除不符合条件的情况数. (二)七种常考非常规现象1.小数量事件需要分类列举:凡不可使用公式且估计情况数较少,要分类一一列举 2.相同元素的排列:用组合数公式选出位置把相同元素放进去,不用排顺序 3.有序元素的排列:用组合数公式选出位置把有序元素放进去,不用排顺序 4.剩余元素分配:有互不相同的剩余元素需要分配时,用隔板法。
5.迈步与网格现象:要看一共走几步,把特殊的几步选出来,有几种选法就有几种情况. 6.立体几何与解析几何现象:多数用排除法求情况数 7.平均分组现象:先用分步原理选出每一组的元素,再除以因为平均分组算重复的倍数,平均分n 组,就除以nn A ,有几套平均分组就除几个xx A .(三)排列数,组合数公式运算的考察1.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 2. 组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 3. 组合数的两个性质(1)mn C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .4. 排列数与组合数的关系m mn nA m C =⋅! . 【题型体系】一、分类计数原理与分步计数原理 (一)选(排)人选(排)物1.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有( )A.14 B.24 C.28 D.482.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )A .24种B .18种C .12种D .6种3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有( )(A )280种 (B )240种 (C )180种 (D )96种 (二).染色1.用五种不同的颜色给图中的四个区域涂色,如果每一个涂一种颜色,相邻的区域不能同色,那么涂色的方法有__________种。
高考理科数学公式总结
高考理科数学公式总结1.代数公式(1)二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n,其中C(n,r)表示从n个不同元素中选取r个元素的组合数。
(2) 二次方程求根公式:对于一般的二次方程 ax^2+bx+c=0,求根公式为 x = [-b±√(b^2-4ac)]/(2a)。
(3) 三角函数和反三角函数的关系:sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ,cotθ = 1/tanθ,sin(π/2-θ) = cosθ,cos(π/2-θ) = sinθ,tan(π/2-θ) = 1/tanθ,cot(π/2-θ) = 1/cotθ。
2.几何公式(1)直角三角形的勾股定理:c^2=a^2+b^2,其中c是斜边,a和b是直角边。
(2)三角形面积公式:S=1/2×底×高,其中底为底边长度,高为从底边到对顶点的垂直距离。
(3)平行四边形面积公式:S=底边×高,其中底边为底边长度,高为从底边到对顶边的垂直距离。
(4)圆的周长公式:C=2πr,其中r为圆的半径。
(5)圆的面积公式:S=πr^2,其中r为圆的半径。
(6) 三角函数的定义:sinθ = 对边/斜边,cosθ = 临边/斜边,tanθ = 对边/临边。
(7)弧度制和角度制的换算关系:180°=π,1°=π/180。
3.排列组合与概率公式(1)排列公式:A(n,m)=n!/(n-m)!,表示从n个不同元素中选取m个元素的排列数。
(2)组合公式:C(n,m)=n!/[m!(n-m)!],表示从n个不同元素中选取m个元素的组合数。
(3)阶乘公式:n!=n×(n-1)×...×2×1(4) 乘法原理:如果一件事情可以分别由 n1 种方法完成,第一种方法有 n1 种情况,第二种方法有 n2 种情况,..., 第 k 种方法有 nk 种情况,那么这件事情一共有n1 × n2 × ... × nk 种情况。
高中数学知识点:排列组合
排列组合
一、排列
1. 定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn。
2. 排列数的公式与性质
排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2) (321)
规定:0!=1
二、组合
1. 定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2. 比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。
因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
排列组合公式排列组合计算公式----高中数学!
排列组合公式/排列组合计算公式公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )个个个个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )种种种种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是( )解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )种种种种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
排列组合公式排列组合计算公式高中数学
排列组合公式/排列组合计算公式公式P就是指排列,从N个元素取R个进行排列。
公式C就是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘 ,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)、、(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123与213就是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么瞧,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合与312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念与公式典型例题分析例1设有3名学生与4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”就是一种具有直观形象的有效做法,也就是解决计数问题的一种数学模型.例3判断下列问题就是排列问题还就是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长与一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信就是不同的两封信,所以与顺序有关就是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手就是同一次握手,与顺序无关,所以就是组合问题.其她类似分析.(1)①就是排列问题,共用了封信;②就是组合问题,共需握手(次).(2)①就是排列问题,共有(种)不同的选法;②就是组合问题,共有种不同的选法.(3)①就是排列问题,共有种不同的商;②就是组合问题,共有种不同的积.(4)①就是排列问题,共有种不同的选法;②就是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这就是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解 (1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即 ,解得第六章排列组合、二项式定理一、考纲要求1、掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题、2、理解排列、组合的意义,掌握排列数、组合数的计算公式与组合数的性质,并能用它们解决一些简单的问题、3、掌握二项式定理与二项式系数的性质,并能用它们计算与论证一些简单问题、二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理就是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据、例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都与前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都就是选择题或填空题考查、例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A、60个B、48个C、36个D、24个解因为要求就是偶数,个位数只能就是2或4的排法有P12;小于50 000的五位数,万位只能就是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C、例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种)、例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都就是由选择题或填空题考查、例4 从4台甲型与5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A 、140种B 、84种C 、70种D 、35种 解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C 、例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种、根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种)、 (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它就是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题、 例6 在(x- )10的展开式中,x 6的系数就是( ) A 、-27C 610 B 、27C 410 C 、-9C 610 D 、9C 410解 设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于就是展开式中第5项含x 6,第5项系数就是C410(-)4=9C410故此题应选D、例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的与,则其与为在(x-1)6中含x3的项就是C36x3(-1)3=-20x3,因此展开式中x2的系数就是-2 0、(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A、1B、-1 C、0 D、2解:A、例92名医生与4名护士被分配到2所学校为学生体检,每校分配1名医生与2 名护士,不同的分配方法共有( )A、6种B、12种C、18种D、24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合、二项式定理
1、分类计数原理:完成一件事,有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法……在第n 类办法中有m n 种不同的方法,那么完成这件事共有N=m 1+m 2+……+m n .
分步计数原理:完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法……做第n 步又m n 种不同的方法,那么完成这件事共有N=m 1Xm 2X ……Xm n 。
2、排列数公式是:m n A =)1()1(+--m n n n =
!!)(m n n -(m ≤n,m 、n ∈N*); 当m=n 时,为全排列n n A =n(n-1)(n-2)…3.2.1。
排列数与组合数的关系是:m n m n C m A ⋅=!
组合数公式是:m
n
C =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(m ≤n );)!(!!m n m n A A C m m m n m n -==; 组合数性质:m
n C =m n n
C -,10==n n n C C ; m n C +1-m n C =m n C 1+ ; ∑=n r r n C 0=n 2; r n rC =11--r n nC ; 1121++++=++++r n r
n r
r r
r r
r C C C C C ; n.n!=(n+1)!-n!,即n n n n n n A A nA -=++11。
3、二项式定理: n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)(二项展开式的通项公
式:r r n r n r b a C T -+=1)210(n r ,,, =
(1)二项式性质:与首末两端等距离的二项式系数相等;
对于n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)(的二次项系数:当n 是偶数时,中间的一项2n n C (第2n +1项)取得最大值;当n 是奇数时,中间的两项21-n n C (第21+n 项)、21
+n n C (第2
1+n +1项)相等,且同时取得最大值。
n b a )(+的展开式的各个二项式系数的和等于n 2,即n n n n n n
C C C C 2210=+⋅⋅⋅+++;且奇数项的二项式系数的和等于偶数项的二项式系数的和,即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C 。
7.F(x)=(ax+b)n 展开式的各项系数和为)1(f ;奇数项系数和为)]1()1([2
1--f f ;偶数项的系数和为)]1()1([2
1-+f f 。