高一上学期数学期中测试题绝对经典

合集下载

高一数学上学期期中期末考试精选50题基础解析版

高一数学上学期期中期末考试精选50题基础解析版

期中解答题精选50题(基础版)1.(2020·新疆巴州第一中学)设函数221()1x f x x +=-求证:1()()f f x x =- 【分析】直接将1x代入函数化简即可. 【详解】221()1x f x x +=-,()22221111111x x f f x x x x ⎛⎫+ ⎪+⎛⎫⎝⎭∴===- ⎪-⎝⎭⎛⎫- ⎪⎝⎭,即得证. 2.(2020·宾县第一中学)已知函数()2f x 3x 5x 2=+-.(1)求()3f ,()1f a +的值; (2)若()4f a =-,求a 的值.【答案】(1)40,23116a a ++;(2)23a =-,或1a =- 【分析】(1)直接代入求值即可; (2)令()4f a =-,解出即可. 【详解】解:(1)()2352f x x x =+-,()233353240f ∴=⨯+⨯-=,()()()221315123116f a a a a a +=⨯++⨯+-=++;(2)令()4f a =-,即()23524f a a a =+-=-,解得:23a =-,或1a =-.3.(2020·济南市济阳区第一中学高一期中)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =--.(1)求函数()()f x x R ∈的解析式;(2)写出函数()()f x x R ∈的增区间(不需要证明)【答案】(1)()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;(2)(),1-∞-和()1,+∞.【分析】(1)当0x >时,0x -<,根据()()f x f x =--可得函数解析式; (2)根据二次函数的性质可得答案. 【详解】()1函数()f x 是定义在R 上的函数∴当0x >时,0x -<,()()f x f x ∴=--又当0x ≤时,()22f x x x =--()()()()2222f x f x x x x x ⎡⎤∴=--=-----=-⎣⎦∴函数()()f x x R ∈的解析式为:()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;()2由二次函数的性质可知函数()f x 的单调递增区间为(),1-∞-和()1,+∞.4.(2020·大同市第四中学校)已知函数22()1x f x x =+.(1)求11(2),(3)23f f f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值;(2)求证:1()f x f x ⎛⎫+ ⎪⎝⎭是定值. 【答案】(1)1,1;(2)证明见解析. 【分析】(1)根据函数解析式代入即可求解. (2)根据解析式,代入整理即可求解.【详解】(1)因为()221x f x x =+,所以()2222112221212112f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭, ()2222113331313113f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭.(2)()22222222211111111111x x x x f x f x x x x x x ⎛⎫ ⎪+⎛⎫⎝⎭+=+=+== ⎪++++⎝⎭⎛⎫+ ⎪⎝⎭,是定值. 5.(2020·拉萨市第四高级中学高一期中)已知二次函数()2f x ax bx c =++,满足(0)(1)0f f ==,且()f x 的最小值是14-.(1)求()f x 的解析式;(2)设函数2()52g x x x =+-,函数()()()h x f x g x =-,求函数()h x 在区间[2,5]-上的最值. 【答案】(1)2()f x x x =-;(2)最大值14,最小值28-.【分析】(1)由已知条件列方程组,可求出,,a b c 的值,从而可得,,a b c ; (2)由题意得()62h x x =-+,再利用其单调性可求出其在[2,5]-上的最值 【详解】(1)因为(0)(1)0f f ==, 所以(0)0,(1)0f c f a b c ===++=,由二次函数的性质得11112424f a b c ⎛⎫=++=- ⎪⎝⎭,解得,1,1,0a b c ==-= 所以2()f x x x =-(2)依题得:()62h x x =-+ 函数()h x 在区间内[2,5]-单调递减 当2x =-时,()h x 有最大值14 当5x =时,()h x 有最小值28-6.(2020·南宁市第十九中学)已知函数()26x f x x +=-. (1)点()86,在()f x 的图像上吗? (2)当3x =时,求()f x 的值; (3)当()8f x =时,求x 的值.【答案】(1)不在,(2)53-,(3)507【分析】(1)将点的坐标代入解析式中验证即可; (2)将3x =代入函数中直接求解; (3)由()8f x =,可得286x x +=-,从而可求出x 的值 【详解】解:(1)因为()8285686f +==≠-,所以点()86,不在()f x 的图像上, (2)()3253363f +==--, (3)由()8f x =,得286x x +=-,解得507x =7.(2020·云南砚山县第三高级中学高一期中)判断下列函数的奇偶性. (1)21()f x x =; (2)()31f x x =-+;【答案】(1)偶函数;(2)非奇非偶函数.【分析】先求函数的定义域,再利用函数奇偶性的定义判断即可 【详解】(1)因为定义域为:{}0x x ≠ 所以定义域关于原点对称, 又因为2211()()()f x f x x x -===-,所以函数f (x )是偶函数; (2)因为定义域为R ,关于原点对称又因为()31f x x =-+,则()31()f x x f x -=+≠,()31()f x x f x -=+≠-, 所以()f x 是非奇非偶函数;8.(2019·广东高一期中)已知函数f (x 12x +. (1)求函数f (x )的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.【答案】(1)[3,2)(2,)---+∞;(2)()31f -=-;23()38f =;(3)()12f a a +;()111f a a -=+ 【分析】(1)由平方根被开方数大于等于0,分母不为零,同时成立求出定义域; (2)代入解析式,求出()3f -,23f ⎛⎫⎪⎝⎭的值;(3)代入解析式,即可求出结果. 【详解】(1)要使函数有意义,须3033202x x x x x +≥≥-⎧⎧⇒⇒-≤⎨⎨+≠≠-⎩⎩且2x ≠-, 所以函数的定义域为[3,2)(2,)---+∞(2)()12f x x =+,所以()1301,32f -=+=--+213()23823f ==+ (3)0,11a a >∴->-,()12f a a =+ ()111f a a -=+ 9.(2020·云南砚山县第三高级中学高一期中)(1)求解:2340x x --=; (2)解不等式的解集:(9)0x x -> ; 【答案】(1)124,-1x x ==;(2){}|09x x <<. 【分析】(1)利用因式分解法解方程即可; (2)直接解一元二次不等式即可 【详解】(1)2340x x --=(4)(1)0x x -+= 124,-1x x ==(2)不等式化为(9)0x x -<, 09x ∴<<,∴不等式的解集为{}|09x x <<;10.(2019·抚顺市雷锋高级中学高一期中)已知0x >,求函数4y x x=+的最小值,并说明当x 为何值时y 取得最小值.【答案】最小值为4,当2x =时y 取得最小值【分析】根据基本不等式求得函数的最小值,且求得此时x 的值. 【详解】因为0x >,所以4224y x x =+≥⨯=. 当且仅当4x x=时取等号.24x =.因为0x >,所以2x =. 所以2x =为何值时y 取得最小值4.11.(2019·抚顺市雷锋高级中学高一期中)已知一元二次方程22320x x +-=的两个实数根为12,x x .求值:(1)2212x x +; (2)1211+x x . 【答案】(1)174;(2)32.【分析】利用韦达定理可得12123,12x x x x +=-⋅=-,再对所求式子进行变行,即222121212()2x x x x x x +=+-;12121211x x x x x x ++=⋅;两根和与积代入式子,即可得到答案; 【详解】解:因为一元二次方程22320x x +-=的两个实数根为12,x x ,所以由根与系数关系可知12123,12x x x x +=-⋅=-.(1)222121212()2x x x x x x +=+-9172(1)44=-⨯-=;(2)1212123113212x x x x x x -++===⋅-.12.(2019·抚顺市雷锋高级中学高一期中)解一元二次不等式:2560x x -+>. 【答案】(,2)(3,)-∞⋃+∞.【分析】对多项式进行因式分解得256(2)(3)x x x x -+=--,再利用大于取两边,即可得到答案;【详解】解:因为256(2)(3)x x x x -+=--, 所以原不等式等价于(2)(3)0x x -->. 所以所求不等式的解集为(,2)(3,)-∞⋃+∞.13.(2020·河北英才国际学校高一期中)已知23a <<,21b -<<-,求2a b +的范围. 【答案】225a b <+<【分析】根据不等式的性质可得出答案. 【详解】解:23a <<,426a ∴<<,又21b -<<-, 225a b ∴<+<.14.(2021·四川省武胜烈面中学校高一期中)(1)解不等式2210x x --+<. (2)若不等式20ax x b -+<的解集为1,12⎛⎫ ⎪⎝⎭,求实数a ,b 的值; 【答案】(1)不等式的解集为{|1x x <-或12x ⎫>⎬⎭;(2)23a =,13b =.【分析】(1)根据一元二次不等式的解法即可求出; (2)根据函数与方程的思想即可求出.【详解】(1)2210x x --+<即为2210x x +->,而2210x x +-=的两根为11,2-,所以不等式的解集为{|1x x <-或12x ⎫>⎬⎭.(2)由题意可知20ax x b -+=的两根为1,12,所以,1112112a ba⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得23a =,13b =. 15.(2019·福建高一期中)若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【答案】(1)f (x )=x 2-x +1;(2)m <-1.【分析】(1)设f (x )=ax 2+bx +c (a ≠0),则由f (0)=1可求出c ,由f (x +1)-f (x )=2x 可求出,a b ,从而可求出函数的解析式,(2)将问题转化为x 2-3x +1-m >0在[-1,1]上恒成立,构造函数g (x )=x 2-3x +1-m ,然后利用二次函数的性质求出其最小值,使其最小值大于零即可求出实数m 的取值范围 【详解】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1, ∴c =1,∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴220a a b =⎧⎨+=⎩,∴11a b =⎧⎨=-⎩,∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =3()2x -2-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数, ∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.16.(2021·巴楚县第一中学高一期中)比较下列各组中两个代数式的大小: (1)256x x ++与2259x x ++; (2)2(3)x -与(2)(4)x x --; 【答案】(1)2256259x x x x ++<++;(2)2(3)(2)(4)x x x ->-- 【分析】利用作差法,分析两式之差的正负判定即可【详解】(1)因为()()2225625930x x x x x ++-++=--<,故2256259x x x x ++<++; (2)因为()()2220(63)(2)(4)9681x x x x x x x --=--++---=>,故2(3)(2)(4)x x x ->--【点睛】本题主要考查了作差法判定两式大小的问题,属于基础题17.(2020·上海财经大学附属中学高一期中)若x ∈R ,试比较26x x +3与24216x x -+的大小. 【答案】2264216.x x x x +≤-+3 【分析】利用作差法比较即可.【详解】因为()()()22226421681640x x x x x x x +--+=-+-=--≤3,所以2264216.x x x x +≤-+318.(2020·咸阳百灵学校)已知M = {x |-3 ≤ x ≤5}, N = {x | a ≤ x ≤ a +1},若N M ⊆,求实数a 的取值范围.【答案】34a -≤≤【分析】先分析集合N ≠∅,再根据N M ⊆建立不等式然后解之即可. 【详解】因为1a a <+,所以集合N ≠∅.因此,N M ⊆时,应满足315a a ≥-⎧⎨+≤⎩,解得34a -≤≤.19.(2020·大同市第四中学校)设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;【答案】1,2⎡⎫-+∞⎪⎢⎣⎭.【分析】由“x A ∈”是“x B ∈”的必要条件有B A ⊆,讨论12m <、12m ≥满足条件时m 的范围,最后求并集即可.【详解】若“x A ∈”是“x B ∈”的必要条件,则B A ⊆, {}2|1A x x =-≤≤,①当12m <时,{|21}B x m x =<<,此时121m -≤<,即1122m -≤<;②当12m ≥时,B =∅,有B A ⊆成立;∴综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭.20.(2020·南宁市第十九中学)已知{}10A x x =-=,{}210B x x =-=.求:(1)A B ; (2)A B 【答案】(1){}1;(2){}1,1-【分析】先求出集合A ,B ,再根据交集并集的定义即可求出. 【详解】{}{}101A x x =-==,{}{}2101,1B x x =-==-,∴(1){}1A B ⋂=;(2){}1,1A B =-.21.(2020·桂林市临桂区五通中学高一期中)奇函数2()1ax bf x x +=+是定义在区间[]1,1-上的增函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求()f x 解析式;(2)求不等式(1)()0f x f x -+<的解集. 【答案】(1)()21x f x x =+;(2)10,2⎡⎫⎪⎢⎣⎭. 【分析】(1)先根据奇函数可求0b =,再利用1225f ⎛⎫= ⎪⎝⎭可求1a =,进而可得解析式;(2)根据奇函数和增函数把不等式(1)()0f x f x -+<进行转化,结合定义域可求答案. 【详解】(1)∵函数2()1ax bf x x +=+是定义在[]1,1-上的奇函数, ∴()00001bf +==+,即0b =, ∵1225f ⎛⎫= ⎪⎝⎭,∴2112225121a f ⨯⎛⎫== ⎪⎝⎭⎛⎫ +⎪⎝⎭,解得1a =, ∴()21xf x x =+. 经验证知,()21x f x x =+是定义在[]1,1-上的奇函数,所以()21xf x x =+.(2)∵函数()f x 在[]1,1-上为奇函数,且(1)()f x f x -<-,∴(1)()f x f x -<-,又∵函数()f x 是定义在[]1,1-上的增函数,∴111111x x x x-≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得102x ≤<.故不等式(1)()0f x f x -+<的解集为10,2⎡⎫⎪⎢⎣⎭.22.(2019·福建高一期中)已知函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且3(3)10f =.(1)确定函数()f x 的解析式;(2)当(1,1)x ∈-时判断函数()f x 的单调性,并证明;(3)解不等式1(1)()02f x f x -+<. 【答案】(1)2()1x f x x =+;(2)()f x 在区间()1,1-上是增函数,证明见解析;(3)20,3⎛⎫⎪⎝⎭.【分析】(1)由奇函数的概念可得b 的值,根据()3310f =可得a 的值,进而得结果; (2)设1211x x -<<<,用作差法分析可得可得()()12f x f x <,由函数单调性的定义即可得证明; (3)将奇偶性和单调性相结合列出不等式组,解出即可. 【详解】(1)∵()()f x f x -=-, ∴221()1ax b ax bx x -+--=+-+,即b b -=,∴0b =.∴2()1axf x x =+, 又()3310f =,1a =, ∴2()1xf x x =+. (2)对区间()1,1-上得任意两个值1x ,2x ,且12x x <,22121221121212222222121212(1)(1)()(1)()()11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++, ∵1211x x -<<<,∴120x x -<,1210x x ->,2110x +>,2210x +>,∴12())0(f x f x -<,∴12()()f x f x <, ∴()f x 在区间()1,1-上是增函数. (3)∵1(1)()02f x f x -+<, ∴1(1)()2f x f x -<-,1111211211x x x x ⎧-<-<⎪⎪⎪-<-⎨⎪-<<⎪⎪⎩,解得203x <<,∴实数x 得取值范围为20,3⎛⎫⎪⎝⎭.23.(2019·陕西镇安中学高一期中)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数. 【答案】(1)()21xf x x =+;(2)证明见解析. 【分析】(1)由函数()f x 是定义在()1,1-上的奇函数,则()00f =,解得b 的值,再根据1225f ⎛⎫= ⎪⎝⎭,解得a 的值从而求得()f x 的解析式; (2)设1211x x -<<<,化简可得()()120f x f x -<,然后再利用函数的单调性定义即可得到结果.【详解】解:(1)依题意得()00,12,25ff ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩∴20,1022,1514bab ⎧=⎪+⎪⎪⎨+⎪=⎪+⎪⎩∴1,0,a b =⎧⎨=⎩∴()21x f x x =+ (2)证明:任取1211x x -<<<,∴()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++ ∵1211x x -<<<,∴120x x -<,2110x +>,2210x +>,由1211x x -<<<知,1211x x -<<,∴1210x x ->. ∴()()120f x f x -<.∴()f x 在()1,1-上单调递增.24.(2020·黔西南州同源中学高一期中)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-.(1)画出当0x <时,()f x 函数图象; (2)求出()f x 解析式.【答案】(1)见解析;(2)()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .【分析】(1)根据函数奇偶性的性质即可画出当0x <时,函数()f x 的函数图象; (2)根据函数奇偶性的定义即可求出函数解析式. 【详解】解:(1)()f x 是奇函数,且当0x ≥时,2()2f x x x =-.∴函数()f x 的函数图象关于原点对称,则当0x <时,()f x 函数图象:;(2)若0x <,则0x ->, 当0x ≥时,2()2f x x x =-.()()2()2()f x x x f x ∴-=---=-,则当0x <时,2()2f x x x =--.即()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .25.(2020·黔西南州同源中学高一期中)已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明; (2)用定义证明函数()f x 在区间[)1,+∞上为增函数.【分析】(1)判断函数的奇偶性,利用奇偶性的定义证明即可; (2)作差判断符号,利用函数的单调性的定义证明即可. 【详解】解:(1)()f x 是奇函数,理由如下:函数1()f x x x=-的定义域为(-∞,0)(0⋃,)+∞,关于原点对称, 且11()()()f x x x f x xx-=-+=--=-,()f x ∴是奇函数;证明:(2)任取1x ,2[1x ∈,)+∞且12x x <,则1212121211()()()()f x f x x x x x x x -=---=-12121x x x x +,120x x -<,1210x x +>,120x x >12()()0f x f x ∴-<,即12()()f x f x <.()f x ∴在[1,)+∞上单调递增.26.(2019·上海市嘉定区封浜高级中学高一期中)若0,0a b >>,试比较33+a b 与22a b b a +的大小.【答案】3322a b a b b a +≥+,当且仅当a b =时等号成立.【分析】运用作差法求出两式的差,结合题意将两式的差与0进行比较即可. 【详解】由题意得,3333222222222))()()()()()()()(()(a b b a a b b a a a b b b a a b a b a b a b a b a b +==-+-=+-=+----+-因为0,0a b >>,所以20,()0a b a b +>-≥,当且仅当a b =时取等号, 所以2()()0a b a b -+≥,即32320())(a a b b b a +-≥+,当且仅当a b =时取等号, 故3322a b a b b a +≥+,当且仅当a b =时等号成立.27.(2021·安徽池州市·高一期中)已知函数()231f ax x ax =+-,a R ∈.(1)当4a =时,求不等式()0f x >的解集; (2)若()0f x ≤在R 上恒成立,求a 的取值范围. 【答案】(1){12x x <-或16x ⎫>⎬⎭;(2)[]12,0-.【分析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当4a =时,()212410x f x x =+->,即()()21610x x +->,解得12x <-或16x >, 所以,解集为{12x x <-或16x ⎫>⎬⎭.(2)因为()2310f x ax ax =+-≤在R 上恒成立,①当0a =时,()10f x =-≤恒成立;②当0a ≠时,2120a a a <⎧⎨∆=+≤⎩,解得120a -<≤, 综上,a 的取值范围为[]12,0-.28.(2010·辽宁大连市·)解关于x 的不等式ax 2-(a +1)x +1<0.【分析】根据二次函数开口方向和一元二次方程的根的大小,分0,0,01,1,1,a a a a a <=<<=>讨论求解.【详解】①当a =0时,原不等式即为-x +1<0,解得x >1.②当a <0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭>0,解得1x a <或x >1.③当a >0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭<0.若a =1,即1a=1时,不等式无解;若a >1,即1a <1时,解得1a<x <1; 若0<a <1,即1a>1时,解得1<x <1a.综上可知,当a <0时,不等式的解集为11x x x a ⎧⎫⎨⎬⎩⎭或;当a =0时,不等式的解集为{x |x >1};当0<a <1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当a =1时,不等式的解集为Ø;当a >1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭.29.(2020·江苏泰州·)已知关于x 的不等式()2220x a x a -++<.(1)当3a =时,解关于x 的不等式; (2)当a R ∈时,解关于x 的不等式.【答案】(1){}23x x <<;(2)答案不唯一,具体见解析. 【分析】(1)直接求解一元二次不等式即可,(2)原不等式化为()()20x x a --<,然后分2a <,2a =和2a >三种情况解不等式【详解】解:(1)因为不等式为()2220x a x a -++<,所以当3a =时,不等式为2560x x -+<,即()()230x x --<, 则23x <<,故原不等式的解集为{}23x x <<. (2)原不等式为()()20x x a --<, 当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.综上所述:当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.30.(2020·杭州之江高级中学高一期中)设函数()()222,f x x ax a a =++-∈R . (1)当1a =时,解关于x 的不等式()()215f x a x a >--+;(2)若[]1,2x ∃∈,使得()0f x >成立,求a 的取值范围.【答案】(1)(,3)(1,)-∞-⋃+∞;(2)(3,)-+∞.【分析】(1)当1a =时,不等式可化简为()()310x x +->,根据一元二次不等式的解法,即可求得答案.(2)[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,列出方程组,可求得a 的范围,进而可得答案.【详解】(1)当1a =时,()()215f x a x a >--+,整理可得2214x x ++>所以()()310x x +->,解得3x <-或1x >, 故原不等式的解集为(,3)(1,)-∞-⋃+∞.(2)命题:[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,则(1)0(2)0f f ≤⎧⎨≤⎩,解得3a ≤-, 若原命题成立,则a 的取值范围为(3,)-+∞.31.(2020·江苏)已知不等式2320ax x -+>的解集为{|1x x <或}x b >. (1)求a ,b 的值;(2)当2c ≠时,解关于x 的不等式2()0ax ac b x bc -++<.【答案】(1)12.a b =⎧⎨=⎩,;(2)答案见解析.【分析】(1)根据二次不等式的解集得到1和b 是方程2320ax x -+=的两根,利用韦达定理得到方程组求解;(2)根据(1)的结论不等式2()0ax ac b x bc -++<化为(2)()0x x c --<,分类讨论得到不等式的解集.【详解】解:(1)由题意知,1和b 是方程2320ax x -+=的两根,则312b a b a⎧=+⎪⎪⎨⎪=⎪⎩,,解得12.a b =⎧⎨=⎩,(2)不等式2()0ax ac b x bc -++<, 即为2(2)20x c x c -++<,即(2)()0x x c --<. ①当2>c 时,解集为{}2x x c <<; ②当2c <时,解集为{}2x c x <<;综上,当2>c 时,原不等式的解集为{}2x x c <<; 当2c <时,原不等式的解集为{}2x c x <<;32.(2021·云南砚山县第三高级中学高一期中)已知函数()()()236f x x a x =-+-. (1)若1a =-,求()f x 在[]3,0-上的最大值和最小值;(2)若关于x 的方程()140f x +=在()0,∞+上有两个不相等实根,求实数a 的取值范围. 【答案】(1)最大值是0,最小值是498-;(2)58,23⎛⎫ ⎪⎝⎭. 【分析】(1)由1a =-,得到()2253f x x x =+-,再利用二次函数的性质求解;(2)将方程()140f x +=在()0,∞+上有两个不相等实根,转化为方程()2232380x a x a +--+=有两个不相等正实根求解.【详解】(1)当1a =-时,()()()1236f x x x =++-2253x x =+-2549248x ⎛⎫=+- ⎪⎝⎭,因为二次函数()f x 开口向上,对称轴为54x =-,又因为()f x 在5[3,)4--上递减,在5(,0]4-上递增, 所以()min 54948f x f ⎛⎫=-=- ⎪⎝⎭,又()()30,03f f -==-, 所以()()max 30f x f =-=;(2)因为方程()140f x +=在()0,∞+上有两个不相等实根,所以方程()2232380x a x a +--+=有两个不相等正实根,则()()232838032023802a a aa ⎧⎪∆=---+>⎪-⎪->⎨⎪-+⎪>⎪⎩, 解得5823a <<,所以实数a 的取值范围是58,23⎛⎫ ⎪⎝⎭.33.(2020·曲靖市关工委麒麟希望学校高一期中)如下图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?最大面积为多少?(2)若使每间虎笼面积为242m ,则每间虎笼的长、宽各设计为多少时,可使围成四间笼的钢筋网总长最小?最小值为多少?【答案】(1)当长为9m 2,宽为3m 时,面积最大,最大面积为227m 2;(2)当长为6m ,宽为4m 时,钢筋网总长最小,最小值为48m .【分析】(1)求得每间虎笼面积的表达式,结合基本不等式求得最大值. (2)求得钢筋网总长的表达式,结合基本不等式求得最小值. 【详解】(1)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为ab ,则463623181823a b a b a b +=⇒+=⇒=+≥ 则272ab ≤,所以每间虎笼面积ab 的最大值为227m 2,当且仅当23a b =即9m,3m 2a b ==时等号成立.(2)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为24ab =,则钢筋网总长为4648a b +≥===,所以钢筋网总长最小为48m ,当且仅当46,23,6m,4m a b a b a b ====等号成立.34.(2020·上海市第三女子中学高一期中)已知a R ∈,求证:“102a <<”是“111a a>+-”的充分非必要条件.【分析】从充分性和必要性两个方面去进行说明即可.【详解】解:充分性:当102a <<时,()()21111a a a -=-+<,且10a ->,则111a a>+-, 故充分性满足;必要性:当111a a >+-时,()1101a a -+>-,即201a a>-,可得1a <,且0a ≠,故必要性不满足;则“102a <<”是“111a a>+-”的充分非必要条件 35.(2020·福建厦门一中高一期中)已知20:{|}100x p x x +≥⎧⎨-≤⎩,q :{x |1-m ≤x ≤1+m ,m >0}.(1)若m =1,则p 是q 的什么条件?(2)若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】(1)p 是q 的必要不充分条件;(2)m ∈[9,+∞).【分析】(1)分别求出p 、q 对应的集合,根据集合间的关系即可得出答案;(2)根据p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,列出不等式组,解得即可得出答案.【详解】(1)因为20:{|}100x p x x +≥⎧⎨-≤⎩={x |-2≤x ≤10}, 若m =1,则q :{x |1-m ≤x ≤1+m ,m >0}={x |0≤x ≤2}, 显然{x |0≤x ≤2}≠⊂{x |-2≤x ≤10}, 所以p 是q 的必要不充分条件.(2)由(1),知p :{x |-2≤x ≤10},因为p 是q 的充分不必要条件,所以}{}{21011x x x m x m ≠-≤≤⊂-≤≤+∣∣, 所以012110m m m >⎧⎪-≤-⎨⎪+≥⎩,且12m -≤-和110m +≥不同时取等号,解得m ≥9,即m ∈[9,+∞).36.(2020·玉林市育才中学高一期中)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【答案】{m |m ≤3}.【分析】由B =∅和B ≠∅分类讨论得不等式(或不等式组)解之可得. 【详解】解:A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A . ①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A ,得212215m m m ≥⎧⎪+≥-⎨⎪-≤⎩,解得2≤m ≤3.由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.37.(2019·福建高一期中)(1)设{}22,2,6A a a =-,{}22,2,36B a a =-,若{}2,3A B ⋂=,求A B .(2)已知{}26A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,求实数a 的取值范围.【答案】(1){}2,3,6,18A B =;(2){}1a a >.【分析】(1)由交集的概念可得223a a -=,求出a 代入验证,再求并集即可; (2)分为B =∅和B ≠∅两种情形,列出不等式解出即可. 【详解】(1)由{}2,3A B ⋂=,∴223a a -=,解得3a =或1a =-, 当3a =时,{}2,3,18B =,此时{}2,3,6,18A B =, 当1a =-时,不合题意. ∴{}2,3,6,18A B =. (2)∵B A ⊆,当B =∅时,23a a >+,∴3a >,当B ≠∅时,222336a a a a ≤⎧⎪≤+⎨⎪+≤⎩,∴13a .综上,{}1a a a ∈>.38.(2020·曲靖市关工委麒麟希望学校高一期中)已知M={x| -2≤x ≤5}, N={x| a+1≤x≤2a -1}.(1)若M ⊆N ,求实数a 的取值范围; (2)若M ⊇N ,求实数a 的取值范围. 【答案】(1)空集;(2){}3a a ≤.【分析】(1)根据子集的性质进行求解即可;(2)根据子集的性质,结合N =∅和N ≠∅两种情况分类讨论进行求解即可. 【详解】(1)由M N ⊆得:12321531212a a a a a a a +≤-≤-⎧⎧⎪⎪⇒-≥≥⎨⎨⎪⎪+≤-≥⎩⎩无解; 故实数a 的取值范围为空集; (2)由M N ⊇得: 当N =∅时,即1212a a a +>-⇒<; 当N ≠∅时,12121232153a a a a a a a +≤-≥⎧⎧⎪⎪+≥-⇒≥-⎨⎨⎪⎪-≤≤⎩⎩, 故23a ≤≤;综上实数a 的取值范围为{}3a a ≤.39.(2019·陕西镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-. (1)若4m =,求A B ;(2)若A B =∅,求实数m 的取值范围.【答案】(1){}27x x -≤≤;(2){2m m <或}4m >.【分析】(1)当4m =时,求出集合B ,利用并集的定义可求得集合A B ;(2)分B =∅、B ≠∅两种情况讨论,结合A B =∅可得出关于实数m 的不等式,综合可求得实数m 的取值范围.【详解】(1)当4m =时,{}57B x x =≤≤,故{}27A B x x ⋃=-≤≤; (2)当121m m +>-时,即当2m <时,B =∅,则A B =∅; 当121m m +≤-时,即当2m ≥时,B ≠∅,因为A B =∅,则212m -<-或15m +>,解得12m <-或4m >,此时有4m >.综上所述,实数m 的取值范围是{2m m <或}4m >.40.(2019·广西大学附属中学高一期中)设全集U =R ,集合{}14A x x =≤<,{}23B x a x a =≤<-.(1)若2a =-,求B A ⋂;(2)若A B A ⋃=,求实数a 的取值范围. 【答案】(1) {}|14x x ≤<;(2)1,2⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)利用集合间的交集运算求解; (2)由A B A ⋃=得B A ⊆,再分B φ=和B φ≠讨论.【详解】(1) 若2a =-,则{}45B x x =-≤<,又{}14A x x =≤<,所以{}|14B A x x =≤<. (2) 若A B A ⋃=,则B A ⊆. 当B φ=时,23a a ≥-,1a ≥; 当B φ≠时,由1,21,34a a a <⎧⎪≥⎨⎪-≤⎩,解得112a ≤<.综上可知,实数a 的取值范围1,2⎡⎫+∞⎪⎢⎣⎭.41.(2020·吉林江城中学)已知集合{}12A x x =-≤<,集合B ={}12x a x a -≤<,(1)B A ⊆,求实数a 的取值范围; (2)若A B =∅,求实数a 的取值范围.【答案】(1){}|011a a a ≤≤≤-或;(2)1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.【分析】(1)(2)都是根据题意讨论B φ=和B φ≠两种情况,从而列出关于a 的不等式组,进而求实数a 的取值范围. 【详解】(1)因为B A ⊆,所以当B φ=时,12a a -≥,解得1a ≤-,此时满足题意;当B φ≠时,由题意得112212a a a a -≥-⎧⎪≤⎨⎪-<⎩,解得01a ≤≤,所以实数a 的取值范围为{}|011a a a ≤≤≤-或. (2)因为A B =∅,所以当B φ=时满足题意,即12a a -≥,解得1a ≤-;当B φ≠时,由题意得2112a a a ≤-⎧⎨-<⎩或1212a a a-≥⎧⎨-<⎩,解得112a -<≤-或3a ≥,所以实数a 的取值范围为1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.42.(2019·浙江高一期中)已知602x A xx ⎧⎫-=>⎨⎬-⎩⎭,()(){}110B x x a x a =---+≤. (1)当2a =时,求A B ;(2)当0a >时,若A B B ⋃=,求实数a 的取值范围. 【答案】(1){}23A B x x ⋂=<≤;(2)[)5,+∞.【分析】(1)解不等式求得集合,A B ,由并集定义可求得结果; (2)由并集结果可确定A B ⊆,根据包含关系可构造不等式组求得结果. 【详解】(1)由602xx ->-得:26x <<,则{}26A x x =<<; 当2a =时,由()()110x a x a ---+≤得:()()310x x -+≤,则{}13B x x =-≤≤;{}23A B x x ∴⋂=<≤;(2)若A B B ⋃=,则A B ⊆,当0a >时,{}11B x a x a =-≤≤+,又{}26A x x =<<,则1216a a -≤⎧⎨+≥⎩,解得:5a ≥,∴实数a 的取值范围为[)5,+∞.43.(2019·甘肃兰州市·兰州五十一中高一期中)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,求m 的取值范围 【答案】(,1]-∞.【分析】分类讨论:0m ≤和0m >,前者由子集定义即得,后者由包含关系得不等关系后可得.【详解】当0m ≤时,B A =∅⊆, 当0m >时,则13m m -≥-⎧⎨≤⎩,解得01m <≤.综上,m 的取值范围是(,1]-∞.44.(2020·上海市杨思高级中学高一期中)若x ∈R ,不等式2680mx mx m -++>恒成立,求实数m 的取值范围. 【答案】[0,1)【分析】根据x ∈R 时,不等式2680mx mx m -++>恒成立,分0m =和0m ≠两种情况,利用判别式法求解.【详解】因为x ∈R 时,不等式2680mx mx m -++>恒成立, 当0m =时,80>成立,当0m ≠时,则2364(8)0m m m m >⎧⎨∆=-+<⎩, 解得01m <<, 综上:01m ≤<. 则实数m 的取值范围[0,1).45.(2021·乌苏市第一中学高一期中)解下列不等式:(1)2440x x -+-< (2)()210x a x a +-->【答案】(1){}|2x x ≠;(2)当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-,或1}x >,当1a <时原不等式的解集为{|x x a >-,或1}x <.【分析】(1)将一元二次不等式化简,将左边配成完全平方式,即可得出不等式的解集; (2)由题意,一元二次不等式所对应的一元二次方程的两个根为a - 和1,分类讨论a -和1的大小,从而求得它的解集.【详解】解:(1)因为2440x x -+-<,所以2440x x -+>,即()220x ->,所以2x ≠,即原不等式的解集为{}|2x x ≠(2)x 的不等式:2(1)0x a x a +-->,即()(1)0x a x +->,此不等式所对应的一元二次方程2(1)0x a x a +--=的两个根为a -和1. 当1a -=,即1a =-时,此时不等式即2(1)0x ->,它的解集为{|1}x x ≠; 当<1a -,即1a >-时,它的解集为{|x x a <-或1}x >;当1a ->,即1a <时,它的解集为{|x x a >-或1}x <.综上可得:当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-或1}x >,当1a <时原不等式的解集为{|x x a >-或1}x <.46.(2021·乌苏市第一中学高一期中)解下列不等式: (1)23710x x -≤ (2)(1)()0x x a --> 【答案】(1)10{|1}3x x -≤≤;(2)1a ≥时,解集为(,1)(,)a -∞+∞,1a <时,解集为(,)(1,)a -∞+∞.【分析】(1)不等式变形为一边为0,一边二次系数为正,分解因式确定相应二次方程的根后结论二次函数性质得解;(2)根据a 和1的大小分类讨论得解.【详解】(1)不等式化为237100x x --≤,即(1)(310)0x x +-≤,解集为10{|1}3x x -≤≤; (2)当1a ≥时,不等式的解为1x <或x a >,解集为(,1)(,)a -∞+∞; 当1a <时,不等式的解为x a <或1x >,解集为(,)(1,)a -∞+∞.47.(2020·吉林江城中学)(1)若不等式20ax bx c ++>的解集是{}|23x x -<<,求不等式20cx bx a ++>的解集;(2)已知不等式210kx kx ++>恒成立,求k 的取值范围. 【答案】(1)1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭;(2){}|04k k ≤<.【分析】(1)根据不等式20ax bx c ++>的解集是{}|23x x -<<,得到0a <,=-b a ,6c a =-,代入20cx bx a ++>即可求解;(2)通过讨论0k =和0k >两种情况来求解.【详解】(1)因为不等式20ax bx c ++>的解集是{}|23x x -<<, 所以2-和3是方程20ax bx c ++=的两根,且0a <,所以23,23b ca a-+=--⨯=,即=-b a ,6c a =-,代入不等式20cx bx a ++>得260ax ax a --+>, 因为0a <,所以2610x x +->,解得12x <-或13x >, 所以不等式20cx bx a ++>的解集为1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭. (2)当0k =时,不等式为10>,恒成立,满足题意; 当0k ≠时,要满足题意,需2040k k k >⎧⎨∆=-<⎩,解得04k <<,所以实数k 的取值范围为{}|04k k ≤<48.(2018·天津河东·高一期中)已知函数()af x x x=+. (1)当a R ∈时,用定义证明()f x 为奇函数.(2)当0a <时,用定义证明()f x 在()0,∞+上单调递增. 【分析】(1)根据奇函数的定义进行证明即可; (2)根据函数的单调性进行证明即可.【详解】(1)定义域:{}|0x x ≠,关于原点对称,()a a f x x x x x ⎛⎫-=-+=-+ ⎪-⎝⎭()f x =-,∴()f x 为奇函数; (2)0a <时,设12,x x 是()0,∞+上任意两个实数,且120x x <<, 则()()12f x f x -1212a a x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()1212a a x x x x ⎛⎫=-+- ⎪⎝⎭()()211212a x x x x x x -=-+()12121a x x x x ⎛⎫=-- ⎪⎝⎭因为120x x <<,所以120x x -<,120x x >,而0a <,所以120ax x ->, ∴()()120f x f x -<, 即()()12f x f x <,故()f x 在()0,∞+单调递增.49.(2020·河南郑州·高一期中)已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-.(1)求出函数()f x 在R 上的解析式;(2)画出函数()f x 的图象,并根据图象写出()f x 的单调区间; (3)求使()1f x =时的x 的值.【答案】(1)222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩;(2)函数图象见解析,单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-.(3)1x =或1x =-【分析】(1)通过①由于函数()f x 是定义域为R 的奇函数,则(0)0f =;②当0x <时,0x ->,利用()f x 是奇函数,()()f x f x -=-.求出解析式即可.(2)利用函数的奇偶性以及二次函数的性质画出函数的图象,写出单调增区间,单调减区间. (3)利用当0x >时,221x x -=,当0x <时,221x x --=,分别求解方程即可. 【详解】解:(1)①由于函数()f x 是定义域为R 的奇函数,则(0)0f =; ②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-. 所以22()()[()2()]2f x f x x x x x =--=----=--.综上:222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩.(2)函数图象如下所示:由函数图象可知,函数的单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-. (3)当0x >时,221x x -=解得1x =或1x =因为0x >,所以1x =当0x <时,221x x --= 解得1x =-综上所述,1x =+或1x =-50.(2019·云南昭通市第一中学高一期中)某商店试销一种成本单价为40元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数100=-+y x 的关系.设商店获得的利润(利润=销售总收入-总成本)为S 元. (1)试用销售单价x 表示利润S ;(2)试问销售单价定为多少时,该商店可获得最大利润?最大利润是多少?此时的销售量是多少?【答案】(1)()214040004080S x x x =-+-≤≤;(2)当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.【分析】(1)由利润=销售总收入-总成本可得答案;(2)对于()()()2709004080S x x x =--+≤≤配方法即可求得最大值. 【详解】(1)()()()()404040100S x xy y x y x x =-=-=--+ ()214040004080x x x =-+-≤≤.(2)()()()2709004080S x x x =--+≤≤,∴当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.。

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

2023~2024学年第一学期高一期中考试数学试题[含答案]

2023~2024学年第一学期高一期中考试数学试题[含答案]


上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2

0(舍去),
f x

的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )

2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0

高一(上)期中考试数学试题及答案

高一(上)期中考试数学试题及答案

高一(上)期中考试数学试题及答案高一(上)期中考试数学一、选择题(共10小题,每小题3分,共30分)1.(3分)设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M∩(∁U∁N)=()A.{5} B.{0,3} C.{0,2,3,5} D.{0,1,3,4,5}2.(3分)已知集合A到B的映射:f(x) = 3x-5,那么集合B中元素31的原象是()A.10 B.11 C.12 D.133.(3分)下列四组函数,表示同一函数的是()A.f(x) = 2,g(x) = x B.f(x) = x,g(x) = x C.f(x) = ln x,g(x) = 2ln x D.f(x) = loga x(<a≠1),g(x) = loga x(<a≠1)4.(3分)若x的值域为集合P,则下列元素中不属于P的是()A.2 B.﹣2 C.﹣1 D.﹣35.(3分)函数y=a与y=﹣loga x(a>0,且a≠1)在同一坐标系中的图象只可能是()A. B. C. D.6.(3分)函数f(x)在[0,+∞)上是减函数,那么下述式子中正确的是()A. f(2)>f(1) B. f(﹣1)<f(0) C. f(0)<f(1) D. f(1)<f(2)7.(3分)为得到函数的图象,可以把函数y = XXX x的图象()A.向上平移一个单位 B.向下平移一个单位 C.向左平移一个单位 D.向右平移一个单位8.(3分)设a=2,b=0.3,c=log2 0.3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a9.(3分)已知函数f(x) = 0.32x的定义域是R,则实数m的取值范围是()A.<m<4 B.≤m≤4 C.≤m<4 D.m≥410.(3分)若一系列函数的解析式和值域相同,但是定义域不同,则称这些函数为“同族函数”,例如函数y=x,2x∈[1,2],与函数y=x,x∈[﹣2,﹣1]即为“同族函数”.下面的函数解析式也能够被用来构造“同族函数”的是()A.y=x B.y=|x﹣3| C.y=2x D.y=log2 x二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:(1-2i)(3+4i)= 11 + 2i12.(3分)已知函数f(x) = x2-4x+3,其顶点坐标为(2,-1)13.(3分)已知函数y = 2x+1,若x = 3,则y = 714.(3分)已知函数y = log2 x,其图象关于点(1,2)对称15.(3分)已知函数f(x) = x3+2x2-5x-6,其零点为-2,1,316.(3分)已知函数y = 3sin(x-π/4),其振幅为3,初相位为π/4N)={0,2,3}。

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一数学上学期期中模拟卷01
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A版2019必修第一册第一章~第三章。

5.难度系数:0.65。

第一部分(选择题共58分)
一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

或C或D
由图知:()040f x x >⇒-<<.故选D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得6分,部分选对的得部分分,有选错的得0分.
第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共5小题,共77分。

解答应写出文字说明、证明过程或演算步骤。

15.(13分)
的取值范围为.
16.(15分)
17.(15分)
18.(17分)
19.(17分)。

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学上册期中考试题(带答案)关于高一数学上册期中考试题(带答案)当我们进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,下面本店铺为大家带来高一数学上册期中考试题(带答案),欢迎大家参考阅读,希望能够帮助到大家!高一数学上册期中考试题(带答案)一、选择题(本大题共12小题,每小题5分,共60分.)1.设全集U=R,集合A={X|X≥1},B={X|0≤X A.{X|02.如果集合A={X|X=2kπ+π,k∈Z},B={X|X=4kπ+π,k∈Z},则( )A.A BB.B AC.A = BD.A∩B=3.设A={X∈Z||X|≤2},B={y|y=X2+1.X∈A},则B的元素个数是( )A.5B.4C.3D.24.若log2 a1.则( ).A.a>1.b>0B.a>1.b5.已知集合A=B=R,X∈A,y∈B,f:X→y=aX+b,若4和10的原象分别对应是6和9,则19在f作用下的象为( )A.18B.30C.272D.286.已知函数的周期为 2.当,那么函数的图像与函数的图像的交点共有( )A.10个B.9个C.8个D.1个7.已知f(X)是一次函数,且2f(2)-3f((1)=5.2f(0)-f(-(1)=1.则f(X)的解析式为( )A.3X-2B.3X+2C.2X+3D.2X-38.下列四组函数中,表示同一函数的是( ).A.f(X)=|X|,g(X)=B.f(X)=lg X2.g(X)=2lg XC.f(X)= ,g(X)=X+1D.f(X)= •,g(X)=9.已知函数f(X)= ,则f(-10)的值是( ).A.-2B.-1C.0D.110.设f(X)为定义在R上的奇函数.当X≥0时,f(X)=2X+2X+b(b 为常数),则f(-(1)等于( ).A.-3B.-1C.1D.311.已知2lg(X-2y)=lgX+lgy,则Xy 的值为( )A.1B.4C.1或4D.14 或412.方程2X=2-X的根所在区间是( ).A.(-1.0)B.(2.(3)C.(1.(2)D.(0,(1)三岔中学20XX-20XX学年度第一学期期中考试题高一数学答题卡一、选择题(12_5=60分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题(每小题5分,共20分.)13.求满足 > 的X的取值集合是14.设,则的大小关系是15..若定义在区间(-1.0)内的函数f(X)=log2a(X+(1)满足f(X)>0,则a的取值范围是__ _ ___.16.已知函数内有零点,内有零点,若m为整数,则m的值为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)计算下列各式的值:((1)18.(12分)集合。

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。

3.本卷命题范围:新人教版必修第一册第一章~第四章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。

一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。

高一(上)数学期中考试卷(含答案)

高一(上)数学期中考试卷(含答案)

高一(上)数学期中考试卷(含答案)第I 卷(选择题)一、单选题(本大题共12小题,共48.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合A ={x|x+2x−4≤0},B ={0,1,2,4,8},则A ∩B =( ) A. {1,2,4,8} B. {0,1,2} C. {1,2} D. {0,1,2,4}2. 命题“∃x 0∈R,1<2x 0≤2”的否定形式是( )A. ∀x ∈R ,1≥2x >2B. ∃x 0∈R,1<2x 0≤2C. ∃x 0∈R,2x 0≤1或2x 0>2D. ∀x ∈R ,2x ≤1或2x >23. 已知a ,b ∈R ,则“log 2a >log 2b ”是“(13)a <(13)b ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 若正数a ,b 满足a +b =1,则9a +1b的最小值为( )A. 16B. 13C. 20D. 155. 若不等式ax 2+bx +c >0的解集为{x|2<x <5},则不等式cx 2+bx +a >0的( )A. {x|−12<x <−15} B. {x|x <−12或x >−15} C. {x|15<x <12}D. {x|x <15或x >12}6. 在下列四个函数中,与f(x)=x 表示的是同一函数的个数是( )①g(x)=√x 2 ②ℎ(x)=(√x)2 ③m(x)=√x 33④p(x)=x 2xA. 0B. 1C. 2D. 37. 已知f(x)={(5a −1)x +2a,x ≤1log a x,x >1(a >0,a ≠1)是减函数,则a 的取值范围是( ) A. (0,17]B. (0,15)C. [17,1)D. [17,15)8. 已知f(x +2)是偶函数,当2<x 1<x 2时,f(x 2)−f(x 1)x2−x 1>0恒成立,设a =f(12),b =f(3),c =f(4),则a 、b 、c 的大小关系为( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. b <a <cB. c <b <aC. b <c <aD. a <b <c9. 已知幂函数y =(m 2−2m −2)x m2+m−1在(0,+∞)单调递增,则实数m 的值为( )A. −1B. 3C. −1或3D. 1或−310. 已知a =20.1,b =log 0.30.5,c =log 0.50.2,则( )A. c >b >aB. b >c >aC. c >a >bD. a >c >b11. 已知函数f(x 2+1)的定义域为[1,2],则函数g(x)=f(x)lg(x−2)的定义域为( )A. [2,5]B. (2,3)∪(3,5]C. (2,5]D. [2,3)∪(3,5]12. 已知函数f(x)=x 2−(a +b)x +ab 满足f(1)<0(其中0<a <b),则函数g(x)=a x +b −1的图象可能为( )A.B.C.D.第II 卷(非选择题)二、填空题(本大题共3小题,共12.0分)13. 计算:log 2.56.25+lg0.001+ln √e +2−1+log 23=______.14. 已知f(x)是奇函数,且当x <0时,f(x)=−e ax .若f(ln2)=8,则a = .15. 函数f(x)=log 13(6−x −x 2)的单调递增区间是______ .三、解答题(本大题共4小题,共40.0分。

2023-2024学年江苏省南京师大附中高一(上)期中数学试卷【答案版】

2023-2024学年江苏省南京师大附中高一(上)期中数学试卷【答案版】

2023-2024学年江苏省南京师大附中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案直接填写在答题卡相应位置上1.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x =3k +1,k ∈Z },则集合A ∩B =( ) A .{0,2}B .{﹣1,2}C .{﹣2,0,2}D .{1,﹣2}2.函数f(x)=√x 2+2x 的增区间是( ) A .[0,+∞)B .[﹣1,+∞)C .(﹣∞,﹣2]D .(﹣∞,﹣1]3.若命题“∃x ∈R ,使得x 2﹣2x +m =0”是真命题,则实数m 的取值范围是( ) A .(1,+∞)B .[1,+∞)C .(﹣∞,1)D .(﹣∞,1]4.已知幂函数f(x)=x −m2+2m的定义域为R ,且m ∈Z ,则m 的值为( )A .﹣1B .0C .1D .25.已知二次函数y =x 2+bx +c 的图象与x 轴交于(﹣1,0),(2,0)两点,则关于x 的不等式cx 2+x ﹣b >0的解集为( ) A .(−12,1) B .(−∞,−12)∪(1,+∞) C .(−1,12)D .(−∞,−1)∪(12,+∞)6.设n 为正整数,f(n)=1+12+13+⋯+1n,人们对于f (n )的研究已经持续了几百年,迄今为止仍没有得到求和公式,只是得到了它的近似公式:当n 很大时,f (n )≈lnn +γ,其中γ称为欧拉﹣马歇罗尼常数,γ≈0.5772,至今还不确定γ是有理数还是无理数.由于上式在n 很大时才成立,故当n 较小时计算出的结果与实际值之间存在一定的误差,已知ln 2≈0.6931,用上式估算出的ln 4与实际的ln 4的误差绝对值近似为( ) A .0.03B .0.12C .0.17D .0.217.函数f(x)=1+x 21−x 2的图象大致为( )A .B .C .D .8.已知互不相同的实数x ,y ,z ,满足3x=4y=6z,则2z x 3−z2y 的值为()A .12B .1C .2D .3二、多项选择题:(本大题共4小题,每小题5分,共20分。

(必考题)数学高一上期中经典题(含答案解析)

(必考题)数学高一上期中经典题(含答案解析)

一、选择题1.(0分)[ID :11816]f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .22.(0分)[ID :11801]设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 3.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件4.(0分)[ID :11780]设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,5.(0分)[ID :11758]已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)-∞D .(,1)(1,)-∞-+∞6.(0分)[ID :11755]函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]7.(0分)[ID :11749]设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z8.(0分)[ID :11796]设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.59.(0分)[ID :11791]已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)10.(0分)[ID :11786]若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 11.(0分)[ID :11785]定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭12.(0分)[ID :11746]若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b13.(0分)[ID :11737]已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<14.(0分)[ID :11736]函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( )A .[)2,+∞B .[]2,4C .[]0,4D .(]2,415.(0分)[ID :11760]设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( )A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞二、填空题16.(0分)[ID :11921]函数的定义域是 .17.(0分)[ID :11919]已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.18.(0分)[ID :11915]幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.19.(0分)[ID :11903]若函数()y f x =的定义域是[0,2],则函数0.5()log (43)g x x =-的定义域是__________.20.(0分)[ID :11891]某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.21.(0分)[ID :11887]已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______.22.(0分)[ID :11879]已知2a =5b =m ,且11a b+=1,则m =____. 23.(0分)[ID :11836]已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________24.(0分)[ID :11830]已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.25.(0分)[ID :11916]函数2()log 1f x x =-________.三、解答题26.(0分)[ID :12028]已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式27.(0分)[ID :12021]已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值.28.(0分)[ID :11991]某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 29.(0分)[ID :11990]某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?30.(0分)[ID :11976]一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x N *∈)件.当20x ≤时,年销售总收人为(233x x -)万元;当20x >时,年销售总收人为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入一年总投资) (1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.B 3.B 4.D 5.A 6.D7.D8.D9.C10.D11.C12.B13.C14.B15.D二、填空题16.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域17.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查18.【解析】【分析】由条件得MN则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生19.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g (x))20.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)21.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得22.10【解析】因为2a=5b=m所以a=log2mb=log5m由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数23.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围24.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题25.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.2.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算3.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.4.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.5.A解析:A 【解析】 【分析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,再利用函数的单调性,即可求出不等式的解集. 【详解】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A . 【点睛】本题考查了函数的平移及函数的奇偶性与单调性的应用,考查了含绝对值的不等式的求解,属于综合题.6.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.7.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.8.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.9.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.10.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 11.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.12.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.13.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.14.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.15.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.二、填空题16.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域17.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查解析:4 【解析】 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=, 解得22x =-±,1220,4223,-<-+<-<--<-当0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.18.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->,∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.20.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200 【解析】 【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数. 【详解】 设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩ 则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000, 当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200. 【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键.21.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得 解析:(],3-∞【解析】 【分析】根据复合函数单调性同增异减,以及二次函数对称轴列不等式组,解不等式组求得实数a 的取值范围. 【详解】要使()f x 在()2,+∞上递增,根据复合函数单调性,需二次函数22y x ax =-+对称轴在2x =的左边,并且在2x =时,二次函数的函数值为非负数,即2222220a a ⎧≤⎪⎨⎪-+≥⎩,解得3a ≤.即实数a 的取值范围是(],3-∞.【点睛】本小题主要考查复合函数的单调性,考查二次函数的性质,属于中档题.22.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.23.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.24.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.25.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.三、解答题 26.(1)23-;(2)见解析;(3)()1x f x x -=+ 【解析】 【分析】(1)利用函数的奇偶性求解.(2)函数单调性定义,通过化解判断函数值差的正负;(3)函数为R 奇函数,x 〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x 〉0的解析式. 【详解】(1)由函数f (x )为奇函数,知f (2)=-f (-2)=23-· (2)在(-∞,0)上任取x 1,x 2,且x 1<x 2,则()()1212121111111111f x f x x x x x ⎛⎫⎛⎫-=+-+=- ⎪ ⎪----⎝⎭⎝⎭ ()()211211x x x x -=-- 由x 1-1<0,x 2-1<0,x 2-x 1>0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 由定义可知,函数y =f (x )在区间(-∞,0]上单调递减.· (3)当x >0时,-x <0,()111f x x -=-+由函数f (x )为奇函数知f (x )=-f (-x ),()1111x f x x x -∴=-+=++ 【点睛】本题考查了函数奇偶性的应用和单调性的定义,利用奇偶性求函数值和解析式主要应用奇偶性定义和图像的对称性;利用定义法证明函数单调性关键是作差后式子的化解,因为需要判断结果的正负,所以通常需要将式子化成乘积的形式.27.最小值为14-,最大值为2. 【解析】 【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭.当23log ,2x = ()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.28.(Ⅰ)()27530225,02,75030,2 5.1x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩(Ⅱ)当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【解析】 【分析】(1)根据题意可得f (x )=15w (x )﹣30x ,则化为分段函数即可,(2)根据分段函数的解析式即可求出最大利润. 【详解】(Ⅰ)由已知()()()1520101530f x W x x x W x x =--=-()2155330,02,501530,251x x x x x x x ⎧⨯+-≤≤⎪=⎨⨯-<≤⎪+⎩27530225,02,75030,2 5.1x x x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩(Ⅱ)由(Ⅰ)得()()22175222,02,7530225,02,5=75030,2 5.25780301,2 5.11x x x x x f x x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩当02x ≤≤时,()()max 2465f x f ==; 当25x <≤时,()()257803011f x x x ⎡⎤=-++⎢⎥+⎣⎦ ()2578030214801x x≤-⨯⋅+=+ 当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【点睛】本题考查了函数的应用、基本不等式的性质,考查了推理能力与计算能力,属于中档题.29.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元 【解析】设房屋地面的长为米,房屋总造价为元.30.(1)232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当年产量为16件时,所得年利润最大,最大年利润为156万元. 【解析】 【分析】(1)根据已知条件,分当20x ≤时和当20x >时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数的解析式,求出最大值点和最大值即可. 【详解】(1)由题意得:当20x ≤时,()223310032100y x xx xx =---=-+-,当20x >时,260100160y x x =--=-,故232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当020x <≤时,()223210016156y x x x =-+-=--+, 当16x =时,156max y =, 而当20x >时,160140x -<,故当年产量为16件时,所得年利润最大,最大年利润为156万元. 【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.。

高一上学期期中考试数学试题(解析版)

高一上学期期中考试数学试题(解析版)
可得 在 上单调递增排除选项C
故选:D.
7.荀子曰:“故不积跬步无以至千里;不积小流无以成江海.“这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】
【分析】利用命题间的关系及命题的充分必要性直接判断.
【小问1详解】
解:设 的长为 米( )
是矩形
由 得
解得 或
即 的取值范围为
【小问2详解】
令 ( )则
当且仅当 即 时等号成立此时 最小面积为48平方米
22.已知函数 为偶函数.
(1)求实数a的值;
(2)判断 的单调性并用定义法证明你的判断:
(3)设 若对任意的 总存在 使得 成立求实数k的取值范围.
则 即 解得:
所以实数 的取值范围 .
【点睛】易错点睛:本题考查利用集合子集关系确定参数问题易错点是要注意: 是任何集合的子集所以要分集合 和集合 两种情况讨论考查学生的逻辑推理能力属于中档题.
18.已知关于x的不等式 .
(1)若不等式的解集是 求 的值;
(2)若 求此不等式的解集.
【答案】(1) ;(2)分类讨论答案见解析.
【详解】由已知设“积跬步”为命题 “至千里”为命题
“故不积跬步无以至千里”即“若 则 ”
其逆否命题为“若 则 ”反之不成立
所以命题 是命题 的必要不充分条件
故选:B.
8.中国宋代的数学家秦九韶曾提出“三斜求积术”即假设在平面内有一个三角形边长分别为abc三角形的面积 可由公式 求得其中 为三角形周长的一半这个公式也被称为海伦——秦九韶公式现有一个三角形的边长满足 则此三角形面积的最大值为()

高一(上)期中数学试卷(含答案)

高一(上)期中数学试卷(含答案)

一、单选题。

(本大题共8小题,共40高一(上)期中数学试卷分。

在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一数学上学期期中模拟卷(苏教版2019)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:苏教版2019必修第一册第1章~第5章。

5.难度系数:0.65。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}()14,2,5A x x B =-<<=,则()R B A = ð()A .(]1,2-B .()1,2-C .()[),45,-∞⋃+∞D .()[),15,-∞-+∞ 【答案】A【解析】()2,5B =,则R (,2][5,)B =-∞+∞ ð,则()(]R 1,2B A =- ð.故选:A.2.已知集合{}{}2,,42,A xx k k B x x k k ==∈==+∈Z Z ∣∣.设:,:p x A q x B ∈∈,下列说法正确的是()A .p 是q 的充分不必要条件B .p 是q 的必要不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件【答案】B【解析】由(){}221,B xx k k ==+∈Z ∣,{}2,A x x k k ==∈Z ∣,故B 为A 的真子集,又:,:p x A q x B ∈∈,故p 是q 的必要不充分条件.故选:B.3.,,,a b c b c ∈>R ,下列不等式恒成立的是()A .22a b a c +>+B .22a b a c +>+C .22ab ac >D .22a b a c>【答案】B【解析】对于A ,若0c b <<,则22b c <,选项不成立,故A 错误;对于B ,因为b c >,故22a b a c +>+,故B 成立,对于C 、D ,若0a =,则选项不成立,故C 、D 错误;故选:B.4.已知实数a 满足14a a -+=,则22a a -+的值为()A .14B .16C .12D .18【答案】A【解析】因为()212212a a a a a a ---=+++⋅,所以()22211216214a a a a a a ---+=+-⋅=-=.故选:A.5.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()2121a b++的最大值为()A .916B .2516C .94D .254【答案】C【解析】因为()()212122221a b a b a b++=⋅+++,又221a b +=,所以()()22292121222(224a b aba b+++=⋅+≤+=,当且仅当1222ab==,即1a b ==-时取等号,故选:C6.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A .(]0,3B .[)2,+∞C .()0,∞+D .[]2,3【答案】D【解析】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得23a ≤≤,所以a 的取值范围是[]2,3.故选:D.7.已知函数()221x f x x x =-+,且()()1220f x f x ++<,则()A .120x x +<B .120x x +>C .1210x x -+>D .1220x x ++<【答案】A【解析】由函数单调性性质得:y x x =,21x y =+在R 上单调递增,所以()221x f x x x =-+在R 上单调递增,令函数222121()||1||||21212121x x x x x x g x x x x x x x +-=-+=-+=+++++,则2112()||||()2121x xxx g x x x x x g x -----=-+=-+=-++,所以()()0g x g x +-=,则函数()g x 为奇函数,且在R 上单调递增,故()()()()12121212200f x f x g x g x x x x x ++<⇔<-⇔<-⇔+<.故选:A .8.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,则29c a b++的取值范围为()A .[)6,-+∞B .(,6)-∞C .(6,)-+∞D .(],6∞--【答案】D【解析】由不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,可知1和4-是方程20ax bx c ++=的两个实数根,且0a <,由韦达定理可得4141b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即可得3,4b a c a ==-,所以()222499169994463444a c a a a a b a a a a a -+++⎛⎫===+=--+≤-=- ⎪++-⎝⎭.当且仅当944a a -=-时,即34a =-时等号成立,即可得(]29,6c a b∞+∈--+.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合{1,1,3,5}M =-,集合{3,1,5}N =-,则正确的结论是()A .,x N x M ∀∈∈B .,x N x M ∃∈∈C .{1,5}M N ⋂=D .{1,5}M N = 【答案】BC【解析】对于A ,3N -∈,但是3M -∉,A 错误,对于B ,1N ∈,1M ∈,B 正确,对于CD ,{1,1,3,5}{3,1,5}{1,5}M N =--= ,{1,1,3,5}{3,1,5}{3,1,1,3,5}M N =--=-- ,C 正确,D 错误.故选:BC .10.已知0a >,0b >,且2a b +=,则()A .222a b +≥B .22log log 0a b +≤C .1244a b -<<D .20a b ->【答案】ABC【解析】对于A ,有()()()()2222222222111122222222a b a ab b a ab b a b a b a b ⎡⎤+=+++-+=++-≥+=⋅=⎣⎦,当且仅当a b =时取等号,故A 正确;对于B ,0a >,0b >,有()22112144ab a b ≤+=⋅=,当且仅当a b =时取等号,故1ab ≤,从而()2222log log log log 10a b ab +=≤=,故B 正确;对于C ,由,0a b >,知0ab >,所以()()()()()()222222222042224ab a ab b a ab b a b a b a b a b <=++--+=+--=--=--,故()24a b -<,从而22a b -<-<,所以22122244a b --=<<=,故C 正确;对于D ,由于当1a b ==时,有,0a b >,2a b +=,但2110a b -=-=,故D 错误.故选:ABC.11.对于任意的表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”.下列说法正确的是()A .函数[]()y x x =∈R 为奇函数B .函数[]y x =的值域为ZC .对于任意的,x y +∈R ,不等式[][][]x y x y +≤+恒成立D .不等式[]2[]430x x -+<的解集为{}23x x ≤<【答案】BCD【解析】对于A ,当01x ≤<时,[]0y x ==,当10x -<<,[]1y x ==-,所以[]()y x x =∈R 不是奇函数,所以A 错误,对于B ,因为[]x 表示不超过x 的最大整数,所以当x ∈R 时,[]Z x ∈,所以函数[]y x =的值域为Z ,所以B 正确,对于C ,因为,x y +∈R 时,[][],x x y y ≤≤,所以[][][][][]x y x y x y x y ⎡⎤+=+≤+≤+⎣⎦,所以C 正确,对于D ,由[]2[]430x x -+<,得[]13x <<,因为[]x 表示不超过x 的最大整数,所以23x ≤<,所以D 正确.故选:BCD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一年级数学期中考试试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为()A .1B .1-C .1或1-D .1或1-或02、函数1()(0)f x x x x =+≠是()A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3.已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是()A .BCD 下列各组函数中表示同一函数的是() ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷x x f =)(,()g x =;⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、⑵、⑶C 、⑷D 、⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是()A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x e x f x )2()2(≥<x x 则[])2(f f =() A .2B .3C .9D .187.函数1(0,1)x y a a a a=->≠的图象可能是()8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -=)(R x ∈是偶函数;④xx x h +-=11lg)(是奇函数.其中正确的有()个A .1个B .2个C .3个D .4个9.函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是() A .(]3,-∞-B .[]0,3-C .[)0,3-D .[]0,2- 10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是()A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11.若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是()A .[]0,4-[]4,0)4,0()0,4(-设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是()A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|3003x x x -<<<<或D .{}|33x x x <->或 二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为; 15.函数()()R b a xb ax x f ∈+-=,25,若()55=f ,则()=-5f ; 16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根其中正确的命题是(填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C (1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由;(2)若(3)2f =,求使()0h x <成立的x 的集合。

19.(本小题满分12分)有甲、乙两种商品,经营销售这两种商品所得的利润依次为M 万元和N 万元,它们与投入资金x 万元的关系可由经验公式给出:M=4x ,≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?20.(12分)已知x 满足82≤≤x ,求函数2log )1(log 2)(24x x x f ⋅-=的最大值和最小值 21.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f yx f -= (1)求证:f (1)=0,f (xy )=f (x )+f (y );(2)设f (2)=1,解不等式2)31()(≤--x f x f 。

22.(12分)设函数21()12x xa f x ⋅-=+是实数集R 上的奇函数. (1)求实数a 的值;(2)判断()f x 在R 上的单调性并加以证明;(3)求函数()f x 的值域.2012-2013学年度高一年级数学期中考试试卷参考答案 1-5DBACA6-10ADCBB11-12DC13.(,0]-∞(答(,0)-∞也给分)14.[57,43].①②③ 18.(1)定义域为(1,1)-………………………………………………………2分 ()()h x h x -=-,函数()h x 为奇函数…………………………………5分(2)2a =……………………………………………………………………7分 110x x x +<-⇒<……………………………………………………10分又(1,1)x ∈-,(1,0)x ∴∈-……………………………………………12分19.设投入乙种商品的资金为x 万元,则投入甲种商品的资金为(8-x)万元,………………2分共获利润1(8)4y x =-+…………………………………………………5分t = (0≤t),则x=t 2+1, ∴22131337(7)()444216y t t t =-+=--+…………………………………………………8分 故当t=32时,可获最大利润3716万元.……………………………………………………10分 此时,投入乙种商品的资金为134万元, 投入甲种商品的资金为194万元.……………………………………………………12分 21、(1)证明:)()()(y f x f yx f -=,令x=y=1,则有:f (1)=f (1)-f (1)=0,…2分 )()()]()1([)()1()()1()(y f x f y f f x f yf x f yx f xy f +=--=-==。

…………4分 (2)解:∵)]3()1([)()31()(---=--x f f x f x f x f )3()3()(2x x f x f x f -=-+=, ∵2=2×1=2f (2)=f (2)+f (2)=f (4), ∴2)31()(≤--x f x f 等价于:)4()3(2f x x f ≤-①,………………………………8分 且x>0,x-3>0[由f (x )定义域为(0,+∞)可得]…………………………………10分 ∵03)3(2>-=-x x x x ,4>0,又f (x )在(0,+∞)上为增函数,∴①41432≤≤-⇒≤-⇔x x x 。

又x>3,∴原不等式解集为:{x|3<x ≤4}…12分22、解:(1))(x f Θ是R 上的奇函数∴()f x -=()f x =-,即21211212x x x x a a --⋅-⋅-=-++,即2121212x xx x a a --⋅=++ 即(1)(21)0x a -+=∴1=a或者)(x f Θ是R 上的奇函数.0)0()0()0(=∴-=-∴f f f .0211200=+-⋅∴a ,解得1=a ,然后经检验满足要求。

…………………………………3分(2)由(1)得212()12121x x x f x -==-++ 设12x x R <∈,则122122()()(1)(1)2121x x f x f x -=---++ 122112222(22)2121(21)(21)x x x x x x -=-=++++,12x x <Q 1222x x ∴< 21()()0f x f x ∴-<,所以()f x 在R 上是增函数…………………………………7分(3)212()12121x x x f x -==-++, 所以212()12121x x x f x -==-++的值域为(-1,1) 或者可以设2121x x y -=+,从中解出2x =11y y +-,所以101y y +>-,所以值域为(-1,1)…12分。

相关文档
最新文档