半导体器件半导体工艺掺杂PPT

合集下载

半导体器件基础课件(PPT-73页)精选全文完整版

半导体器件基础课件(PPT-73页)精选全文完整版

有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术

《半导体器件与工艺》课件

《半导体器件与工艺》课件

晶圆制备
切割
将大块单晶硅切割成小片,得到晶圆。
研磨
对晶圆表面进行研磨,以降低表面粗糙度。
抛光
通过化学和机械作用对晶圆表面进行抛光,使其 表面更加光滑。
薄膜沉积
物理气相沉积
通过物理方法将材料气化并沉积在晶圆表面,如真空 蒸发镀膜。
化学气相沉积
通过化学反应将材料沉积在晶圆表面,如金属有机化 学气相沉积。
有巨大的应用潜力。
制程技术进步
纳米尺度加工
随着制程技术的不断进步,半导体器件的特征尺寸不断缩小,目前已进入纳米尺度。纳米 尺度加工技术面临着诸多挑战,如表面效应、量子效应和隧穿效应等,需要不断探索新的 加工方法和材料体系。
异质集成技术
通过将不同材料、结构和工艺集成在同一芯片上,可以实现高性能、多功能和低成本的半 导体器件。异质集成技术需要解决材料之间的界面问题、应力问题和工艺兼容性问题等。
可靠性试验
对芯片进行各种环境条件下的可靠性试验,如温度循环、湿度、振动等。
失效分析
对失效的芯片进行失效分析,找出失效原因,以提高芯片的可靠性。
05 半导体工艺发展趋势与挑 战
新型材料的应用
01
硅基材料
作为传统的半导体材料,硅基材料在集成电路制造中仍占据主导地位。
随着技术的不断发展,硅基材料的纯度、结晶度和性能不断提升,为半
柔性电子技术
柔性电子技术是将电子器件制作在柔性基材上的技术,具有可弯曲、可折叠、可穿戴等优 点。柔性电子技术在智能终端、可穿戴设备、医疗健康等领域具有广泛的应用前景。
可靠性及成品率问题
可靠性问题
随着半导体器件的特征尺寸不断缩小,可靠 性问题日益突出。需要加强可靠性研究,建 立完善的可靠性评价体系,提高半导体器件 的长期稳定性。

现代半导体器件物理与工艺ppt课件

现代半导体器件物理与工艺ppt课件
聚焦电子束扫描主要分成两种形式:顺序扫描、向量扫描。
顺序扫描(左)和矢量扫描
SCALPEL
利用电子束投影的图形曝光技术,SCALPEL系统(散射角度限制的投影 电子束图形曝光),此技术集电子束图形曝光特有的高分辨率和工艺宽 容度(聚焦深度20-30um,传统为1um)以及高产率。
图12.15
各种图形曝光技术的比较如下
光刻机
掩模版 抗蚀剂
光源 衍射限制 曝光法 步进与扫描 200mm硅晶片的
产率(片/h) 缩小倍率 光学邻近修正 辐射路径 单层或多层 化学放大抗蚀剂
光学 248/193nm 激光 有 折射式 是 40
4x 需要 穿透 单层 是
SCALPEL
电子束 没有 折射式 是 30-35
传统掩模版的透光区的电场是相同的,由于衍射与分辨率使得晶片上的 电场分散开来。相邻缝隙的衍射使得光被干涉而增强缝隙间的电场强度。 因此两个投影的像若太接近,就不容易分辨出来。
相移掩模版(PSM)是将相移层覆盖于相邻的缝隙上,使得电场反相。 要反相,使用一透明层,厚度满足:
d
2(n 1)
光学邻近修正(OPC)利用邻近的次解析几何图案来修正图像,因而改善成像能 力。
EUV已经证实可利用波长为13nm的光源,在PMMA抗蚀剂上制作出50 nm的图案。
挑战:所以的材料对EUV光都有强的吸收能力,所以曝光过程必须在真 空下进行。照相机必须使用反射透镜器件,而且必须覆盖多层的覆盖层 才可以参数1/4波长的布喇格反射分布。掩模版空片必须覆盖多层膜,以 便在波长为10-14nm得到最大的反射率。
WCE在半导体工艺中广泛使用,从半导体晶片被切割开始,WCE就用在 研磨与抛光上,以获得平整与无损伤的表面。热氧化与外延前,化学清 洗去除污染。尤其适合将多晶硅、氧化物、氮化物、金属与III-V族化合物 等作整片的腐蚀。

半导体基础知识PPT培训课件

半导体基础知识PPT培训课件
半导体基础知识ppt培 训课件
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。

《半导体集成电路》课件

《半导体集成电路》课件
《半导体集成电路》PPT 课件
这是一份关于半导体集成电路的PPT课件。通过本课件,您将了解到半导体 集成电路的定义、分类、制造工艺、发展和产业链等方面的内容。
什么是半导体集成电路?
半导体集成电路是一种将多个电子元件组合在一起的电路,利用半导体材料 的特性实现电子信号处理与控制功能的器件。
பைடு நூலகம்
半导体集成电路的分类
半导体集成电路的发展
1
从TTL到MOS
从传统的晶体管技术(TTL)发展到金属氧化物半导体技术(MOS),实现更 高的集成度和更低的功耗。
2
LSI、VLSI及以上集成度的发展
集成度逐步提高,从LSI(大规模集成电路)发展到VLSI(超大规模集成电路) 以及更高的集成度。
3
半导体集成电路的应用和前景
广泛应用于计算机、通信、消费电子、汽车等领域,并具有广阔的发展前景。
半导体集成电路是现代电子技 术进步的核心,深刻改变了人 类社会的各个方面。
发展趋势和未来展望
随着科技的发展,半导体集成 电路将继续向更高的集成度、 更低的功耗和更多的应用领域 发展。
个人对半导体集成电路 的理解和观点
半导体集成电路是现代科技的 基石,让我们能够享受到如此 丰富多样的高科技产品和服务。
半导体集成电路的制造工艺
1
P型和N型半导体的制作
通过控制材料的掺杂和热处理,制作出具有不同电子特性的P型和N型半导体材 料。
2
晶体管和二极管的制作
利用半导体材料的特性,通过掺杂和干涉等工艺制造晶体管和二极管等基本的电 子元器件。
3
集成电路的制作流程
包括光刻、薄膜沉积、刻蚀、离子注入、扩散、金属沉积等一系列工艺步骤。
半导体集成电路的产业链

半导体工艺技术优质课件

半导体工艺技术优质课件

7 ➢第六次光刻:接触孔刻蚀;
8
➢金属Al淀积; ➢第七次光刻:生成金属化图形;
课程设计作业一
课程设计作业一
形成N阱
初始氧化 淀积氮化硅层 光刻1版,定义出N阱 反应离子刻蚀氮化硅层 N阱离子注入,注磷
形成P阱
去掉光刻胶
在N阱区生长厚氧化层,其他区域被氮化硅层保护 而不会被氧化
优点是选择性好、反复性好、生产效率高、 设备简朴、成本低
缺陷是钻蚀严重、对图形旳控制性较差
干法刻蚀
溅射与离子束铣蚀:经过高能惰性气体离子旳物理轰
击作用刻蚀,各向异性性好,但选择性较差
等离子刻蚀(Plasma Etching):利用放电产生旳游
离基与材料发生化学反应,形成挥发物,实现刻蚀。选 择性好、对衬底损伤较小,但各向异性较差
➢热氧化生成场氧; ➢氮化硅刻蚀; ➢缓冲层刻蚀; ➢清洗表面; ➢阈值电压调整旳离子注入; ➢栅氧生长;
4
➢CVD淀积N+多晶硅栅; ➢第三次光刻:形成多晶硅图形,定义栅极;
5
➢第四次光刻:打开N+区旳离子注入窗口; ➢磷注入;
5
➢光刻胶掩蔽条; ➢第五次光刻:P+区离子注入;
6
➢光刻胶掩蔽条; ➢CVD淀积SiO2; ➢离子注入退火;
掺杂旳均匀性好 温度低:不大于600℃ 能够精确控制杂质分布 能够注入多种各样旳元素 横向扩展比扩散要小得多。 能够对化合物半导体进行掺杂
离子注入系统旳原理示意图
离子注入到无定形靶中旳高斯分布情况
退火
退火:也叫热处理,集成电路工艺中全部旳 在氮气等不活泼气氛中进行旳热处理过程都 能够称为退火
形成N管源漏区
光刻,利用光刻胶将PMOS区保护起来 离子注入磷或砷,形成N管源漏区

《半导体工艺概述》PPT课件

《半导体工艺概述》PPT课件

接触式 湿化学
扩散 离子注入
掺杂
开放式炉管—水平/竖置 封闭炉管
快速热处理 中/高电流离子注入
低能量/高能量离子注入
热处理
制程方法 加热
热辐射
具体分类 加热盘 热对流 快速加热
红处线加热
芯片制造的特点
超洁超净 半导体芯片尤其是高密度的集成电路,极易受到多种污染物的损害,主要体
现在器件成品率,器件性能,器件可靠性。 污染物:微粒、金属离子、化学物质、细菌
2、硼离子注入,形成 PMOS 源 、 漏 区 。 硼 离 子 注 入 剂 量 5*1015cm-2 ,能量100keV.
3、离子注入退火和推 进:在N2下退火,并将 源、漏区推进,形成 0.3~0.5微米深的源、 漏区。
化学气相淀积 磷硅玻璃介质 层
刻金属化的接触孔
磷硅玻璃回流,使 接触孔边缘台阶坡 度平滑,以利于金 属化。否则在台阶 边缘上金属化铝条 容易发生断裂。在 N2气氛下,1150℃ 回流30分钟。
利用氮化硅掩蔽氧 化的功能,在没有 氮化硅、并经硼离 子注入的区域,生 长一层场氧化层, 厚度400nm
去除N阱中非PMOS有 源区部分的氧化硅 和氮化硅,这部分 将是场区的一部分 。
对N阱中场区部分磷 离子注入,防止寄 生沟道影响。
一般采用湿氧 氧化或高压氧 化方法生长一 层1微米厚的 SiO2
首 先 生 长 缓 冲 SiO2 薄层,厚度600nm, 目的是减少淀积的 氮化硅与硅衬底之 间的应力。
其次低压CVD氮化硅 ,用于掩蔽氧化, 厚度100nm
确定NMOS有源区:利 用第二块掩膜版,经 曝光、等离子刻蚀, 保留NMOS有源区和N 阱区的氮化硅,去掉 场区氮化硅,NMOS场 区硼注入,剂量 1*1013cm-2,能量 120keV,防止场区下 硅表面反型,产生寄 生沟道。

半导体掺杂简介

半导体掺杂简介

第十一章掺杂概述导电区和N-P结是晶圆内部或表面形成的半导体器件的基本组成部分。

他们是通过扩散或离子注入技术在晶圆中形成的。

本章将具体介绍N-P结的定义,扩散与离子注入的原理及工艺。

目的完成本章后您将能够:1.定义P-N结。

2.画出完整的扩散工艺流程图。

3.描述淀积步骤与推进步骤的不同。

4.列举三种类型的淀积源。

5.画出淀积和推进工艺的典型杂质浓度与深度位置的关系曲线。

6.列举离子注入机的主要部件。

7.描述离子注入的原理。

8.比较扩散与离子注入工艺的优势劣势。

结的定义使晶体管和二极管工作的结构就是N-P结。

结(junction)就是富含带负电的电子的区域(N 型区)与富含空穴的区域(P型区)的分界处。

结的具体位置就是电子浓度与空穴浓度相同的地方。

这个概念在扩散结的形成章节中已作过解释。

在半导体表面形成结的通常做法是热扩散(diffusion)或离子注入(ion implantation)。

掺杂区的形成扩散的概念扩散掺杂工艺的发展是半导体生产的一大进步。

扩散,一种材料通过另一种材料的运动,是一种自然的化学过程,在现实生活中有很多例子。

扩散的发生需要两个必要的条件。

第一,一种材料的浓度必需高于另外一种。

第二,系统内部必须有足够的能量使高浓度的材料进入或通过另一种材料。

扩散的原理被用来将N-型或P-型杂质引进到半导体表层深部。

然而,小尺寸器件的要求使业界转而采用离子注入作为主要的掺杂技术。

但是,一旦杂质进入晶圆的表面,后续的高温过程都会使它继续移动。

扩散定律决定了后续的移动。

气相扩散的一个例子就是常见的充压的喷雾罐(图11.1),比如房间除臭剂。

按下喷嘴时,带有压力的物质离开罐子进入到附近的空气中。

此后,扩散过程使得气体移动分布到整个房间。

这种移动在喷嘴被按开时开始,并且在喷嘴关闭后还会继续。

只要前面的喷雾引入的浓度高于空气中的浓度,这种扩散过程就会一直继续。

随着物质远离喷雾罐,物质的浓度会逐渐降低。

半导体的n型p型掺杂ppt课件

半导体的n型p型掺杂ppt课件
19
4.掺杂工艺简介
使用液态源的磷扩散的化学反应如下:
4POCl3 3O2 2P 2O5 6Cl2
P2O5在硅晶片上形成一层玻璃并由硅还原出磷,氯 气被带走。
2P2O5 5Si 4P 5SiO2
20
4.掺杂工艺简介
对砷化镓的扩散工艺而言,因砷的蒸汽压高,所以需要特别 的方式来防止砷的分解或蒸发所造成的损失。包括含过压的 封闭炉管中扩散及在含有掺杂氧化物覆盖层(氮化硅)的开 发炉管中扩散。p型扩散选用Zn元素,采用Zn-Ga-As合金或 ZnAs2(封闭炉管法)或ZnO-SiO2(开放炉管法)。n型掺杂 剂有硒和碲。
8
3.杂质半导体
本征半导体中虽有两种载流子,但因本征载子浓 度很低,导电能力很差。如在本征半导体中掺入某 种特定杂质,成为杂质半导体后,其导电性能将发 生质的变化。
N型半导体——掺入五价杂质元素(如磷、砷)的 半导体。 P型半导体——掺入三价杂质元素(如硼、镓)的 半导体。
9
3.杂质半导体
n型半导体
1.半导体概述
根据物体导电能力(电阻率) 的不同,物质可分为导体(ρ<101Ω·cm)、绝缘体(ρ>109 Ω·cm)和半 导体(10-1Ω<ρ<109Ω·cm)三大类。
半导体应用极为广泛,因为它 具有热敏性、光敏性、掺杂性等特 殊性能。
3
1.半导体概述
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等, 其都是4价元素(外层轨道上的电子通常称为价电子), 其原子结构模型和简化模型如图所示。
因五价杂质原子中只有四个价电 子能与周围四个半导体原子中的 价电子形成共价键,而多余的一 个价电子因无共价键束缚而很容 易形成自由电子。

半导体制造工艺流程课件

半导体制造工艺流程课件

衬底制备 一次氧化 隐埋层光刻 隐埋层扩散
外延淀积
基区光刻
再氧化
隔离扩散
隔离光刻
基区扩散 再分布及氧化 发射区光刻 背面掺金
热氧化 发射区扩散
铝合金
反刻铝
铝淀积
接触孔光刻 再分布及氧化
淀积钝化层 压焊块光刻
中测
横向晶体管刨面图
B
C E
P+
P N
P
P+
P
PNP
纵向晶体管刨面图
CBE P
N
N+ C
B
半导体制造工艺分类
• 一 双极型IC的基本制造工艺: • A 在元器件间要做电隔离区(PN结隔
离、全介质隔离及PN结介质混合隔离) ECL(不掺金) (非饱和型) 、
TTL/DTL (饱和型) 、STTL (饱和 型) B 在元器件间自然隔离
I2L(饱和型)
半导体制造工艺分类
• 二 MOSIC的基本制造工艺: 根据栅工艺分类
I级 35 7.5 3
1
NA
10 级 350 75 30 10
NA
100级 NA 750 300 100
NA
1000级 NA NA NA 1000 7
半导体元件制造过程
前段(Front End)制程---前工序
晶圆处理制程(Wafer Fabrication; 简称 Wafer Fab)
典型的PN结隔离的掺金TTL电路工艺流 程
集成电路中电容2
N+
MOS电容
SiO2 P+
AL
N+ N-epi
P-SUB
Al P+
微电子制造工艺
IC常用术语

《半导体器件》课件

《半导体器件》课件

总结词
高效转换,环保节能
详细描述
在新能源系统中,半导体器件用于实现高效能量转换和 环保节能。例如,太阳能电池板中的硅基太阳能电池可 以将太阳能转换为电能,而LED灯中的发光二极管则可 以将电能转换为光能。
THANKS
感谢观看
总结词
制造工艺复杂
详细描述
集成电路的制造工艺非常复杂,需要经过多个步骤和工艺 流程。制造过程中需要精确控制材料的物理和化学性质, 以确保器件的性能和可靠性。
总结词
具有小型化、高性能、低功耗等特点
详细描述
集成电路具有小型化、高性能、低功耗等特点,使得电子 设备更加轻便、高效和节能。同时,集成电路的出现也推 动了电子产业的发展和进步。
总结词
由半导体材料制成
详细描述
双极晶体管通常由半导体材料制成,如硅或锗。这些材料 在晶体管内部形成PN结,是实现放大和开关功能的关键 结构。
总结词
正向导通,反向截止
详细描述
在正向偏置条件下,双极晶体管呈现低阻抗,电流可以顺 畅地通过。在反向偏置条件下,双极晶体管呈现高阻抗, 电流被截止。
场效应晶体管
05
CATALOGUE
半导体器件的应用
电子设备中的半导体器件
总结词
广泛使用,基础元件
详细描述
在电子设备中,半导体器件是最基本的元件 之一,用于实现信号放大、传输和处理等功 能。例如,二极管、晶体管和集成电路等是 电子设备中不可或缺的元件。
通信系统中的半导体器件
总结词
高速传输,信号处理
详细描述
在通信系统中,半导体器件用于信号的高速 传输和处理。例如,激光二极管用于光纤通
总结词
通过电场控制电流的电子器件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离子注入系统
离子注入源:气态(气瓶)或固态源 常用气体:AsH3、PH3、BF3
离化反应室:将掺杂物原子离化,低压 (10-3托)电子与杂质源碰撞。
1标准大气压 = 101 325 帕斯卡 1 托(Torr)=133.322帕(Pa)
BF3: B+ BF+ BF+2 BF3 F+ F+2 等
离子注入系统
质谱分析/离子选择 质谱分析仪 离开离化子系统的离子具有15-40keV的 能量
B+ BF+ BF2+
离子注入系统
加速管:将离子加速到足够高的速度, 获取足够高的动量以穿透晶圆表面。为 了将污染降到最低,此部分处于高真空 条件。加速管为直线形设计,离子进入 加速管立刻沿着加速管的方向在所施加 的电压作用下加速。电压范围的不同分 为低能(5~10keV)和高能离子注入 机(0.2~2.5MeV)。由每分钟离子注 入量不同分为中等束流和高束流离子注 入机。被注入的离子量称为剂量。
离子注入系统
束流扫描终端靶室
离化反应室
离子注入系统
离子束与晶圆作用: 1、晶圆电荷积累。利用电子枪提供电子 2、晶体损伤。高温处理
投影射程
离子注入区杂质浓度:
1、薄层二氧化硅 2、 3o - 7o 3、表面不定型层
扩散
物质的微粒总是时刻不停地处于运动之中, 这 可称之为热运动。 在热运动的作用下, 物质 的微粒都有一种从浓度高的地方向浓度低的地 方运动的趋势, 这就是扩散。
浓度差
驱动能量
扩散形成的掺杂区和结
固态扩散的目的: 1、在晶圆表面产生具有掺杂原子的数量。 2、在晶圆表面下特定位置处形成NP或PN 结。 3、在晶圆表面形成特定的掺杂原子分布。
扩散工艺步骤
1、淀积 deposition predeposition
扩散方式
晶体内扩散是通过一系列随机跳跃来实现的, A B 填隙式扩散 替位式扩散 这些跳跃在整个三维方向进行,有多种方式, 最主要有: A 填隙式扩散 B 替位式扩散 C 填隙-替位式扩散
淀积工艺受控制或约束的因素
1、特定杂质的扩散率。温度影响
菲克第一定律
j D N N ( x, t ) j D x
N ( x, t ) N ( x, t ) D 2 t x
2
菲克第二定律
扩散方程:
淀积工艺受控制或约束的因素
2、杂质的最大固溶度
误差函数
扩散源
1、液态源 氯化物 溴化物(BBr3,POCl3)
加热
反应气体 4BBr3+3O22B2O3+6Br2
① 横向扩散和位错 ② 实现浅结困难 ③ 掺杂浓度控制精度 ④ 表面污染 ①无侧向扩散 ②精确控制掺杂的 数量及位置 ③离子注入浓度最 大值不在表面 ④掩膜(光刻胶、 金属膜和二氧化 硅) ⑤低温工艺
离子注入概念
杂质 离子注入是将含所需杂质的化合物分子 电离 聚集 (BCl3、BF3)电离为杂质离子后,聚集成 加速 束用强电场加速,使其成为高能离子束,直 轰击 接轰击半导体材料,当离子进入其中时,受 阻挡 半导体材料原子阻挡,而停留在其中,成为 半导体内的杂质。
离子注入系统
束流聚焦: 离开加速管后,束流由于相同电荷的排斥作用 而发散。发散导致离子密度不均匀和晶体掺杂不 均一。成功的离子注入,束流必须聚焦。静电或 磁透镜用于将离子束聚焦为小尺寸束流或平行束 流。 束流中和: - 尽管真空去除了系统中大部分空气,但是束流附 离子束 至晶圆 近还是有些残存的气体分子。离子和这些气体原 子发生碰撞导致杂质原子中和。 束流中和 0 + P+ + N 2 = P +N2
掺杂工艺
集成电路生产过程中要对半
导体基片的一定区域掺入一 定浓度的杂质元素, 形成不 同类型的半导体层, 来制作 各种器件, 这就是掺杂工艺。
扩散、离子注入
目的
1、理解掺杂工艺的概念。 2、理解扩散的概念及发生扩散的条件。 3、掌握结的定义。 4、画出掺杂原子(浓度)分布曲线。 5、列举离子注入机的主要部件及功能。
沾污
扩散源
2、气态源 氢化物 AsH3 B2H6
优势: 精确控制 洁净度好 缺点: 管路中容易形成 二氧化硅粉尘
扩散源
3、固态源 最原始 氧化物
-in-oxidation
原子数量恒定不变
杂质分布改变
施主
氧化的影响
受主
离子注入
(1)热扩散的限制 (2)离子注入优点
相关文档
最新文档