操作系统实验报告-利用银行家算法避免死锁
操作系统实验报告-死锁的避免
![操作系统实验报告-死锁的避免](https://img.taocdn.com/s3/m/22e8b7a1ccbff121dd3683d6.png)
操作系统实验报告-死锁的避免操作系统实验(二)死锁的避免1.实验内容使用C++实现模拟随机算法和银行家算法2.实验目的(1)了解死锁的产生原因(随机算法)(2)理解死锁的解决办法(银行家算法)3.实验题目使用随机算法和银行家算法设计程序4.程序流程图主要过程流程图银行家算法流程图安全性算法流程图5.程序代码和运行结果#include <stdio.h>#include<stdlib.h> typedef struct{int A;int B;int C;}RES;#define false 0#define true 1//系统中所有进程数量#define PNUMBER 3//最大需求矩阵RES Max[PNUMBER];//已分配资源数矩阵RES Allocation[PNUMBER];//需求矩阵RES Need[PNUMBER];//可用资源向量RES Available={0,0,0};//安全序列int safe[PNUMBER];void setConfig(){int i=0,j=0;printf("================开始手动配置资源==================\n");//可分配资源printf("输入可分配资源\n");scanf("%d%d%d",&Available.A,&Available.B,&Available.C);//最大需求矩阵MAXprintf("输入最大需求矩阵%dx%d\n",PNUMBER,PNUMBER );for (i=0;i<PNUMBER;i++){scanf("%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);}//已分配矩阵Allocprintf("输入已分配矩阵%dx%d\n",PNUMBER,PNUMBER);for (i=0;i<PNUMBER;i++){scanf("%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);}//需求矩阵printf("输入需求矩阵%dx%d\n",PNUMBER,PNUMBER);for (i=0;i<PNUMBER;i++){scanf("%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);}printf("================结束配置资源==================\n");}void loadConfig(){FILE *fp1;if ((fp1=fopen("config.txt","r"))==NULL){printf("没有发现配置文件,请手动输入\n");setConfig();}else{int i=0;printf("发现配置文件,开始导入..\n");//可分配资源fscanf(fp1,"%d%d%d",&Available.A,&Available.B,&Available.C);//最大需求矩阵MAXfor (i=0;i<PNUMBER;i++){fscanf(fp1,"%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);}//已分配矩阵Allocfor (i=0;i<PNUMBER;i++){fscanf(fp1,"%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);}//需求矩阵for (i=0;i<PNUMBER;i++){fscanf(fp1,"%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);}}}//试探分配void ProbeAlloc(int process,RES *res){Available.A -= res->A;Available.B -= res->B;Available.C -= res->C;Allocation[process].A += res->A;Allocation[process].B += res->B;Allocation[process].C += res->C;Need[process].A -= res->A;Need[process].B -= res->B;Need[process].C -= res->C;}//若试探分配后进入不安全状态,将分配回滚void RollBack(int process,RES *res){Available.A += res->A;Available.B += res->B;Available.C += res->C;Allocation[process].A -= res->A;Allocation[process].B -= res->B;Allocation[process].C -= res->C;Need[process].A += res->A;Need[process].B += res->B;Need[process].C += res->C;}//安全性检查bool SafeCheck(){RES Work;Work.A = Available.A;Work.B = Available.B;Work.C = Available.C;bool Finish[PNUMBER] = {false,false,false};int i;int j = 0;for (i = 0; i < PNUMBER; i++){//是否已检查过if(Finish[i] == false){//是否有足够的资源分配给该进程if(Need[i].A <= Work.A && Need[i].B <= Work.B && Need[i].C <= Work.C){//有则使其执行完成,并将已分配给该进程的资源全部回收Work.A += Allocation[i].A;Work.B += Allocation[i].B;Work.C += Allocation[i].C;Finish[i] = true;safe[j++] = i;i = -1; //重新进行遍历}}}//如果所有进程的Finish向量都为true则处于安全状态,否则为不安全状态for (i = 0; i < PNUMBER; i++){if (Finish[i] == false){return false;}}return true;}//资源分配请求bool request(int process,RES *res){//request向量需小于Need矩阵中对应的向量if(res->A <= Need[process].A && res->B <= Need[process].B && res->C <=Need[process].C){//request向量需小于Available向量if(res->A <= Available.A && res->B <= Available.B && res->C <= Available.C){//试探分配ProbeAlloc(process,res);//如果安全检查成立,则请求成功,否则将分配回滚并返回失败if(SafeCheck()){return true;}else{printf("安全性检查失败。
操作系统实验报告 预防进程死锁的银行家算法
![操作系统实验报告 预防进程死锁的银行家算法](https://img.taocdn.com/s3/m/49f2b40a5f0e7cd185253604.png)
操作系统实验预防进程死锁的银行家算法一、需求分析:1、实验目的:通过这次实验,加深对进程死锁的理解,进一步掌握进程资源的分配、死锁的检测和安全序列的生成方法。
2、问题描述:设计程序模拟预防进程死锁的银行家算法的工作过程。
假设系统中有n个进程P1, … ,P n,有m类可分配的资源R1, … ,R m,在T0时刻,进程P i分配到的j类资源为Allocation ij个,它还需要j类资源Need ij个,系统目前剩余j类资源Work j个,现采用银行家算法进行进程资源分配预防死锁的发生。
3、程序要求:1)判断当前状态是否安全,如果安全给出安全序列;如果不安全给出理由。
2)对于下一个时刻T1,某个进程P k会提出请求Request(R1, … ,R m),判断分配给P k进程请求的资源之后系统是否安全。
3)输入:进程个数n,资源种类m,T0时刻各个进程的资源分配情况(可以运行输入,也可以在程序中设置);4)输出:如果安全,输出安全的进程序列,不安全则提示信息。
二、概要设计:1、进程调度的实现过程2、程序中的变量及数据结构struct ResItem{string Name;int Number;}; //资源项typedef vector<ResItem> Resource;struct Progress{string Name;Resource Max; //最大需求Resource Allocation; //分配Resource Need; //需求}; //进程vector <Progress> Progresses; //所有进程vector <ResItem> Available; //可利用资源向量vector <Progress> SafeOrder; //安全序列3、主要函数//初始化数据void InitData(int &n);//判断rs1是否小于等于rs2,是返回true,否则返回falseinline bool LessThan(Resource rs1,Resource rs2);//安全性算法bool SafeAlg();//银行家算法bool BankerAlg(Resource request,Progress &pro);4、主函数int main(){int n;InitData(n);cout<<"\n\n=============================================\n ";if(SafeAlg()){cout<<"由安全性检查可知:可以找到一个安全序列为:{";for(int i = 0 ; i < SafeOrder.size(); i++)cout<<SafeOrder[i].Name<<",";cout<<"}。
操作系统银行家解决死锁问题
![操作系统银行家解决死锁问题](https://img.taocdn.com/s3/m/5417a22682c4bb4cf7ec4afe04a1b0717fd5b39e.png)
操作系统银⾏家解决死锁问题银⾏家算法解决死锁⼀、实验⽬的死锁会引起计算机⼯作僵死,因此操作系统中必须防⽌。
本实验的⽬的在于了解死锁产⽣的条件和原因,并采⽤银⾏家算法有效地防⽌死锁的发⽣。
⼆、实验设计思路设Request i 是进程Pi 的请求向量。
Request i (j)=k表⽰进程Pi请求分配Rj类资源k个。
当Pi发出资源请求后,系统按下述步骤进⾏检查:1、如果Request i ≤Need,则转向步骤2;否则,认为出错,因为它所请求的资源数已超过它当前的最⼤需求量。
2、如果Request i ≤Available,则转向步骤3;否则,表⽰系统中尚⽆⾜够的资源满⾜Pi的申请,Pi必须等待。
3、系统试探性地把资源分配给进程Pi,并修改下⾯数据结构中的数值:Available = Available - Request iAllocation i= Allocation i+ Request iNeed i= Need i - Request i4、系统执⾏安全性算法,检查此次资源分配后,系统是否处于安全状态。
如果安全才正式将资源分配给进程Pi,以完成本次分配;否则,将试探分配作废,恢复原来的资源分配状态,让进程Pi等待。
三、运⾏结果1、在程序运⾏中,程序中已经输⼊初值:int MaxAvailable[m]={10,5,7}; //每类资源的个数int Max[n][m]={1,5,3,3,2,4,1,0,2,2,2,2,0,3,2};// 每个进程需要的每类资源最⼤需求个数int Allocation[n][m]={0,1,0,1,0,0,3,0,2,2,1,1,0,0,2};// 已分配给每个进程的每类资源个数int Available[m];int Need[n][m]; //每个进程还需要的每类资源数经过银⾏家算法和安全性算法,输出运⾏成功的进程号。
2、在调整输⼊初值后:int MaxAvailable[m]={10,5,7};int Max[n][m]={7,5,3,3,2,2,9,0,2,2,2,2,4,3,9};int Allocation[n][m]={0,1,0,2,0,0,3,0,2,2,1,1,0,0,2};int Available[m];int Need[n][m];运⾏结果为三、源代码:#includeusing namespace std;const int m=3; //资源类数const int n=5; //进程个数int MaxAvailable[m]={10,5,7}; //每类资源的个数int Max[n][m]={1,5,3,3,2,4,1,0,2,2,2,2,0,3,2};// 每个进程需要的每类资源最⼤需求个数int Allocation[n][m]={0,1,0,1,0,0,3,0,2,2,1,1,0,0,2};// 已分配给每个进程的每类资源个数int Available[m];int Need[n][m]; //每个进程还需要的每类资源数struct Request{int p; //进程int k[m]; //请求资源};bool safe() //安全性算法,判断是否安全{int Work[m]; //系统可分配资源for(int i=0;i{Work[i]=Available[i];}bool Finish[n]; //运⾏结束否for(i=0;iFinish[i]=false;for(int iy=0;iy{for(i=0;i{if(!Finish[i]){for(int j=0;j{if(Need[i][j]>Work[j]) //需求⼤于系统资源数,跳出{break;}}if(j==m) //m个资源都满⾜所需for(int ix=0;ix{Work[ix]+=Allocation[i][ix];}Finish[i]=true;cout<< "[ " < ";break;}}}}for(i=0;i{if(!Finish[i])break;}if(i{cout<< "危险" <return false;}elsereturn true;}void bank(Request r) //银⾏家算法{int i;int j;for(i=0;ifor(j=0;j{Need[i][j]=Max[i][j]-Allocation[i][j];} //进程需求资源矩阵for(i=0;i {Available[i]=MaxAvailable[i];}for(i=0;ifor(j=0;j{Available[j]-=Allocation[i][j];}for(i=0;iif(r.k[i]>Need[r.p][i]) //如果请求>所需,跳出{break;}}if(i{cout<< "Your request over need! " <exit(1);}else{for(i=0;i{if(r.k[i]> Available[i]) //请求>可以使⽤的break;}if(i{cout<< "Process[ " <else //尝试分配{for(i=0;i{Available[i]-=r.k[i];Allocation[r.p][i]+=r.k[i];Need[r.p][i]-=r.k[i];}if(!safe()) //判断分配是否安全,如果不安全,撤销分配{for(i=0;i{Available[i]+=r.k[i];Allocation[r.p][i]-=r.k[i];Need[r.p][i]+=r.k[i];}cout<< "系统处于不安全状态" <}else //如果安全,分配成功}}}void main(){Request r;r.p=1; //默认资源标记为1int request[m]={1,0,2}; //默认请求资源for(int i=0;i{r.k[i]=request[i];}bank(r);}。
操作系统实验报告银行家算法
![操作系统实验报告银行家算法](https://img.taocdn.com/s3/m/b3932d1a0b4e767f5acfceef.png)
五邑大学实验报告操作系统课程实验报告2013~2014年度第1学期院系:计算机学院学号: 11080101姓名:宋蓓蕾任课教师:白明成绩评定:实验一:银行家算法完成日期:2013年12月20日1、实验目的银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。
加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
2、实验内容(1) 设计进程对各类资源最大申请表示及初值确定。
(2) 设定系统提供资源初始状况。
(3) 设定每次某个进程对各类资源的申请表示。
(4) 编制程序,依据银行家算法,决定其申请是否得到满足。
3、算法设计(全部代码)#include <STRING.H>#include <stdio.h>#include <stdlib.h>#include <CONIO.H> /*用到了getch()*/#define M 5 /*进程数*/#define N 3 /*资源数*/#define FALSE 0#define TRUE 1/*M个进程对N类资源最大资源需求量*/int MAX[M][N]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};/*系统可用资源数*/int AVAILABLE[N]={10,5,7};/*M个进程对N类资源最大资源需求量*/int ALLOCATION[M][N]={{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}}; /*M个进程已经得到N类资源的资源量*/int NEED[M][N]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};/*M个进程还需要N类资源的资源量*/int Request[N]={0,0,0};void main(){int i=0,j=0;char flag;void showdata();void changdata(int);void rstordata(int);int chkerr(int);showdata();enter:{printf("请输入需申请资源的进程号(从0到");printf("%d",M-1);printf("):");scanf("%d",&i);}if(i<0||i>=M){printf("输入的进程号不存在,重新输入!\n");goto enter;}err:{printf("请输入进程");printf("%d",i);printf("申请的资源数\n");printf("类别: A B C\n");printf(" ");for (j=0;j<N;j++){scanf("%d",&Request[j]);if(Request[j]>NEED[i][j]){printf("%d",i);printf("号进程");printf("申请的资源数> 进程");printf("%d",i);printf("还需要");printf("%d",j);printf("类资源的资源量!申请不合理,出错!请重新选择!\n");goto err;}else{if(Request[j]>AVAILABLE[j]){printf("进程");printf("%d",i);printf("申请的资源数大于系统可用");printf("%d",j);printf("类资源的资源量!申请不合理,出错!请重新选择!\n");goto err;}}}}changdata(i);if(chkerr(i)){rstordata(i);showdata();}elseshowdata();printf("\n");printf("按'y'或'Y'键继续,否则退出\n");flag=getch();if (flag=='y'||flag=='Y'){goto enter;}else{exit(0);}}/*显示数组*/void showdata(){int i,j;printf("系统可用资源向量:\n");printf("***Available***\n");printf("资源类别: A B C\n");printf("资源数目:");for (j=0;j<N;j++){printf("%d ",AVAILABLE[j]);}printf("\n");printf("\n");printf("各进程还需要的资源量:\n"); printf("******Need******\n");printf("资源类别: A B C\n");for (i=0;i<M;i++){printf(" ");printf("%d",i);printf("号进程:");for (j=0;j<N;j++){printf(" %d ",NEED[i][j]);}printf("\n");}printf("\n");printf("各进程已经得到的资源量: \n"); printf("***Allocation***\n");printf("资源类别: A B C\n");for (i=0;i<M;i++){printf(" ");printf("%d",i);printf("号进程:");/*printf(":\n");*/for (j=0;j<N;j++){printf(" %d ",ALLOCATION[i][j]);}printf("\n");}printf("\n");}/*系统对进程请求响应,资源向量改变*/void changdata(int k){int j;for (j=0;j<N;j++){AVAILABLE[j]=AVAILABLE[j]-Request[j]; ALLOCATION[k][j]=ALLOCATION[k][j]+Request[j]; NEED[k][j]=NEED[k][j]-Request[j];}}/*资源向量改变*/void rstordata(int k){int j;for (j=0;j<N;j++){AVAILABLE[j]=AVAILABLE[j]+Request[j]; ALLOCATION[k][j]=ALLOCATION[k][j]-Request[j]; NEED[k][j]=NEED[k][j]+Request[j];}}/*安全性检查函数*/int chkerr(int s){int WORK,FINISH[M],temp[M];int i,j,k=0;for(i=0;i<M;i++)FINISH[i]=FALSE;for(j=0;j<N;j++){WORK=AVAILABLE[j];i=s;while(i<M){if (FINISH[i]==FALSE&&NEED[i][j]<=WORK){WORK=WORK+ALLOCATION[i][j];FINISH[i]=TRUE;temp[k]=i;k++;i=0;}else{i++;}}for(i=0;i<M;i++)if(FINISH[i]==FALSE){printf("\n");printf("系统不安全! 本次资源申请不成功!\n");printf("\n");return 1;}}printf("\n");printf("经安全性检查,系统安全,本次分配成功。
操作系统银行家算法(避免死锁)实验报告
![操作系统银行家算法(避免死锁)实验报告](https://img.taocdn.com/s3/m/c583d03a5022aaea988f0f1c.png)
操作系统实验:银行家算法姓名:李天玮班级:软工1101 学号:201126630117 实验内容:在windows系统中实现银行家算法程序。
实现银行家算法所用的数据结构:假设有5个进程3类资源,则有如下数据结构:1.MAX[5,3] 5个进程对3类资源的最大需求量。
2.A V AILABLE[3]系统可用资源数。
3.ALLOCATION[5,3]5个进程已经得到3类资源的资源量。
4.NEED[5,3]5个进程还需要3类资源的资源量。
银行家算法:设进程1提出请求Request[N],则银行家算法按如下规则进行判断。
(1)如果Request[N]<=NEED[1,N],则转(2);否则,出错。
(2)如果Request[N]<=A V ALIABLE,则转(3);否则,出错。
(3)系统试探非配资源,修改相关数据。
A V ALIABLE=A V ALIABLE-REQUESTALLOCATION=ALLOCA TION+REQUESTNEED=NEED-REQUEST(4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。
安全性检查:(1)设置两个工作向量WORK=A V AILABLE;FINISH[M]=FALSE.(2)从晋城集合中找到一个满足下述条件的进程,FINISH[i]=FALSENEED<=WORK如找到,执行(3);否则,执行(4)。
(3)设进程获得资源,可顺利执行,直至完成,从而释放资源。
WORK=WORK+ALLOCATIONFINISH[i]=TRUEGOTO(2)(4)如所有进程FINISH[M]=TRUE,则表示安全;否则系统不安全。
1.用init()函数对于数据的初始化关键代码:#define M 5#define N 3void init(){cout<<"请输入5个进程对3类资源最大资源需求量:"<<endl;for(int i=0;i<M;i++){for(int j=0;j<N;j++){cin>>MAX[i][j];}//cout<<endl;}cout<<"请输入系统可用的资哩源数:"<<endl;for(int j=0;j<N;j++){cin>>AVAILABLE[j];}cout<<"请输入5个进程已经-的到的3类资源的资源量:"<<endl;for(int i=0;i<M;i++){for(int j=0;j<N;j++){cin>>ALLOCATION[i][j];}//cout<<endl;}cout<<"请?输?入?5个?进?程ì还1需è要癮3类え?资哩?源′的?资哩?源′量?:"<<endl;for(int i=0;i<M;i++){for(int j=0;j<N;j++){cin>>NEED[i][j];}//cout<<endl;}}// Stack around the variable 'AVAILABLE' was corrupted.显示数据详细信息进行测试输入一号进程号,并给需要申请资源设定为{1,0,2}检验错误输入时候的报错信息检验当再次申请0号资源并申请资源数目为{0,2,0}时,系统提示系统不安全申请不成功。
死锁_银行家算法实验报告
![死锁_银行家算法实验报告](https://img.taocdn.com/s3/m/5493af46ee06eff9aef807c3.png)
实验目的银行家算法是避免死锁的一种重要方法。
通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁、产生死锁的必要条件、安全状态等重要概念,并掌握避免死锁的具体实施方法二、实验要求根据银行家算法的基本思想,编写和调试一个实现动态资源分配的模拟程序,并能够有效地防止和避免死锁的发生。
(1)设计思想说明设计银行家算法是为了避免死锁三、实验方法内容1.算法设计思路银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。
这时系统将该进程从进程集合中将其清除。
此时系统中的资源就更多了。
反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。
请进程等待2.算法流程图3.算法中用到的数据结构数据结构的说明1.可利用资源向量AVAILABLE。
这是一个含有M个元素的数组,其中的每一个元素代表一类可利用的资源数目,其3初始值是系统中所配置的该类全部可哦那个资源的数目,其数值随该类资源的分配和回收而动态的改变。
2.最大需求矩阵MAX。
这是一个M*N的矩阵,它定义了系统中N个进程中的每一个进程对M类资源的最大需求。
3.分配矩阵ALLOCATION。
这也是一个M*N的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。
4.需求矩阵NEED。
这也是一个M*N的矩阵,用以表示每一个进程尚需的各类资源数。
5.NEED[R,W]=MAX[R,W]-ALLOCATION[R,W]4.主要的常量变量#define W 10 //最大进程数W=10#define R 20 //最大资源总数R=20 int AVAILABLE[R]; //可利用资源向量int MAX[W][R]; //最大需求矩阵int ALLOCATION[W][R]; //分配矩阵int NEED[W][R]; //需求矩阵int Request[R]; //进程请求向量void changdata(int k);//进程请求资源数据改变int chksec(int s); //系统安全性的检测5.主要模块void inputdata()void showdata()void changdata(int k)void restoredata(int k) int chksec(int s)int chkmax(int s)四、实验代码#include<string.h>#include<iostream.h>#define FALSE 0#define TRUE 1#define W 10 //最大进程数W=10#define R 20 //最大资源总数R=20int M ;int N ;int ALL_RESOURCE[W];int AVAILABLE[R]; //可利用资源向量int MAX[W][R]; //最大需求矩阵int ALLOCATION[W][R]; //分配矩阵int NEED[W][R]; //需求矩阵int Request[R]; //进程请求向量void inputdata(); //数据输入void showdata(); //数据显示void changdata(int k);//进程请求资源数据改变void restoredata(int k); //数据恢复int chksec(int s); //系统安全性的检测int chkmax(int s); //检测最大需求void bank(); //检测分配的资源是否合理void main(){ int i,j;inputdata();for(i=0;i<M;i++){ j=chksec(i);if (j==0) break;}if (i>=M)cout<<"错误提示:经安全性检查发现,系统的初始状态不安全!!!\n"<<endl;else{ cout<<"提示:经安全性检查发现,系统的初始状态安全!"<<endl;bank();}}void inputdata(){ int i=0,j=0,p;cout<<"请输入总进程数:"<<endl;do{cin>>M;if (M>W) cout<<endl<<"总进程数超过了程序允许的最大进程数,请重新输入:"<<endl;}while (M>W);cout<<endl;cout<<"请输入资源的种类数:"<<endl;do {cin>>N;if (N>R)cout<<endl<<"资源的种类数超过了程序允许的最大资源种类数,请重新输入:"<<endl; }while (N>R);cout<<endl;cout<<"请依次输入各类资源的总数量,即设置向量all_resource:"<<endl;for(i=0;i<N;i++) cin>>ALL_RESOURCE[i];cout<<endl;cout<<"请依次输入各进程所需要的最大资源数量,即设置矩阵max:"<<endl;for (i=0;i<M;i++){for (j=0;j<N;j++){do { cin>>MAX[i][j];if (MAX[i][j]>ALL_RESOURCE[j])cout<<endl<<"该最大资源数量超过了声明的该资源总数,请重新输入:"<<endl; }while (MAX[i][j]>ALL_RESOURCE[j]);}}cout<<endl;cout<<"请依次输入各进程已经占据的各类资源数量,即设置矩阵allocation:"<<endl;for (i=0;i<M;i++){for (j=0;j<N;j++){do{ cin>>ALLOCATION[i][j];if (ALLOCATION[i][j]>MAX[i][j])cout<<endl<<"已占有的资源数量超过了声明的最大资源数量,请重新输入:"<<endl;}while (ALLOCATION[i][j]>MAX[i][j]);}}cout<<endl;for (i=0;i<M;i++)for(j=0;j<N;j++)NEED[i][j]=MAX[i][j]-ALLOCATION[i][j];for (j=0;j<N;j++){ p=ALL_RESOURCE[j];for (i=0;i<M;i++){ p=p-ALLOCATION[i][j];AVAILABLE[j]=p;if(AVAILABLE[j]<0)AVAILABLE[j]=0;}}}void showdata(){ int i,j;cout<<"各种资源的总数量,即向量all_resource为:"<<endl;cout<<" ";for (j=0;j<N;j++)cout<<" 资源"<<j<<": "<<ALL_RESOURCE[j];cout<<endl<<endl;cout<<"当前系统中各类资源的可用数量,即向量available为:"<<endl; cout<<" ";for (j=0;j<N;j++)cout<<" 资源"<<j<<": "<<AVAILABLE[j];cout<<endl<<endl;cout<<"各进程还需要的资源数量,即矩阵need为:"<<endl<<endl;for (i=0;i<M;i++){ cout<<"进程P"<<i<<": ";for (j=0;j<N;j++)cout<<NEED[i][j]<<" ";cout<<endl;}cout<<endl;cout<<"各进程已经得到的资源量,即矩阵allocation为: "<<endl<<endl;for (i=0;i<M;i++){ cout<<"进程P"<<i<<": ";for (j=0;j<N;j++)cout<<ALLOCATION[i][j]<<" ";cout<<endl;} cout<<endl;}void changdata(int k){ int j;for (j=0;j<N;j++){AVAILABLE[j]=AVAILABLE[j]-Request[j];ALLOCATION[k][j]=ALLOCATION[k][j]+Request[j];NEED[k][j]=NEED[k][j]-Request[j];}}void restoredata(int k){int j;for (j=0;j<N;j++){ AVAILABLE[j]=AVAILABLE[j]+Request[j];ALLOCATION[k][j]=ALLOCATION[k][j]-Request[j];NEED[k][j]=NEED[k][j]+Request[j];}}int chksec(int s){int WORK,FINISH[W];int i,j,k=0;for(i=0;i<M;i++)FINISH[i]=FALSE;for(j=0;j<N;j++){ WORK=AVAILABLE[j];i=s;do{ if(FINISH[i]==FALSE&&NEED[i][j]<=WORK){WORK=WORK+ALLOCATION[i][j];FINISH[i]=TRUE;i=0;}else{ i++;}}while(i<M);for(i=0;i<M;i++)if(FINISH[i]==FALSE){ return 1;}} return 0;}int chkmax(int s){ int j,flag=0;for(j=0;j<N;j++){if (MAX[s][j]==ALLOCATION[s][j]){ flag=1;AVAILABLE[j]=AVAILABLE[j]+MAX[s][j];MAX[s][j]=0;}} return flag;}c{int i=0,j=0;char flag='Y';while(flag=='Y'||flag=='y'){i=-1;while(i<0||i>=M){ cout<<"请输入需申请资源的进程号(从P0到P"<<M-1<<",否则重新输入!):"; cout<<"p";cin>>i;if(i<0||i>=M)cout<<"输入的进程号不存在,重新输入!"<<endl;}cout<<"请输入进程P"<<i<<"申请的资源数:"<<endl;for (j=0;j<N;j++){ cout<<" 资源"<<j<<": ";cin>>Request[j];if(Request[j]>NEED[i][j]){ cout<<"进程P"<<i<<"申请的资源数大于进程P"<<i<<"还需要"<<j<<"类资源的资源量!";cout<<"申请不合理,出错!请重新选择!"<<endl<<endl;flag='N';break;}else{ if(Request[j]>AVAILABLE[j]){ cout<<"进程P"<<i<<"申请的资源数大于系统可用"<<j<<"类资源的资源量!";cout<<"申请不合理,出错!请重新选择!"<<endl<<endl;flag='N';break;}}}if(flag=='Y'||flag=='y'){ changdata(i);if(chksec(i)){ cout<<endl;cout<<"该分配会导致系统不安全!!! 本次资源申请不成功,不予分配!!!"<<endl;cout<<endl;restoredata(i);}else{ cout<<endl;cout<<"经安全性检查,系统安全,本次分配成功,且资源分配状况如下所示:"<<endl;cout<<endl;showdata();if(chkmax(i)){cout<<"在资源分配成功之后,由于该进程所需的某些资源的最大需求量已经满足,"<<endl;cout<<"因此在进程结束后系统将回收这些资源!"<<endl;cout<<"在资源收回之后,各进程的资源需求和分配情况如下所示:"<<endl;showdata();}}}cout<<endl;cout<<" 是否继续银行家算法演示,按'Y'或'y'键继续,按'N'或'n'键退出演示: ";cin>>flag; }}五、实验结果1.执行结果2.结果分析银行家算法就是当接收到一个系统资源的分配后找到一个安全序列,使得进程间不会发生死锁,若发生死锁则让进程等待。
银行家算法操作系统实验报告
![银行家算法操作系统实验报告](https://img.taocdn.com/s3/m/739edf621ed9ad51f01df2a8.png)
操作系统实验报告一、实验内容简要描述1.实验目标:加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。
2.实验要求:银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。
用银行家算法实现资源分配。
设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,{A,B,C}的资源数量分别为10,5,7。
进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。
二、报告主要内容1.设计思路A、设计进程对各在资源最大申请表示及初值确定。
B、设定系统提供资源初始状态。
C、设定每次某个进程对各类资源的申请表示。
D、编制程序,依据银行家算法,决定其申请是否得到满足。
2.主要数据结构假设有M个进程N类资源,则有如下数据结构:MAX[M*N] M个进程对N类资源的最大需求量AVAILABLE[N] 系统可用资源数ALLOCATION[M*N] M个进程已经得到N类资源的资源量NEED[M*N] M个进程还需要N类资源的资源量3.主要代码结构void main()void showdata()void changdata(int)void rstordata(int)int chkerr(int)4.主要代码段分析#include "string.h"#include "iostream.h"#define M 5 //总进程数#define N 3 //总资源数#define FALSE 0#define TRUE 1//M个进程对N类资源最大资源需求量int MAX[M][N]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};//系统可用资源数int AVAILABLE[N]={10,5,7};//M个进程已经得到N类资源的资源量intALLOCATION[M][N]={{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}};//M个进程还需要N类资源的资源量int NEED[M][N]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};int Request[N]={0,0,0};void main(){int i=0,j=0;char flag='Y';void showdata();void changdata(int);void rstordata(int);int chkerr(int);showdata();while(flag=='Y'||flag=='y'){i=-1;while(i<0||i>=M){cout<<" 请输入需申请资源的进程号(从0到"<<M-1<<",否则重输入!):";cin>>i;if(i<0||i>=M) cout<<"输入的进程号不存在,重新输入!"<<endl;}cout<<" 请输入进程"<<i<<"申请的资源数"<<endl;for (j=0;j<N;j++){cout<<" 资源"<<j<<":";cin>>Request[j];if(Request[j]>NEED[i][j]){cout<<" 进程"<<i<<"申请的资源数大于进程"<<i<<"还需要"<<j<<"类资源的资源量!";cout<<"申请不合理,出错!请重新选择!"<<endl<<endl;flag='N';break;}else{if(Request[j]>AVAILABLE[j]){cout<<" 进程"<<i<<"申请的资源数大于系统可用"<<j<<"类资源的资源量!";cout<<"申请不合理,出错!请重新选择!"<<endl<<endl;flag='N';break;}}}if(flag=='Y'||flag=='y'){changdata(i);if(chkerr(i)){rstordata(i);showdata();}elseshowdata();}elseshowdata();cout<<endl;cout<<" 是否继续银行家算法演示,按'Y'或'y'键继续,按'N'或'n'键退出演示:";cin>>flag;}}void showdata(){int i,j;cout<<" 系统可用的资源数为:"<<endl<<endl;cout<<" ";for(j=0;j<N;j++) cout<<" 资源"<<j<<": "<<AVAILABLE[j];cout<<endl;cout<<endl;cout<<" 各进程还需要的资源量:"<<endl<<endl;for(i=0;i<M;i++){cout<<"进程"<<i<<":";for(j=0;j<N;j++) cout<<" 资源"<<j<<", "<<NEED[i][j];cout<<endl;}cout<<endl;cout<<" 各进程已经得到的资源量:"<<endl<<endl;for(i=0;i<M;i++){cout<<"进程"<<i<<":";for(j=0;j<N;j++) cout<<" 资源"<<j<<": "<<ALLOCATION[i][j]; cout<<endl;}cout<<endl;};void changdata(int k){int j;for(j=0;j<N;j++){AVAILABLE[j]=AVAILABLE[j]-Request[j];ALLOCATION[k][j]=ALLOCATION[k][j]+Request[j];NEED[k][j]=NEED[k][j]-Request[j];}};void rstordata(int k){int j;for(j=0;j<N;j++){AVAILABLE[j]=AVAILABLE[j]+Request[j];ALLOCATION[k][j]=ALLOCATION[k][j]-Request[j];NEED[k][j]=NEED[k][j]+Request[j];}};int chkerr(int s){int WORK,FINISH[M],temp[M];int i,j,k=0;for(i=0;i<M;i++) FINISH[i]=FALSE;for(j=0;j<N;j++){WORK=AVAILABLE[j];i=s;while(i<M){if(FINISH[i]==FALSE&&NEED[i][j]<=WORK){WORK=WORK+ALLOCATION[i][j];FINISH[i]=TRUE;temp[k]=i;k++;i=0;}else{i++;}}for(i=0;i<M;i++)if(FINISH[i]==FALSE){cout<<endl;cout<<" 系统不安全!!!本次资源申请不成功!!!"<<endl; cout<<endl;return 1;}}cout<<endl;cout<<" 经安全性检查,系统安全,本次分配成功。
银行家算法实验报告
![银行家算法实验报告](https://img.taocdn.com/s3/m/b28d21acb9f67c1cfad6195f312b3169a451eafb.png)
银行家算法实验报告引言:在计算机科学领域,由于资源的有限性,进程资源分配问题一直备受关注。
而银行家算法被广泛应用于操作系统中,用于确保资源的安全分配。
本文旨在介绍银行家算法的原理和应用,并通过实验报告来验证该算法的有效性和可行性。
1. 银行家算法简介银行家算法是由美国学者Dijkstra提出的一种资源分配和避免死锁的算法。
其基本思想是通过银行家的原则来避免系统陷入死锁状态,保证资源分配的安全性和可行性。
银行家算法适用于具有多个进程和多个资源的并发系统中。
2. 银行家算法原理银行家算法基于两个重要的概念:安全性和可分配性。
安全性表示在系统当前状态下,是否存在一种资源分配序列可以使系统避免死锁状态。
可分配性表示系统是否能够满足进程对资源的请求。
银行家算法的实现需要以下几个关键步骤:(1) 初始化:对每个进程设置最大需求量、已分配资源量和需求资源量。
(2) 效验:判断系统当前状态下资源是否满足所有进程的需求,即判断系统是否处于安全状态。
(3) 分配:若系统处于安全状态,则根据某种资源分配策略,为进程分配资源。
(4) 请求:进程请求资源。
(5) 回收:进程释放资源。
3. 银行家算法的实验验证为了验证银行家算法的有效性和可行性,我们设置了一个简单的实验环境,模拟一个有限的资源系统,包含3个进程和3种不同类型的资源。
实验过程如下:(1) 初始化:对每个进程设置最大需求量、已分配资源量和需求资源量。
设置3个进程的最大需求量分别为{5, 4, 3},已分配资源量分别为{1, 2, 2},需求资源量分别为{3, 2, 0}。
(2) 效验:判断系统当前状态下资源是否满足所有进程的需求。
经过实验验证,我们发现系统当前状态下资源无法满足进程2的资源需求。
为了保证系统的安全性和避免死锁,根据银行家算法原理,我们将不满足资源需求的进程2暂停,并回滚到初始状态。
重新调整资源分配后,系统进入了安全状态。
(3) 分配:为进程1和进程3分配资源。
操作系统课程设计模拟银行家算法避免死锁
![操作系统课程设计模拟银行家算法避免死锁](https://img.taocdn.com/s3/m/a1d9a96bf02d2af90242a8956bec0975f465a4dc.png)
模拟通过银行家算法避免死锁一、银行家算法产生的背景及目的1: 在多道程序系统中, 虽然借助于多个进程的并发执行来改善系统的运用率, 提高系统的吞吐量, 但也许发生一种危险—死锁。
死锁就是多个进程在运营过程中因争夺资源而导致的一种僵局, 当进程处在这种僵局状态时, 如无外力作用, 他们将无法再向前进行, 如再把信号量作为同步工具时, 多个Wait和Signal操作顺序不妥, 会产生进程死锁。
然而产生死锁的必要条件有互斥条件, 请求和保持条件, 不剥夺条件和环路等待条件。
在防止死锁的几种方法中, 都施加了较强的限制条件, 在避免死锁的方法中, 所施加的条件较弱, 有也许获得令人满意的系统性能。
在该方法中把系统的状态分为安全状态和不安全状态, 只要能使系统都处在安全状态, 便可避免死锁。
2:实验目的:让学生独立的使用编程语言编写和调试一个系统分派资源的简朴模拟程序, 了解死锁产生的因素及条件。
采用银行家算法及时避免死锁的产生, 进一步理解课堂上老师讲的相关知识点。
银行家算法是从当前状态出发, 逐个按安全序列检查各客户中谁能完毕其工作, 然后假定其完毕工作且归还所有贷款, 再进而检查下一个能完毕工作的客户。
假如所有客户都能完毕工作, 则找到一个安全序列, 银行家才是安全的。
二: 银行家算法中的数据结构1:可运用资源向量Available。
这是一个具有m个元素的数组, 其中的每个元素代表一类可运用的资源数目, 其初始值是系统中所配置的该类所有可用资源的数目, 其数值随该类资源的分派和回收而动态的改变。
假如Available[j]=k, z则表达系统中现有Rj类资源K 个。
2: 最大需求矩阵Max。
这是一个n*m的矩阵, 它定义了系统中n个进程中的每一个进程对m类资源的最大需求。
假如Max[i,j]=k, 表达第i个进程需要第Rj类资源的最大数目k个.3: 分派矩阵Allocation,也是n*m的矩阵, 若Allocation[i,j]=k,表达第i个进程已分派Rj类资源的数目为k个。
《死锁避免》实验报告
![《死锁避免》实验报告](https://img.taocdn.com/s3/m/4395d5537dd184254b35eefdc8d376eeaeaa178e.png)
一、实验目的本次实验旨在通过模拟操作系统的资源分配和请求过程,深入理解死锁的概念、产生死锁的必要条件以及如何通过银行家算法来避免死锁的发生。
通过实验,学生能够掌握以下知识点:1. 死锁的概念及产生条件;2. 银行家算法的基本原理和实现方法;3. 资源分配和请求过程中的安全性检查;4. 通过银行家算法避免死锁的发生。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 20194. 实验环境:一台配置较高的计算机三、实验原理1. 死锁的概念死锁是指多个进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,这些进程都将无法继续执行。
2. 产生死锁的必要条件产生死锁的必要条件有四个,分别为:(1)互斥条件:资源不能被多个进程同时使用;(2)持有和等待条件:进程已获得至少一个资源,但又提出了新的资源请求,而该资源已被其他进程占有,此时该进程会等待;(3)非抢占条件:已分配给进程的资源,在进程完成之前,不能被抢占;(4)循环等待条件:存在一种进程资源的循环等待链,即进程P1等待P2占有的资源,P2等待P3占有的资源,以此类推,最后Pn等待P1占有的资源。
3. 银行家算法银行家算法是一种避免死锁的算法,通过以下步骤实现:(1)初始化系统资源、进程最大需求、已分配资源等数据结构;(2)当进程请求资源时,判断是否满足以下条件:a. 当前可用资源数量大于等于进程请求的资源数量;b. 根据当前资源分配情况,系统处于安全状态;若满足以上条件,则分配资源;否则,进程等待。
(3)当进程释放资源时,更新可用资源数量和分配资源情况。
四、实验内容1. 设计系统资源、进程最大需求、已分配资源等数据结构;2. 实现银行家算法,包括资源分配、安全性检查等功能;3. 模拟进程请求资源和释放资源的过程,观察系统状态变化;4. 分析实验结果,验证银行家算法是否能够避免死锁的发生。
实验4--利用银行家算法避免死锁
![实验4--利用银行家算法避免死锁](https://img.taocdn.com/s3/m/1d82b020f111f18583d05a57.png)
实验10 利用银行家算法避免死锁一.实验目的1.加深对死锁概念的理解。
2.能够利用银行家算法,有效避免死锁的发生,或检测死锁的存在。
二.实验内容利用银行家算法写一个程序,判定系统的安全性。
已知某系统有5个进程P0、P1、P2、P3、P4,三类资源A,B,C。
死锁检测程序工作时各进程对资源的需求和占用情况如表10-1所示,当前可用资源向量available=(0,0,0)。
表10-1 进程需求资源情况三.实验程序及分析# define m 3# define n 5main(){int test(int av[],int ned[],int all[]);int available[m]={0,0,0}, need[n][m];int allocation[n][m]={{0,1,0},{2,0,0},{3,0,3},{2,1,1},{0,0,2}};int i,j,g=1;int finish[n]={0,0,0,0,0};clrscr();printf("please input the need resource data\n");for(i=0;i<n;i++)for(j=0;j<m;j++)scanf("%d",&need[i][j]); /*输入need*/j=0; /*以下循环用来寻找能够运行完成的进程Pi*/do{for(i=0;i<n;i++)if (finish[i]==0 && test(need[i],available,allocation[i]))finish[i]=1;j++;}while(j<n);for(i=0;i<n;i++) /*g表示系统是否处于安全状态*/ g=g&&finish[i];if (g) printf("safe state");else printf("not safe state");}int test(int nd[],int av[],int all[]){int z=0;int i;for(i=0;i<m;i++)if (nd[i]>av[i]) break;if (i==m) z=1;if (z==1)for(i=0;i<m;i++)av[i]=av[i]+all[i];return(z);}运行输入:0 0 22 2 20 0 01 0 00 0 2输出结果:safe state10for(int i=0;i<n;i++){cout<<"名称:";cin>>name[flag];cout<<"数量:";cin>>Avaliable[flag++];}showdata();safe();}void changeresources(){//修改资源函数cout<<"系统目前可用的资源[Avaliable]:"<<endl;for(int i=0;i<N;i++)cout<<name[i]<<":"<<Avaliable[i]<<endl; cout<<"输入系统可用资源[Avaliable]:"<<endl;cin>>Avaliable[0]>>Avaliable[1]>>Avaliable[2]; cout<<"经修改后的系统可用资源为"<<endl;for (int k=0;k<N;k++)cout<<name[k]<<":"<<Avaliable[k]<<endl; showdata();safe();}void delresources(){//删除资源char ming;int i,flag=1;cout<<"请输入需要删除的资源名称:";do{cin>>ming;for(i=0;i<N;i++)if(ming==name[i]){flag=0;break;}if(i==N)cout<<"该资源名称不存在,请重新输入:";}while(flag);for(int j=i;j<N-1;j++){name[j]=name[j+1];Avaliable[j]=Avaliable[j+1];}N=N-1;showdata();11safe();}void addprocess(){//添加作业int flag=M;M=M+1;cout<<"请输入该作业的最大需求量[Max]"<<endl;for(int i=0;i<N;i++){cout<<name[i]<<":";cin>>Max[flag][i];Need[flag][i]=Max[flag][i]-Allocation[flag][i]; }showdata();safe();}int main()//主函数int i,j,number,choice,m,n,flag; char ming;cout<<"*****************资源管理系统的设计与实现*****************"<<endl;cout<<"请首先输入系统可供资源种类的数量:";cin>>n;N=n;for(i=0;i<n;i++){cout<<"资源"<<i+1<<"的名称:";cin>>ming;name[i]=ming;cout<<"资源的数量:";cin>>number;Avaliable[i]=number;}cout<<endl;cout<<"请输入作业的数量:";cin>>m;M=m;cout<<"请输入各进程的最大需求量("<<m<<"*"<<n<<"矩阵)[Max]:"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++)cin>>Max[i][j];do{flag=0;cout<<"请输入各进程已经申请的资源量("<<m<<"*"<<n<<"矩阵)[Allocation]:"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++){cin>>Allocation[i][j];if(Allocation[i][j]>Max[i][j])flag=1;Need[i][j]=Max[i][j]-Allocation[i][j];}if(flag)cout<<"申请的资源大于最大需求量,请重新输入!\n";}while(flag);showdata();//显示各种资源safe();//用银行家算法判定系统是否安全while(choice){cout<<"**************银行家算法演示***************"<<endl;cout<<" 1:增加资源"<<endl;cout<<" 2:删除资源"<<endl;cout<<" 3:修改资源"<<endl;cout<<" 4:分配资源"<<endl;cout<<" 5:增加作业"<<endl;cout<<" 0:离开"<<endl;cout<<"*******************************************"<<endl;cout<<"请选择功能号:";cin>>choice;switch(choice){case 1: addresources();break;case 2: delresources();break;case 3: changeresources();break;case 4: share();break;case 5: addprocess();break;case 0: choice=0;break;default: cout<<"请正确选择功能号(0-5)!"<<endl;break;}}return 1;}。
模拟银行家算法实现死锁避免课程设计报告
![模拟银行家算法实现死锁避免课程设计报告](https://img.taocdn.com/s3/m/c23b46c1168884868762d6de.png)
模拟银行家算法实现死锁避免课程设计报告《操作系统》课程设计报告院系:计算机与信息工程学院题目:模拟银行家算法实现死锁避免评分表:目录题目:模拟银行家算法实现死锁避免 (1)评分表: (2)一课程设计目的 (3)二课程设计内容 (3)三课程设计环境 (4)四课程设计步骤 (4)41.需求分析 (4)4.1.1 问题的提出 (4)4.1.2 银行家算法原理 (4)4.1.3银行家算法详细解析 (5)4.1.4 银行安全性算法目的 (6)4.2概要设计 (6)4.2.1 功能模块设计如下: (6)4.2.2 功能模块描述 (7)4.3详细设计 (7)4.3.1基本数据结构的设计 (7)4.3.2算法的设计 (8)五课程设计结果 (9)5.1运行结果 (9)5.2测试分析 (12)六课程设计心得与体会 (12)总结 (12)七参考文献 (13)八程序清单 (14)8.1 操作主界面代码: (14)8.2 功能实现代码: (17)一课程设计目的在熟练掌握死锁发生原理和解决死锁问题的基础上,利用一种程序设计语言模拟实现利用银行家算法实现死锁避免,一方面加深对原理的理解,另一方面提高学生通过编程根据已有原理解决实际问题的能力,为学生将来进行系统软件开发和针对实际问题提出高效的软件解决方案打下基础。
二课程设计内容模拟实现银行家算法对系统资源进行分配,以防止死锁的出现。
本课题肯定不可能实现对实际操作系统的资源管理,而是通过对模拟资源数据的处理,检测银行家算法在防止死锁出现的作用。
银行家算法描述:第一部分:银行家算法(扫描)1.如果Request<=Need,则转向2;否则,出错2.如果Request<=Available,则转向3,否则等待3.系统试探分配请求的资源给进程4.系统执行安全性算法第二部分:安全性算法1.设置两个向量(1).工作向量:Work=Available(表示系统可提供给进程继续运行所需要的各类资源数目)(2).Finish:表示系统是否有足够资源分配给进程(True:有;False:没有).初始化为False2.若Finish[i]=False&&Need<=Work,则执行3;否则执行4(i为资源类别)3.进程P获得第i类资源,则顺利执行直至完成,并释放资源:Work=Work+Allocation;Finish[i]=true;转2请充分理解以上银行家算法描述的核心思想。
采用银行家算法避免死锁
![采用银行家算法避免死锁](https://img.taocdn.com/s3/m/c98a0544b307e87101f696a8.png)
采用银行家算法避免死锁一、实验目的:观察死锁发生的现象,了解死锁发生的原因。
掌握如何判断死锁发生的方法。
二、实验分析:死锁现象是操作系统各个进程竞争系统中有限的资源引起的。
如果随机给进程分配资源,就可能发生死锁,因此就应有办法检测死锁的发生。
本次实验中采用“银行家算法”判断死锁的发生。
三、实验设计:本实验设计一个3个并发进程共享3种系统资源且每种系统资源有10个的系统。
系统能显示各种进程的进展情况以及检察是否有错误和死锁现象产生。
四、算法说明:“银行家算法”。
按每个进程的申请数量给各个进程试探性分配资源,看能否找到一个序列使各个进程都能正常运行结束。
若能,则不会发生死锁;若不能,则会发生死锁。
五、程序使用说明:1、本程序用于检测错误和是否会发生死锁。
系统有3个进程竞争3种系统资源,每种资源有10个。
2、输入各个进程的最大需求资源数目数组max[3]和已经得到的资源数目数组alloc [3],系统计算出各个进程还应申请的资源数目数组need[3]。
3、若进程最大需求数大于系统资源数(10),则出错;若进程申请的资源数目大于其需要的最大资源数目,则出错。
银行家算法的具体实现程序:#include <stdio.h>#define R 10#define P 10int SafeCheck(int n,int m,int Max[P][R],int Allocation[P][R],int Available[R],int Need[P][R]){int p,i,j, safeque[P],Work[R],Finish[P]={0},t=0,flag;printf("当前的工作向量为:");for(j=0;j<m;j++){Work[j]=Available[j];printf("%d,",Work[j]);}//设置Work向量while(t<n){//开始寻找可分配的进程for(i=0;i<n;i++){if(Finish[i]==1) flag=0;//跳过已分配结束的进程else flag=1;if(flag){p=i;for(j=0;j<m;j++)if(Need[p][j]>Work[j]) { p=-1; break; }}if(p==i){ printf("找到一个可分配的进程P%d!\n",p); break;} }//顺序循环查找可分配资源的进程if(p!=-1){safeque[t++]=p;//入栈保护Finish[p]=1;//标志该进程结束printf("当前的工作向量为:");for(j=0;j<m;j++){Work[j]+=Allocation[p][j];printf("%d,",Work[j]);}p=-1;//清空当前进程号,以便下一次寻找出新的进程}//找到可分配资源的进程,并重设Work向量else { printf("找不到一个可分配的进程!终止检查!"); break; } }if(t==n){printf("系统存在一个安全序列:");for(t=0;t<n;t++)printf("P%d->",safeque[t]);printf("\n");return 1;}else {printf("系统不安全!会产生死锁!\n"); return 0;}}void main(){int Available[R],Max[P][R],Allocation[P][R],Need[P][R];int i,n,m,j,p,Request[R];int safe1,safe2;//设置第一次检查与第二次检查正确与否的观察变量printf("输入进程总数:");scanf("%d",&n);printf("输入资源类数:");scanf("%d",&m);printf("系统中R0--R%d类资源可利用数(空格隔开):",m-1);for(i=0;i<m;i++){scanf("%d",&Available[i]);}for(i=0;i<n;i++){printf("P%d进程的每类资源的分配情况如下:\n",i);printf("\tR0--R%d类资源最大数(空格隔开):",m-1);for(j=0;j<m;j++){scanf("%d",&Max[i][j]);}printf("\tR0--R%d类资源已分配(空格隔开):",m-1);for(j=0;j<m;j++){scanf("%d",&Allocation[i][j]);Need[i][j]=Max[i][j]-Allocation[i][j];}printf("\tR0--R%d类资源需求数(空格隔开):",m-1);for(j=0;j<m;j++){printf("%d ",Need[i][j]);}printf("\n");}//初始化进程的资源分配表printf("——————-第一次安全性检查——————\n");safe1=SafeCheck(n,m,Max,Allocation,Available,Need);if(safe1){printf("输入请求请求进程P的进程号:");scanf("%d",&p);printf("输入请求的R0--R%d各类资源数(空格隔开):",m-1);for(j=0;j<m;j++){scanf("%d",&Request[j]);if(Request[j]>Need[p][j]){printf("所请求的该资源数大于该进程所需求的最大值!终止请求!");safe1=0;break;}if(Request[j]>Available[j]){printf("所请求的该资源数大于系统中所拥有的最大值!终止请求!");safe1=0;break;}}}//第一次安全检查系统安全后判断请求向量的正确性if(safe1){printf("——————-第二次安全性检查——————\n");for(j=0;j<m;j++){Allocation[p][j]+=Request[j];Need[p][j]=Max[p][j]-Allocation[p][j];Available[j]-=Request[j];}//第二次安全检查前试探分配资源给请求资源safe2=SafeCheck(n,m,Max,Allocation,Available,Need);if(safe2==0)for(j=0;j<m;j++){Allocation[p][j]-=Request[j];Need[p][j]=Max[p][j]-Allocation[p][j];Available[j]+=Request[j];}//安全检查失败后重新收回分配给请求进程的资源}}书上的银行家算法例题实现如下:分析:该程序找到的安全序列:第一次检查{p1,p3,p0,p2,p4}第二次检查{p1,p3,p0,p2,p4}虽然与书上例题不一致,但经检验可以找出如上安全序列。
银行家算法-实验报告
![银行家算法-实验报告](https://img.taocdn.com/s3/m/8982906cf5335a8102d220b2.png)
银行家算法一、课题内容和要求内容:银行家算法是操作系统中一种最有代表性的用来避免死锁的算法。
该算法在资源分配前进行安全性检测,保证系统处于安全状态,从而避免死锁。
此次课程设计的主要内容是实现算法模拟银行家算法,模拟实现动态资源分配,编写和调试一个系统动态资源的简单模拟银行家算法程序程序,观察死锁产生的条件,并使用适当的算法,有效的防止和避免死锁的发生。
从而,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
要求:模拟一个银行家算法;了解算法中用的各种数据结构;系统的初始状态信息从文本文件读取;判断是否存在安全序列,输出任意一个安全序列即可;判断系统是否可以满足进程的请求。
二、需求分析银行家算法在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。
为实现银行家算法,系统必须设置若干数据结构。
本次课程设计的目的是通过编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁地发生。
总体要求如下:①了解算法中用的各种数据结构;②系统的初始状态信息从文本文件读取;③判断是否存在安全序列,输出任意一个安全序列即可;④判断系统是否可以满足进程的请求。
【要了解银行家算法,必须先了解操作系统安全状态和不安全状态。
安全序列是指一个进程序列{P1,…,Pn}是安全的,即对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。
安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。
安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。
不安全状态不一定导致死锁。
】三、概要设计银行家算法的原理我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
2.操作系统试验--死锁的避免——银行家算法
![2.操作系统试验--死锁的避免——银行家算法](https://img.taocdn.com/s3/m/cb3ca84669eae009581bec37.png)
操作系统实验二死锁的避免——银行家算法一、实验目的银行家算法是避免死锁的一种重要算法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。
加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
二、实验要求:编制程序, 依据银行家算法判定本次分配是否安全。
三.算法所用數據結構讲解1.数据结构假设有m个进程N类资源,则有如下数据结构MAX[M*N] M个进程对N 类资源的最大需求量;A V AILABEL[N] 系统可用资源数;ALLOCATION[M*N] M个进程已得到N 类资源的资源量;NEED[M*N] M个进程还需要N 类资源的资源量;2.行家算法设进程I 提出请求Request[N],则(1)若Request[N]<= NEED[I,N],则转(2);否则出错。
(2)若NEED[I,N] <= A V AILABEL[N],则转3;否则出错。
3.安全性检查(1)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false; ②Needi≤Work.如找到,执行步骤(2);否则执行步骤(3)。
(2)当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故执行:Work:=Work+Allocation; Finish[i]:=true; Goto step1;(3)如果所有进程的Finish[i]=true,则表示系统处于安全状态;否则,系统处于不安全状态。
四.实验报告要求1.写出实验目的2。
写出实验要求3。
写出实验内容(包括算法,程序流程图及部分实验结果)4.实验总结与体会附:#include "stdio.h"#define M 5 /*总进程数*/#define N 3 /*总资源数*/#define FALSE 0#define TRUE 1/*M个进程对N类资源最大资源需求量*/int MAX[M][N]= {{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};/*系统可用资源数*/int A V AILABLE[N]={3,3,2};/* M个进程已经得到N类资源的资源量*/int ALLOCATION[M][N]={{0,1,0},{2,0,0},{3,0,2},{2,1,1},{0,0,2}};/* M个进程还需要N类资源的资源量*/int NEED[M][N]={{7,4,3},{1,2,2},{6,0,0},{0,1,1},{4,3,1}};int Request[N]={0,0,0};int i=0,j=0;void main(){char flag='Y';void showdata();void changdata(int);void rstordata(int);int chkerr(int);showdata();while (flag=='Y'||flag=='y'){printf("输入申请资源的进程号(0~4):");scanf("%d",&i);while (i<0||i>=M){printf("输入的进程号不存在,请重输入申请资源的进程号(0~4):");scanf("%d",&i);}for(j=0;j<N;j++){printf("申请资源%d :",j);scanf("%d",&Request[j]);if (Request[j]>NEED[i][j]){printf("进程%d申请的资源数大于进程%d还需要%d类资源的资源量!",i,i,j);printf("申请不合理,出错!请重新选择\n");exit(0);}else{if (Request[j]>A V AILABLE[j]){printf("进程%d 申请的资源数大于系统可用%d类资源的资源量!",i,j);printf("本次分配不成功。
死锁避免实验报告
![死锁避免实验报告](https://img.taocdn.com/s3/m/3150b6789b6648d7c1c74698.png)
沈阳工程学院学生实验报告(课程名称:操作系统)一、实验题目死锁避免实验。
二、实验要求编写一段程序模拟银行家算法。
三、实验目的多个进程动态地共享系统的资源时可能会产生死锁现象。
银行家算法是通过对资源的分配进行动态地检查来达到避免死锁的目的。
本实验通过模拟银行家算法的应用,使读者了解银行家算法的执行过程。
从而进一步理解死锁产生的条件和避免死锁问题产生的方法。
四、实验原理分析⑴死锁的产生必须同时满足4个条件:●互斥条件,即一个资源每次只能由一个进程占用。
●请求与保持条件,即一进程请求资源不能满足时,它必须等待,同时它仍保持已得到的所有其它资源。
●不可剥夺条件,任何一个进程不能抢占另一个进程已经获得且未释放的资源。
●环路等待条件,系统进入死锁的状态时,进程和资源之间形成一个封闭的环路。
⑵银行家算法是一种具有代表性的避免死锁的算法。
银行家算法为资源分配定义了两种状态,安全状态和不安全状态。
●安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。
处于安全状态的系统一定没有死锁发生。
●不安全状态:当系统中不存在一个安全序列时系统处于不安全状态。
不安全状态下一定导致死锁发生。
五、实验过程记录1.流程图安全算法流程图银行家算法2.实验结果图1图2图3图43.结果分析1.对于图1来说因为P0 申请的资源大于他所需求的,所以认为此次分配出错2.对于图2来说因为P0申请的资源大于剩余的资源,所以此次分配出错3对于图3来说对于系统安全且能分配序列的t0安全时刻表资源情况进程max Need allocation Work+allocationfinishQ W QWQ W Q WP0 4 5 1 2 3 3 4 11 true P1 3 6 1 2 2 4 6 15 true P2 5 7 1 2 4 5 10 20 trueP0申请资源是的安全性检查资源情况进程work need allocation Work+allocation finish Q W Q W Q W Q WP0 0 7 0 1 4 4 4 11 truep1 4 11 1 2 2 4 6 15 True P2 6 15 1 2 4 5 10 20 TRUE4.对于图4来说因为最大需求大于可利用资源所以系统不安全五、成绩评定优良中及格不及格出勤内容格式分析总评指导教师:年月日源代码#include <iostream>using namespace std;#define False 0#define True 1int Max[100][100]={0};int Allocation[100][100]={0};int Need[100][100]={0};int Available[100]={0};int Work[100]={0};char name[100]={0};int temp[100]={0};int S=100,P=100;int safequeue[100]={0};int Request[100]={0};//void Showdata(){int i,j,k,l;cout<<"\t资源分配情况\n"<<endl;cout<<"\tMax"<<"\t已分配"<<"\tNeed"<<endl;cout<<"\t";for(j=0;j<3;j++){for (i=0;i<S;i++){cout<<name[i]<<" ";}cout<<"\t";}cout<<endl;for(i=0;i<P;i++){cout<<i<<"\t";for (j=0;j<S;j++){cout<<Max[i][j]<<" ";}cout<<"\t";for (k=0;k<S;k++){cout<<Allocation[i][k]<<" ";}cout<<"\t";for (l=0;l<S;l++){cout<<Need[i][l]<<" ";}cout<<endl;}cout<<"\nAvailable"<<endl;for (i=0;i<S;i++){cout<<name[i]<<" ";}cout<<endl;for (i=0;i<S;i++){cout<<Available[i]<<" ";}cout<<endl;}int Judgesafe(){int tempwork[100][100]={0};int i,x,k=0,m,apply,Finish[100]={0};int j;int flag=0;for (i=0;i<S;i++){Work[i]=Available[i];}for(i=0;i<P;i++){apply=0;for(j=0;j<S;j++){if (Finish[i]==False&&Need[i][j]<=Work[j]){apply++;if(apply==S){for(m=0;m<S;m++){tempwork[i][m]=Work[m];Work[m]=Work[m]+Allocation[i][m];}Finish[i]=True;temp[k]=i;i=-1;k++;flag++;}}}}for(i=0;i<P;i++)if(Finish[i]==False){cout<<"系统不安全"<<endl;return -1;}}cout<<"系统是安全的"<<endl;cout<<"分配的序列:";for(i=0;i<P;i++){cout<<temp[i];if(i<P-1) cout<<"->";}cout<<endl;return 0;}void Changedata(int flag){for (int i=0;i<S;i++){Available[i]=Available[i]-Request[i];Allocation[flag][i]=Allocation[flag][i]+Request[i];Need[flag][i]=Need[flag][i]-Request[i];}//void Share(){int i,flag;char ch='Y';cout<<"输入请求资源的进程:"<<endl;cin>>flag;if (flag>=P){cout<<"此进程不存在!"<<endl;}else{cout<<"输入此进程对各个资源的请求数量:"<<endl;for (i=0;i<S;i++){cin>>Request[i];}for (i=0;i<S;i++){if (Request[i]>Need[flag][i]){cout<<"进程"<<flag<<"申请的资源大于它所需要的资源!"<<endl;cout<<"分配不合理不予分配!"<<endl;ch='N';break;}else if (Request[i]>Available[i]){cout<<"进程"<<flag<<"申请的资源大于可利用的资源。
操作系统实验报告-利用银行家算法避免死锁
![操作系统实验报告-利用银行家算法避免死锁](https://img.taocdn.com/s3/m/14de2c71aaea998fcc220e50.png)
计算机操作系统实验报告题目利用银行家算法避免死锁一、实验目的:1、加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
2、要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。
二、实验内容:用银行家算法实现资源分配:设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。
进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
银行家算法实验报告
![银行家算法实验报告](https://img.taocdn.com/s3/m/55ea3200ba1aa8114431d94e.png)
操作系统课程设计报告题目:银行家算法院系班级姓名学号指导教师银行家算法实验报告一、概述编写算法,实现银行家算法、安全性算法、死锁检测算法判断系统安全状态、判断进程的资源请求是否可以被满足、判定系统是否为死锁状态。
银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
二、设计的基本概念和原理1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机操作系统实验报告题目利用银行家算法避免死锁一、实验目的:1、加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
2、要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。
二、实验内容:用银行家算法实现资源分配:设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。
进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2)。
(4)如果所有进程的Finish[i]=true,则表示系统处于安全状态;否则,系统处于不安全状态。
4、流程图:系统主要过程流程图银行家算法流程图安全性算法流程图5、主要数据结构假设有M个进程N类资源,则有如下数据结构:int max[M*N] M个进程对N类资源的最大需求量int available[N] 系统可用资源数int allocated[M*N] M个进程已经得到N类资源的资源量int need[M*N] M个进程还需要N类资源的资源量int worked[] 系统提供给进程继续运行所需的各类资源数目四、源代码import java.awt.*;import javax.swing.*;import java.util.*;import java.awt.event.*;import javax.swing.border.*;public class OsBanker extends JFrame { // 界面设计JLabel labelInfo;JLabel labelInfo1;int resourceNum, processNum;int count = 0;JButton buttonRequest, buttonSetInit, button, button1, buttonsearch,button2;JTextField tf1, tf2;JTextField[] textAvailable;JTextField[][] textAllocation;JTextField[][] textNeed;JTextField textProcessName;JTextField[] textRequest;int available[];int max[][];int need[][];int allocated[][];int SafeSequence[];int request[];boolean Finish[];int worked[];boolean flag = false;JFrame f1;JFrame f2;JFrame f3;JTextArea jt;void display() {Border border = BorderFactory.createLoweredBevelBorder();Border borderTitled = BorderFactory.createTitledBorder(border, "按钮区");textAvailable = new JTextField[5];textAllocation = new JTextField[6][5];textNeed = new JTextField[6][5];textProcessName = new JTextField("");textProcessName.setEnabled(false);textRequest = new JTextField[5];tf1 = new JTextField(20);tf2 = new JTextField(20);labelInfo = new JLabel("请先输入资源个数和进程个数(1~6),后单击确定"); JPanel contentPane;contentPane = (JPanel) this.getContentPane();contentPane.setLayout(null);contentPane.setBackground(Color.pink);labelInfo.setBounds(50, 10, 300, 40);labelInfo.setOpaque(true);labelInfo.setForeground(Color.red);labelInfo.setBackground(Color.pink);contentPane.add(labelInfo, null);JLabel b1 = new JLabel("资源个数:");b1.setForeground(Color.blue);JLabel b2 = new JLabel("进程个数:");b2.setForeground(Color.blue);b1.setBounds(50, 80, 80, 30);contentPane.add(b1, null);tf1.setBounds(180, 80, 170, 30);contentPane.add(tf1, null);b2.setBounds(50, 150, 80, 30);contentPane.add(b2, null);tf2.setBounds(180, 150, 170, 30);contentPane.add(tf2, null);button1 = new JButton("确定");button = new JButton("重置");button1.setBounds(80, 200, 80, 30);contentPane.add(button1, null);button.setBounds(220, 200, 80, 30);contentPane.add(button, null);this.setSize(400, 300);this.setResizable(false);this.setTitle("银行家算法(SXJ)");this.setLocationRelativeTo(null);this.setDefaultCloseOperation(EXIT_ON_CLOSE);this.setVisible(true);f1 = new JFrame();labelInfo1 = new JLabel("请先输入最大需求和分配矩阵,然后单击初始化"); JPanel contentPane1;contentPane1 = (JPanel) f1.getContentPane();contentPane1.setLayout(null);contentPane1.setBackground(Color.pink);labelInfo1.setOpaque(true);labelInfo1.setBounds(75, 10, 400, 40);labelInfo1.setBackground(Color.pink);labelInfo1.setForeground(Color.blue);contentPane1.add(labelInfo1, null);JLabel labelAvailableLabel = new JLabel("AllResource:");JLabel labelNeedLabel = new JLabel("MaxNeed:");JLabel labelAllocationLabel = new JLabel("allocated:");JLabel labelRequestLabel = new JLabel("request process:");labelNeedLabel.setBounds(75, 90, 100, 20);// x,y,width,heightcontentPane1.add(labelNeedLabel, null);labelAllocationLabel.setBounds(75, 240, 100, 20);contentPane1.add(labelAllocationLabel, null);labelAvailableLabel.setBounds(75, 70, 100, 20);contentPane1.add(labelAvailableLabel, null);labelRequestLabel.setBounds(75, 400, 100, 20);contentPane1.add(labelRequestLabel, null);JLabel[] labelProcessLabel1 = { new JLabel("进程1"), new JLabel("进程2"), new JLabel("进程3"), new JLabel("进程4"), new JLabel("进程5"),new JLabel("进程6") };JLabel[] labelProcessLabel2 = { new JLabel("进程1"), new JLabel("进程2"), new JLabel("进程3"), new JLabel("进程4"), new JLabel("进程5"),new JLabel("进程6") };JPanel pPanel1 = new JPanel(), pPanel2 = new JPanel(), pPanel3 = new JPanel(), pPanel4 = new JPanel();pPanel1.setLayout(null);pPanel2.setLayout(null);/** pPanel4.setLayout(null); pPanel4.setBounds(440,120,90,270);* pPanel4.setBorder(borderTitled);*/buttonSetInit = new JButton("初始化");buttonsearch = new JButton("检测安全性");button2 = new JButton("重置");buttonRequest = new JButton("请求资源");buttonSetInit.setBounds(420, 140, 100, 30);contentPane1.add(buttonSetInit, null);buttonsearch.setBounds(420, 240, 100, 30);contentPane1.add(buttonsearch, null);button2.setBounds(420, 340, 100, 30);contentPane1.add(button2, null);buttonRequest.setBounds(420, 425, 100, 30);contentPane1.add(buttonRequest, null);for (int pi = 0; pi < 6; pi++) {labelProcessLabel1[pi].setBounds(0, 0 + pi * 20, 60, 20);labelProcessLabel2[pi].setBounds(0, 0 + pi * 20, 60, 20);}pPanel1.setBounds(75, 120, 60, 120);pPanel2.setBounds(75, 270, 60, 120);for (int pi = 0; pi < 6; pi++) {pPanel1.add(labelProcessLabel1[pi], null);pPanel2.add(labelProcessLabel2[pi], null);}contentPane1.add(pPanel1);contentPane1.add(pPanel2);contentPane1.add(pPanel4);for (int si = 0; si < 5; si++)for (int pi = 0; pi < 6; pi++) {textNeed[pi][si] = new JTextField();textNeed[pi][si].setBounds(150 + si * 50, 120 + pi * 20, 50, 20);textNeed[pi][si].setEditable(false);textAllocation[pi][si] = new JTextField();textAllocation[pi][si].setBounds(150 + si * 50, 270 + pi * 20, 50, 20);textAllocation[pi][si].setEditable(false);}for (int si = 0; si < 5; si++) {textAvailable[si] = new JTextField();textAvailable[si].setEditable(false);textAvailable[si].setBounds(150 + si * 50, 70, 50, 20);textRequest[si] = new JTextField();textRequest[si].setEditable(false);textRequest[si].setBounds(150 + si * 50, 430, 50, 20);contentPane1.add(textAvailable[si], null);contentPane1.add(textRequest[si], null);}for (int pi = 0; pi < 6; pi++)for (int si = 0; si < 5; si++) {contentPane1.add(textNeed[pi][si], null);contentPane1.add(textAllocation[pi][si], null);}textProcessName.setBounds(80, 430, 50, 20);contentPane1.add(textProcessName, null);f1.setSize(550, 500);f1.setResizable(false);f1.setTitle("银行家算法(SXJ)");f1.setLocationRelativeTo(null);f1.setDefaultCloseOperation(EXIT_ON_CLOSE);// f1.setVisible(true);f1.setVisible(false);f2 = new JFrame("安全序列显示框");jt = new JTextArea(75, 40);jt.setBackground(Color.pink);jt.setForeground(Color.blue);JScrollPane scrollPane = new JScrollPane(jt); // 加滚动条scrollPane.setBorder(BorderFactory.createLoweredBevelBorder());// 边界(f2.getContentPane()).add(scrollPane);f2.setSize(450, 400);f2.setResizable(false);f2.setDefaultCloseOperation(EXIT_ON_CLOSE);f2.setVisible(false);buttonSetInit.setEnabled(false);buttonRequest.setEnabled(false);buttonsearch.setEnabled(false);button1.addActionListener(new ActionListener() {public void actionPerformed(ActionEvent e) {// labelInfo.setText("请先初始化allocated和Maxneed,后单击初始化按钮");f1.setVisible(true);buttonSetInit.setEnabled(true);resourceNum = Integer.parseInt(tf1.getText());processNum = Integer.parseInt(tf2.getText());for (int i = 0; i < processNum; i++) {for (int j = 0; j < resourceNum; j++) {textNeed[i][j].setEditable(true);textAllocation[i][j].setEditable(true);textAvailable[j].setEditable(true);}}}});buttonSetInit.addActionListener(new ActionListener() {public void actionPerformed(ActionEvent e) {Init();buttonsearch.setEnabled(true);}});buttonsearch.addActionListener(new ActionListener() {public void actionPerformed(ActionEvent e) {count = 0;SafeSequence = new int[processNum];worked = new int[resourceNum];Finish = new boolean[processNum];copyVector(worked, available);Safety(0);jt.append("安全序列数量:" + count);if (flag) {labelInfo1.setText("当前系统状态:安全");f2.setVisible(true);buttonRequest.setEnabled(true);textProcessName.setEnabled(true);for (int i = 0; i < resourceNum; i++) {textRequest[i].setEditable(true);}} else {labelInfo1.setText("当前系统状态:不安全");}buttonSetInit.setEnabled(false);}});buttonRequest.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) {count = 0;for (int i = 0; i < processNum; i++) {Finish[i] = false;}jt.setText("");flag = false;RequestResource();}});button2.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) {/** tf1.setText(""); tf2.setText("");*/f2.setVisible(false);jt.setText("");for (int i = 0; i < processNum; i++) {for (int j = 0; j < resourceNum; j++) {textNeed[i][j].setText("");textAllocation[i][j].setText("");textAvailable[j].setText("");textRequest[j].setText("");// textNeed[i][j].setEditable(false);// textAllocation[i][j].setEditable(false);// textAvailable[j].setEditable(false);textRequest[j].setEditable(false);textProcessName.setText("");Finish[i] = false;}}flag = false;buttonsearch.setEnabled(false);// labelInfo.setText("请先输入资源个数和进程个数,后单击确定");}});button.addActionListener(new ActionListener() {public void actionPerformed(ActionEvent e) {tf1.setText("");tf2.setText("");f2.setVisible(false);jt.setText("");flag = false;}});}void copyVector(int[] v1, int[] v2) {for (int i = 0; i < v1.length; i++)v1[i] = v2[i];}void Add(int[] v1, int[] v2) {for (int i = 0; i < v1.length; i++)v1[i] += v2[i];}void Sub(int[] v1, int[] v2) {for (int i = 0; i < v1.length; i++)v1[i] -= v2[i];}boolean Smaller(int[] v1, int[] v2) {boolean value = true;for (int i = 0; i < v1.length; i++)if (v1[i] > v2[i]) {value = false;break;}return value;}public static void main(String[] args) {OsBanker ob = new OsBanker();ob.display();// System.out.println(" "+count);}void Init() // 初始化操作矩阵{available = new int[resourceNum];for (int i = 0; i < resourceNum; i++) {available[i] = Integer.parseInt(textAvailable[i].getText());}max = new int[processNum][resourceNum];allocated = new int[processNum][resourceNum];need = new int[processNum][resourceNum];for (int i = 0; i < processNum; i++) {for (int j = 0; j < resourceNum; j++) {max[i][j] = Integer.parseInt(textNeed[i][j].getText());allocated[i][j] = Integer.parseInt(textAllocation[i][j].getText());}}for (int i = 0; i < resourceNum; i++)for (int j = 0; j < processNum; j++)need[j][i] = max[j][i] - allocated[j][i];for (int i = 0; i < resourceNum; i++)for (int j = 0; j < processNum; j++) {available[i] -= allocated[j][i];if (available[i] < 0) {labelInfo.setText("您输入的数据有误,请重新输入");}}}void Safety(int n) // 查找所有安全序列{if (n == processNum) {count++;for (int i = 0; i < processNum; i++) {jt.append("进程" + (SafeSequence[i] + 1) + " ");}jt.append("\n");flag = true;return;}for (int i = 0; i < processNum; i++) {if (Finish[i] == false) {boolean OK = true;for (int j = 0; j < resourceNum; j++) {if (need[i][j] > worked[j]) {OK = false;break;}}if (OK) {for (int j = 0; j < resourceNum; j++) {worked[j] += allocated[i][j];}Finish[i] = true;SafeSequence[n] = i;Safety(n + 1);Finish[i] = false;SafeSequence[n] = -1;// num++;for (int j = 0; j < resourceNum; j++) {worked[j] -= allocated[i][j];}}}}}void RequestResource() { // 请求资源jt.setText("");int processname = (Integer.parseInt(textProcessName.getText()) - 1);request = new int[resourceNum];for (int i = 0; i < resourceNum; i++) {request[i] = Integer.parseInt(textRequest[i].getText());}if (!Smaller(request, need[processname])) {labelInfo.setText("资源请求不符该进程的需求量.");} else if (!Smaller(request, available)) {labelInfo1.setText("可用资源不足以满足请求,进程需要等待.");} else {Sub(available, request);Add(allocated[processname], request);Sub(need[processname], request);copyVector(worked, available);Safety(0);if (flag) {labelInfo1.setText("可立即分配给该进程!");} else {labelInfo1.setText("分配后导致系统处于不安全状态!,不可立即分配");Add(available, request);Sub(allocated[processname], request);Add(need[processname], request);}}// }}}五、实验结果:初始界面:初始化:检测安全性:请求资源:(1)进程2(1,0,2)(2)进程5(3,3,0)(3)进程1(0,2,0)六、遇到的问题及不足之处:1、程序编写的时候规定最大资源数和最大进程数均<=6。