随机事件的概率 说课稿 教案 教学设计

合集下载

《随机事件的概率》说课稿

《随机事件的概率》说课稿

《随机事件的概率》说课稿《随机事件的概率》说课稿作为一名为他人授业解惑的教育工作者,往往需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。

写说课稿需要注意哪些格式呢?以下是小编整理的《随机事件的概率》说课稿,仅供参考,欢迎大家阅读。

《随机事件的概率》说课稿1教学目标1、让学生理解必然事件、不可能事件、随机事件的概念;2、让学生经历试验等活动会判断必然事件、不可能事件、随机事件。

3、培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。

重点难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。

难点:必然事件、不可能事件、随机事件的区别与转化关系。

教学过程3.1第一学时教学活动活动1教学过程:一、创设情境,导入新课:(摸出红球表示运气好)1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。

2、教师再拿出事先准备好的另一只装的全部是白球的不透明箱盒子,让坐在教室右边部分的三四位同学摸球,而学生摸出的全部是白球,摸到白球的学生个个唉声叹气,叹自己运气怎么就不好呢。

师:真的是教室左边部分的同学运气好,右边部分的同学运气不好吗?我们一起来观察两个盒子里的秘密。

3、教师揭秘,分别展示两个不透明盒子里的球,学生观察第一个盒子里全部是红球,第二个盒子里全部是白球。

师:这个游戏公平吗?生:不公平。

师:为什么不公平呢?请大家思考生1:第一个盒子里装的全部是红球,必然摸到红球。

第二个盒子里装的全部是白球,摸到红球显然是不可能的。

师:回答得非常好,请坐。

师:如果现在让大家来摸球,你们可以确定摸出的球是什么球吗?生2:在第一个盒子里摸球,摸出的球肯定是红球,在第二个盒子里摸球,摸出的球肯定是白球。

概念:(1)在一定条件下,必然会发生的事件叫做必然事件。

(2)在一定条件下,不可能发生的事件叫做不可能事件。

随机事件的概率 说课稿 教案 教学设计

随机事件的概率  说课稿  教案  教学设计
解:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5。
小结:事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。
活动四:归纳整理,提高认识(2分钟)
概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
教学过程:
批注
活动一:创设情景,揭示课题(5分钟)
日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
活动二:步入新知,师生交流(20分钟)
2、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
3.情感、态度与价值观:
(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;
(2)培养学生的辩证唯物主义观点,增强学生的科学意识.
教学重点
随机事件的概率及概率的意义




1.知识与技能
(1)了解随机事件、必然事件、不可能事件的概念;
(2)正确理解事件A出现的频率的意义;明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;
(3)利用概率知识正确理解现实生活中的实际问题.
2.过程与方法

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案精细化处理后的文本一、教学内容本节课将深入探讨随机事件的内涵,并掌握等可能事件的概率计算方法。

我们会进一步了解条件概率与独立事件的概率,这两个概念在数学领域中极为重要,它们能够帮助我们更好地理解事件之间的关系,并应用于各种实际问题中。

二、教学目标1. 深刻理解随机事件的本质,掌握等可能事件的概率计算技巧。

2. 理解并运用条件概率与独立事件的概率知识,解决生活中的数学问题。

3. 培养学生的逻辑思维与数学应用能力,提高对概率论的兴趣。

三、教学难点与重点1. 教学难点:条件概率与独立事件的概率计算,这两个概念较为抽象,需要学生能够灵活运用。

2. 教学重点:等可能事件的概率计算,以及条件概率和独立事件概率的实际应用。

四、教具与学具准备1. 教具:多媒体教学设备,黑板,粉笔。

2. 学具:教材,笔记本,彩笔,计算器。

五、教学过程1. 实践情景引入:通过抛硬币、抽签等实际例子,引导学生思考随机事件的概率。

例如,抛硬币出现正面的概率是多少?抽签抽到红色的概率是多少?2. 讲解教材内容:详细介绍随机事件的定义,等可能事件的概率计算方法,条件概率和独立事件的概率概念。

我们将通过具体的例题来讲解这些概念的应用。

3. 例题讲解:挑选具有代表性的例题,讲解解题思路和方法。

例如,甲、乙两人分别抛一枚均匀的硬币,求甲抛出正面且乙抛出正面的概率。

4. 随堂练习:让学生在课堂上完成练习题,巩固所学知识。

例如,已知事件A和事件B相互独立,且P(A)=0.3,P(B)=0.4,求P(AB)。

5. 小组讨论:分组讨论实际问题,引导学生运用概率知识解决问题。

例如,某学校举行篮球比赛,已知甲队获胜的概率为0.6,乙队获胜的概率为0.4,求甲队连续获胜两次的概率。

六、板书设计1. 随机事件的定义及其实例。

2. 等可能事件的概率计算公式及其解释。

3. 条件概率的计算公式及其应用。

4. 独立事件的概率计算公式及其应用。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标:1. 知识目标:掌握随机事件的概念和基本性质,了解概率的概念和计算方法。

2. 能力目标:培养学生分析和解决实际问题的能力,提高学生的数学思维和逻辑推理能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的合作精神和团队意识。

二、教学重难点:1. 随机事件的概念和基本性质;2. 概率的概念和计算方法。

三、教学方法:1. 指导学生自主学习,通过案例分析和实例演练,提高学生的理解和记忆能力;2. 运用启发式教学法,引导学生主动探究,培养学生的独立思考能力;3. 采用讨论和思维导引的方式,激发学生的思维活跃,促进学生之间的交流和合作。

四、教学过程:第一步:导入教师可以通过举例的方式,向学生引入随机事件和概率的概念。

比如抛硬币、掷骰子等随机事件,引发学生的兴趣和好奇心,促使学生思考随机事件和概率的内涵和意义。

第二步:概念讲解1. 随机事件的概念和基本性质教师通过课件或板书,向学生介绍随机事件的定义和性质,说明随机事件是在一定条件下会发生或不发生的事件,具有不确定性和随机性。

2. 概率的概念和计算方法教师向学生介绍概率的定义和性质,说明概率是指某一随机事件发生的可能性大小。

教师还可以向学生介绍概率的计算方法,包括频率法和几何法等。

第三步:例题讲解教师结合具体的例题,向学生演示随机事件和概率的计算方法,引导学生掌握相关的解题技巧和方法。

教师可以通过课件或黑板,逐步讲解例题的解题过程,注重引导学生理清思路,抓住解题的关键点和要领。

第四步:小组讨论教师将学生分成若干小组,每个小组选择一个相关的实际问题,利用所学知识进行讨论和解答。

通过小组讨论,激发学生的思维活跃,培养学生的合作精神和团队意识,提高学生的分析和解决问题的能力。

第五步:课堂练习教师设计一些相关的练习题,供学生进行课堂练习。

通过课堂练习,检测学生对所学知识的掌握情况,加强学生对随机事件和概率的理解和应用能力。

第六步:作业布置教师布置相关的作业,巩固学生在课堂上所学到的知识。

25.1 随机事件与概率-随机事件 人教版数学九年级上册说课稿

25.1 随机事件与概率-随机事件 人教版数学九年级上册说课稿

《随机事件》说课稿各位领导、评委老师,大家好!今天我说课的课题:九年级上册第二十五章概率初步第一课时《随机事件》,下面我将从以下几个方面进行说明。

一、教材分析(一)教材地位与作用前面所学的数学问题,其结果往往是确定的,而从本节课开始就要接触结果不确定的情况——随机事件.它既是概率论的基础,又是生活中存在的大量现象的一个反映.因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础.(二)教学目标(1)知识与技能:了解必然发生的事件、不可能发生的事件、随机事件的特点。

(2)过程与方法:经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。

(3)情感、态度与价值观:学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值。

(三)重点、难点分析重点:随机事件的特点。

难点:判断现实生活中哪些事件是随机事件。

(四)学情分析由于学生以前未接触过结果不确定的数学问题,所以对随机事件概念的出现一时难以适应,教师只有通过大量、生动、鲜活的例子,让学生充分感知的基础上,才能准确理解和把握随机事件的有关概念。

二、教法分析为了说明什么是随机事件和它有什么特点,我通过大量的实例,让学生经历体验、操作、观察、归纳、讨论总结概括出定义,为了检验学生是否理解它的特点,我通过一定的例题加以巩固,特别让学生对“生死签”问题进行思考、再讨论,既能发现学生对随机事件的特点掌握怎样?又能充分体现学生的学习主体性。

充分挖掘出学生的学习潜力,激发学生的学习兴趣,让学生充分感受数学的价值。

三、学法指导建构主义认为:“数学学习并非是一个被动接受的过程,而应是主动建构的过程”。

教师通过一系列活动和具体例子,让学生通过观察,动手操作,积极思考,充分讨论和交流。

逐步加深对随机事件及其特点的理解和把握。

充分调动、激发学生学习思维的积极性,充分体现学生是学习的主体和教师是学生学习的组织者、参与者和促进者。

随机事件的概率教案初中

随机事件的概率教案初中

教案:随机事件的概率教学目标:1. 了解必然事件、不可能事件、随机事件的概念。

2. 能够运用概率的知识解释生活中的随机现象。

3. 掌握概率的统计定义及其基本性质。

教学重点与难点:1. 重点:理解概率的统计定义及其基本性质。

2. 难点:认识频率与概率的区别和联系。

教学过程:一、导入(5分钟)1. 引导学生观察日常生活中的一些随机现象,如抛硬币、掷骰子等。

2. 提问:这些现象有什么共同特点?它们的结果是否确定?二、新课讲解(15分钟)1. 必然事件:在一定条件下一定会发生的事件。

2. 不可能事件:在一定条件下一定不会发生的事件。

3. 随机事件:在一定条件下可能发生也可能不发生的事件。

三、实例分析(10分钟)1. 让学生举例说明必然事件、不可能事件和随机事件的实际应用。

2. 引导学生分析这些事件发生的可能性大小。

四、概率的统计定义(10分钟)1. 介绍概率的统计定义:事件发生的次数与总次数的比值。

2. 讲解如何通过实验来估计事件的概率。

五、频率与概率的关系(5分钟)1. 解释频率与概率的区别:频率是实验中观察到的事件发生的次数与总次数的比值,而概率是根据事件的性质估计的事件发生的可能性大小。

2. 引导学生理解频率与概率之间的联系:频率可以用来估计概率,随着实验次数的增加,频率会逐渐接近概率。

六、课堂练习(5分钟)1. 让学生运用概率的知识解决一些实际问题。

2. 引导学生运用频率与概率的关系来解释一些随机现象。

七、总结与反思(5分钟)1. 回顾本节课所学的内容,让学生总结必然事件、不可能事件和随机事件的定义及特点。

2. 提问:如何运用概率的知识解决实际问题?频率与概率之间有什么关系?教学评价:1. 课后作业:让学生运用概率的知识解决一些实际问题,巩固所学内容。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习效果。

教学反思:本节课通过导入、新课讲解、实例分析、概率的统计定义、频率与概率的关系、课堂练习和总结与反思等环节,让学生了解必然事件、不可能事件和随机事件的概念,并能够运用概率的知识解决实际问题。

随机事件的概率和性质说课稿 教案 教学设计

随机事件的概率和性质说课稿 教案 教学设计

随机事件的概率【教学目标】1.了解随机事件、必然事件、不可能事件的概念.2.正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率fn(A)与事件A 发生的概率P(A)的区别与联系. 3.事件的关系及运算、概率的加法公式. 【教法指导】本节重点是事件的关系及运算、概率的加法公式;难点是事件的关系及运算;本节知识的主要学习方法是 动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法. 【教学过程】 课本导读1.随机事件的含义(1)必然事件 在一定条件下,一定发生的事件;(2)不可能事件 在一定条件下,不可能发生的事件; (3)随机事件 在一定条件下,可能发生也可能不发生的事件. 2.频率与概率 (1)频率在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A)=nn A为事件A 出现的频率. (2)概率对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P(A),称为事件A 的概率,简称为A 的概率. 质疑探究1 概率与频率有什么关系?3.事件的包含关系.如果事件A 发生,则事件B 一定发生.则称事件B 包含事件A.例如 事件A ={投掷一个骰子投得向上点数为2},B ={投掷一个骰子投得向上点数为偶数},则事件B 包含事件A ,记作 A ⊆B . 4.相等事件.若B ⊆A 且A ⊆B ,那么事件A 与事件B 相等 5.并(和)事件.若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与B 的并事件(或称和事件),记作 A ∪B.6.交(积)事件.若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与B 的交事件(或称积事件),记作 A ∩B. 7.互斥事件.若A ∩B 为不可能事件,即A ∩B =∅,那么称事件A 与事件B 互斥. 8.对立事件.若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件. 例如 某同学在高考中数学考了150分,与这同学在高考中数学考得130分,这两个事件是互斥事件.9.互斥事件概率加法公式.当事件A 与B 互斥时,满足加法公式 P(A ∪B)=P(A)+P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )=P(A)+P(B)=1,于是有P (A )=1-P(B).例如 投掷骰子六点向上的概率为16,投得向上点数不为六点的概率为65.质疑探究2 互斥事件和对立事件有什么区别和联系?10.概率的几个基本性质(1)概率的取值范围 0≤P(A)≤1 . (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)互斥事件概率的加法公式①如果事件A 与事件B 互斥,则P(A ∪B)= P(A)+P(B) . ②若事件B 与事件A 互为对立事件,则P(A)=1-P(B). 类型 一 事件的分类1.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后从中随机抽出10张,恰好红桃、梅花、黑桃三种牌都抽到,这件事件为( )A.不可能事件B.随机事件C.必然事件D.以上均不对2.给出下列四个命题①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②当“x为某一实数时可使x2<0”是不可能事件;③“2016年的国庆节是晴天”是必然事件;④“从100个灯泡(有10个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是()A.4B.3C.2D.1【答案】B【解析】“2016年的国庆节是晴天”是随机事件,故命题③错误,命题①②④正确.故选B.探究一1.必然事件具有什么特点?2.怎样才能断定一个事件为不可能事件?3.判断事件类型的关键是什么?通过本例题让学生理解1.必然事件指的是在给定条件下,某事件一定会发生或已知该事件发生的概率为1.2.如果在给定条件下,某事件一定不会发生或已知该事件发生的概率为0,则可断定这个事件为不可能事件.3.判断事件类型,关键看事件在一定条件下发生的可能性大小,如果在给定条件下事件发生的可能性为零,则该事件为不可能事件;若该事件肯定能发生,则为必然事件;若该事件在一定条件下,可能发生也可能不发生,则该事件为随机事件.变式训练1.在200件产品中,有192件一级品,8件二级品,则下列事件①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于100,其中 是必然事件, 是不可能事件, 是随机事件.2.已知α,β,γ是平面,a,b 是两条不重合的直线,下列说法正确的是( ) A.“若a ∥b,a ⊥α,则b ⊥α”是随机事件 B.“若a ∥b,a ⊂α,则b ∥α”是必然事件 C.“若α⊥γ,β⊥γ,则α⊥β”是必然事件 D.“若a ⊥α,a ∩b=P,则b ⊥α”是不可能事件题型二 随机事件的频率与概率1.从标有数字1,2,6的号签中,任意抽取两张,抽出后将上面数字相乘,在10次试验中,标有1的号签被抽中4次,那么结果“12”出现的频率为( )107.51.53.52.D C B A2.某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,有关部门对某批产品进行了抽样检测,检查结果如表所示抽取球数n 50 100 200 500 1000 2000 优等品数m 45921944709541902 优等品频率mn(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)探究二、通过本例题让学生明白概率与频率的关系以及随机事件概率的求法1、利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.2、频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率反映随机事件发生的可能性的大小,有时也用频率 作为随机事件概率的估计值. 变式训练1.在掷骰子游戏中,将一枚质地均匀的骰子共抛掷6次,则点数4( ) A.一定会出现B.出现的频率为61 C.出现的概率为61 D.出现的频率为322.如图所示,A 地到火车站共有两条路径L1和L2现随机抽取100位从A 地到达火车站的人进行调查, 调查结果如下所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.类型三、事件间关系的判断1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对解析“甲分得红牌”与“乙分得红牌”不会同时发生,但分得红牌的还可能是丙或丁,所以不是对立事件.故选C.2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有一名男生”与“至少有一名女生”.解析从3名男生和2名女生中任选2人有如下三种结果 2名男生,2名女生,1男1女.(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所以它们不是对立事件.(2)“至少1名男生”包括2名男生和1男1女两种结果,与事件“全是男生”可能同时发生,所以它们不是互斥事件.(3)“至少1名男生”与“全是女生”不可能同时发生,所以它们互斥,由于它们必有一个发生,所以它们是对立事件.(4)“至少有1名女生”包括1男1女与2名女生两种结果,当选出的是1男1女时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.探究三、1.两个事件A,B是互斥事件,它们的概率有什么关系?能否通过概率关系判断两个互斥事件是否对立?如何判断?2.判断两个事件是互斥事件的关键是什么?探究提示1.P(A+B)=P(A)+P(B).可以利用概率关系判断互斥事件是否对立,如果两个互斥事件的概率和为1,则两事件对立,否则不对立.2.判断两个事件是否互斥主要看两事件能否同时发生,能同时发生不是互斥事件,不能同时发生是互斥事件.变式训练从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是( )A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”2.从装有红球和绿球的口袋内任取2球(已知口袋中的红球、绿球数都大于2),那么互斥而不对立的两个事件是( )A.至少有一个是红球,至少有一个是绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球类型四、概率加法公式的应用1.根据某医疗研究所的调查,某地区居民血型的分布为 O型50 ,A型15 ,B型30 ,AB型5 .现有一血液为A型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )A.15B.20C.45D.652.某射手在一次射击训练中,射中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中(1)射中10环或7环的概率;(2)不够7环的概率.【解析】(1)设“射中10环”为事件A,“射中7环”为事件B,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A∪B.故P(A∪B)=P(A)+P(B)=0.21+0.28=0.49.∴射中10环或7环的概率为0.49.(2)不够7环从正面考虑有以下几种情况射中6环,5环,4环,3环,2环,1环,0环,但由于这些概率都未知,故不能直接求解,可考虑从反面入手,不够7环的反面大于等于7环,即7环,8环,9环,10环,由于此两事件必有一个发生,另一个不发生,故是对立事件,可用对立事件的方法处理.设“不够7环”为事件E,则事件E为“射中7环或8环或9环或10环”,由(1)可知“射中7环”、“射中8环”等彼此是互斥事件,∴P(E)=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-P(E)=1-0.97=0.03.∴不够7环的概率是0.03.3.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下排队人数012345人及5人以上概率0.10.160.30.30.10.04求 (1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?探究四、通过本例题让学生理解应用概率加法公式的两个注意点以及利用概率的加法公式求概率的步骤.1.注意点 (1)应用概率加法公式的前提条件是事件互斥.(2)复杂事件要拆分成若干个互斥事件,化繁为简,通过公式求解.拆分时,要注意不重不漏.2.步骤 (1)确定各个事件是两两互斥的.(2)求出各个事件分别发生的概率.(3)利用公式求事件的概率.变式训练1.某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是.2.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求(1)取出1球是红球或黑球的概率; (2)取出的1球是红球或黑球或白球的概率. 答案 (1) 34 (2) 1112解析 法一 (1)从12个球中任取1球,红球有5种取法,黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.∴任取1球得红球或黑球的概率为P 1=912=34.(2)从12个球中任取1球,红球有5种取法,黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为5+4+212=1112. 法二 (利用互斥事件求概率)记事件A 1={}任取1球为红球,A 2={}任取1球为黑球,A 3={}任取1球为白球,A 4={}任取1球为绿球,则P (A 1)=512,P (A 2)=412,P (A 3)=212,P (A 4)=112. 根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件概率公式,得 (1)取出1球为红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=512+412+212=1112. 学3.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下的概率是0.07.试计算 (1)小明在数学考试中取得80分以上成绩的概率. (2)小明考试及格的概率(60分及格).4.某战士射击一次,问(1)若中靶的概率为0.95,则不中靶的概率为多少?(2)若命中10环的概率是0.27,命中9环的概率为0.21,命中8环的概率为0.24,则至少命中8环的概率为多少?不够9环的概率为多少?课堂小结1.随机事件、必然事件、不可能事件的概念.2.事件A出现的频率的意义;正确理解概率的概念,明确事件A发生的频率fn(A)与事件A 发生的概率P(A)的区别与联系.11。

《随机事件的概率》教学设计3篇

《随机事件的概率》教学设计3篇

《随机事件的概率》教学设计作为一名老师,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那要怎么写好教学设计呢?以下是小编为大家收集的《随机事件的概率》教学设计,欢迎大家分享。

《随机事件的概率》教学设计1教学目标知识目标:了解必然事件、不可能事件、随机事件的概念;理解和掌握概率的统计定义及其性质.能力目标:通过不断地提出问题和解决问题,培养学生猜测、验证等探究能力;情感目标:在探究过程中,鼓励学生大胆猜测,大胆尝试,培养学生勇于创新、敢于实践等良好的个性品质。

教学重点与难点重点:理解概率的统计定义及其基本性质;难点:认识频率与概率的区别和联系。

教学过程(一)设置情境、引入课题观察下列事件发生与否,各有什么特点?(教师用课件演示情境)(1)地球不停地转动; 必然发生(2)木柴燃烧,产生能量; 必然发生(3)在常温下,石头风化; 不可能发生(4)某人射击一次,中靶; 可能发生也可能不发生(5)掷一枚硬币,出现正面; 可能发生也可能不发生(6)在标准大气压下且温度低于0℃时,雪融化。

不可能发生定义:在条件S下可能发生也可能不发生的事件叫随机事件;在条件S下必然要发生的事件叫必然事件;在条件S下不可能发生的事件叫不可能事件。

确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示。

(二)探索实践、建构知识让我们来做两个实验:实验(1):把一枚硬币抛多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。

上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):的频数,然后计算各频率。

上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):然后请同学们再以小组为单位,统计好数据,完成表格。

投掷一枚硬币,出现正面可能性究竟有多大?(教师用电脑模拟演示)实验(2):把一个骰子抛掷多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。

随机事件的概率说课稿

随机事件的概率说课稿

频率与概率说课稿一、教材分析自然界和人类社会中出现的确定性现象有其必然的结果,而随机事件现象因其不确定性吸引着人们不断探索。

随机事件的概率是高考考查的重点,教材编排中本章放在了“统计”之后,“计数原理”之前,结合古今现实生活的实例展开的,“统计”一章让学生掌握的分析实例的统计方法为本章的学习奠定了基础,大大加强了学生的实践能力,而且为后续概率部分的学习提供了有力保证。

二、教学目标知识和技能:(1)通过试验了解随机事件发生的不确定性和频率的稳定性。

(2)利用概率知识正确理解现实生活中的实际问题。

过程与方法:(1)创设情境,引出课题,激发学生的学习兴趣和求知欲。

(2)发现式教学,通过抛硬币试验,获取数据,归纳总结试验结果。

体会随机事件发生的随机性和规律性,在探索中不断提高。

(3)明确概率与频率的区别和联系,理解利用频率估计概率的思想方法。

(4)通过对现实生活中的“掷币”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法。

.情感、态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。

(2)培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学史实渗透,培育学生刻苦严谨的科学精神。

三、教学重、难点重点:通过抛掷硬币了解概率的定义、明确其与频率的区别和联系。

难点:利用频率估计概率,体会随机事件发生的随机性和规律性。

四、学法与教学用具学法:实践教学法,指导学生做简单易行的试验,让学生自然地发现随机事件的某一结果发生的规律性。

教学用具:硬币数枚、粉笔五、教学设想六、教学过程教学环节教学程序及设计设计意图创设情境引入新课引入:以北宋大将狄青抛掷100枚铜钱的故事引入,激发学生的学习兴趣,配合实际生活中的抛掷硬币和彩票中奖的例子,设置疑问,引导学生进入到这节课要研究的问题:随机事件的概率。

创设情境激发学生兴趣、引入新课,同时说明新课来自实际生活,便于学生接受。

随机事件的概率 说课稿 教案 教学设计

随机事件的概率  说课稿  教案  教学设计
中,有些问题是能够准确回答的.例如: 明天太阳一定从东方升起吗? 明天上午第一节课一定是八点钟上课吗?这些事情的发生都是必然的. 2.从辨证的观点看问题,事情发生的偶然性与必然性之间往往存在有某种内在联系.例如:长沙地区一年四季的变化有着确定的、必然的规律,但长沙地区一年里哪一天最热,哪一天最冷,哪一天降雨量最大,那一天下第一场雪等,都是不确定的、偶然的. 3.数学理论的建立,往往来自于解决实际问题的需要.对于事情发生的必然性与偶然性,及偶然性事情发生的可能性有多大,我们将从数学的角度进行分析与探究.
课题
随机事件的概率
课型
新课
教学目标
(1)了解必然事件、不可能事件、随机事件的概念;
(2)理解频率的稳定性及概率的统计定义.
(3)发现法教学,通过学生在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解概率和频率的关系.从而培养学生从试验中归纳出一般规律的能力以及学生动手能力与解决实际问题的能力.
思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?
通过大量重复试验得到事件A发生的频率的稳定值,即概率.
思考7:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率P(A)是否一定相等?
(6)随机选取一个实数x,得|x|≥0.
例2某射手在同一条件下进行射击,结果如下表所示:
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
小结评价
频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标:1. 知识与能力:让学生掌握随机事件、概率的基本概念,了解概率的计算方法和应用。

2. 过程与方法:通过教学设计,引导学生使用数学的思维方式解决实际问题,培养学生的逻辑思维和数学建模能力。

3. 情感态度与价值观:培养学生对数学的兴趣,增强学生对概率的认识和应用能力。

二、教学内容:1. 随机事件的概念:介绍随机事件的定义和特征,引导学生了解随机事件的概念和分类。

2. 概率的基本概念:通过例题和实例,让学生了解概率的含义和基本性质,引导学生学会计算简单概率。

3. 概率的计算方法:介绍古典概率和几何概率的计算方法,通过实例让学生了解概率计算的基本步骤和技巧。

4. 概率的应用:通过实际问题和案例,引导学生了解概率在现实生活中的应用场景,培养学生运用概率解决问题的能力。

三、教学过程:1. 导入环节:通过引入一些有趣的概率问题,引起学生的兴趣,如投硬币的概率问题,随机抽奖的概率问题等。

5. 练习与检测:设计一些练习题和测试题,让学生熟练掌握概率计算方法,检测学生的学习效果。

6. 总结与展望:对本节课的内容进行总结,展望下一节课的内容,引导学生对概率知识进行深入学习和探索。

四、教学方法:1. 启发式教学法:通过提出问题和引导思考,启发学生对概率问题的思考和解决。

2. 实例分析法:通过具体的例题和实例,引导学生掌握概率的计算方法和应用技巧。

3. 讨论交流法:通过小组讨论和师生互动,引导学生积极参与教学活动,共同解决难题。

五、教学手段:1. 多媒体教学:利用多媒体教学手段,向学生展示生动有趣的例题和案例,提高学生的学习兴趣和参与度。

2. 实物教具:通过一些实物教具,如纸牌、硬币等,进行概率实验和展示,让学生直观地感受概率问题。

3. 教学软件:利用一些数学软件,如Geogebra、MathType等,进行概率计算和图形展示,帮助学生更好地理解概率知识。

4. 小组讨论:组织学生进行小组讨论活动,促进学生之间的思想碰撞,激发学生学习兴趣和动力。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

随机事件的概率》教学设计**市第**中学****随机事件的概率》教学设计教材:北师大版高中《数学》必修3第三章第一节第一课时授课教师:**市第**中学***一、教学背景分析1.教材分析:新教材在教学内容的编排上,采用了模块化、螺旋上升的方式,学生在初中阶段已经接触过随机事件、不可能事件、必然事件的概念,在必修三第一章学生刚刚又学习了统计的内容,了解了频数、频率等概念,因此本节课是对已学内容的深化和延伸;同时,本节课对于后面学习的古典概型、几何概型以及选修2-3离散型随机变量的分布列等内容又是一个铺垫,具有承上启下的地位。

2.学情分析:学生在初中阶段学习了概率的初步知识,对频率与概率的关联有一定的认识,对于高二的学生,他们具备了一定的观察、归纳、概括能力,但他们不知道如何利用频率去估计概率,这是教学中的一大难点;另外,随机事件发生的随机性和规律性是如何辩证统一的,这是教学中的又一大难点.二、教学目标设计1、知识与技能目标:(1)进一步认识随机现象,了解随机事件发生的不确定性和频率的稳定性;(2)正确理解概率的统计定义,明确概率与频率的区别和联系,掌握利用频率估计概率的思想方法;(3)通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,使学生对对立统一的辨证关系有进一步的认识.2、过程与方法目标:(1)通过动手试验,体会随机事件发生的随机性和规律性;(2)在试验、探究和讨论过程中,学会利用频率估计概率的思想方法.3、情感态度与价值观目标:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性与必然性的对立统(3)通过本节课浓厚的生活背景,指导学生形成正确的价值观和人生观.根据上述教材背景分析,结合教学大纲和学情分析,我确立了如下的教学重点、难点:三、教学重难点(1)重点:通过抛掷硬币试验了解概率的统计定义、明确其与频率的区别和联系;(2)难点:利用频率估计概率,体会随机事件发生的随机性和规律性.四、教法学法设计针对本节课的特点,在教法上,采用以教师为主导,学生为主体的探究式教学方法;在教学过程中,注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟;在教学手段上,我灵活运用黑板板书和多媒体展示,激发学生的创造力,活跃了气氛,加深了理解.教学用具:硬币数十枚,表格,幻灯片,计算机及多媒体教学.五、教学基本流程:创设情境、引入新知合作交流、探究新知自主练习、应用新知课堂小结、再现新知课下探究、拓展新知六、教学情境设计:(一)创设情境,引入新知导入语:我们生活的世界充满着不确定性,从抛硬币、玩扑克等简单的游戏,到复杂的社会现象;从体育比赛,到大自然的千变万化,我们无时无刻不面临着不确定性,正因为不确定性的存在,而让我们的生活变得丰富多彩。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标1. 知识与技能:学生能够掌握随机事件的概率概念和基本原理,能够利用概率公式解决简单的概率问题。

2. 过程与方法:学生能够通过观察、实验和计算,了解随机事件的规律,并能够运用数学知识解决实际问题。

3. 情感态度与价值观:培养学生对数学的兴趣,增强他们对数学的信心,使他们了解数学在日常生活中的应用。

二、教学内容1. 随机事件的概念,随机事件的分类2. 概率的基本原理和性质3. 概率的计算方法4. 概率在日常生活中的应用三、教学重点和难点重点:随机事件的概念和概率的计算方法难点:概率的计算方法的运用四、教学方法和手段1. 讲授法:通过简单清晰的语言和例题,让学生了解随机事件的概念和基本原理。

2. 实验法:通过实际的实验操作,让学生亲自感受随机事件的规律。

3. 综合法:通过案例分析和讨论,让学生了解概率在日常生活中的应用。

五、教学过程1. 创设情境教师通过介绍某次抽奖活动的中奖规则,引出随机事件概率的概念。

让学生通过猜测自己中奖的概率,引发对概率的思考。

2. 教师讲解教师通过简单明了的语言,向学生介绍随机事件的概念、概率的基本原理和性质。

3. 实验操作教师设计一些简单的实验,让学生通过实际操作,了解随机事件的规律。

比如抛硬币的实验、掷骰子的实验等。

4. 计算概率教师向学生介绍概率的计算方法,并通过例题进行讲解,让学生掌握概率的计算方法。

5. 案例分析教师通过日常生活中的一些实例,让学生了解概率在现实生活中的应用,如购彩、抽奖、比赛等。

6. 练习教师布置一些练习题,让学生巩固所学的知识,并通过批改作业的方式检查学生的学习情况。

七、教学工具1. 实验器材:硬币、骰子等2. 教学课件:包括随机事件的概念、概率的计算方法等内容3. 教学案例:购彩、抽奖等实际案例八、教学评价1. 学生的日常表现:学生在课堂上的表现及实验操作的情况2. 练习成绩:学生完成的练习题的成绩3. 教学效果:学生对概率概念和计算方法的掌握情况九、教学反思在教学过程中,要注重培养学生的实际动手操作能力,让他们通过实验和计算,探究随机事件的规律。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计1. 引言1.1 背景介绍随机事件的概率是概率论中非常重要的一个概念,它在各个领域都有着广泛的应用。

随机事件是指在一定条件下发生的不确定的事件,而概率则是用来描述这些随机事件发生的可能性大小。

在数学教学中,教授学生如何理解和计算随机事件的概率是至关重要的。

随机事件的概率教学能够帮助学生建立正确的数学思维方式,培养他们的逻辑思维能力和解决问题的能力,同时也有助于培养学生对数学的兴趣和学习动力。

随机事件的概率教学还可以帮助学生更好地理解现实生活中的各种随机事件,并能够用数学的方法进行分析和求解。

通过本教学设计,学生将能够全面了解随机事件的概率概念,并掌握相关的理论知识和计算方法。

通过实例演练和练习题讲解,学生将能够巩固所学知识,提高解决问题的能力。

课堂互动环节将促进学生之间的交流和思维碰撞,激发学生的学习兴趣和活跃课堂氛围。

通过推荐相应的教学资源,学生可以进一步拓展对随机事件的概率的理解和应用。

1.2 教学目标教学目标旨在帮助学生深入理解随机事件的概率相关知识,掌握概率计算的基本方法和技巧。

具体目标包括:1. 理解随机事件、概率和概率的基本性质;2. 掌握概率的计算方法,包括频率法、几何法和古典概率法;3. 能够灵活运用概率理论知识解决实际问题;4. 培养学生的逻辑思维能力和数学建模能力;5. 提高学生的数学应用能力和解决问题的能力。

通过本课程的学习,学生将能够在实际生活中应用概率知识,从而更好地理解和适应随机事件的发生,提高自身的数学素养和应用能力。

希望通过本次教学设计,能够激发学生的学习兴趣,达到以上教学目标。

1.3 教学方法教学方法是教师在进行课堂教学过程中所采用的方法和策略,是实现教学目标的重要手段。

在教授随机事件的概率这一课题时,教师可以采用多种教学方法来激发学生的学习兴趣和提高他们的学习效果。

一种有效的教学方法是启发式教学法,通过引导学生提出问题、自主探究、发现规律的方式,引发学生思考和互动,培养他们的逻辑思维能力和问题解决能力。

2024年《随机事件的概率》公开课教案

2024年《随机事件的概率》公开课教案

2024年《随机事件的概率》公开课教案一、教学内容本节课选自高中数学教材《概率与统计》第二章《随机事件的概率》第1节。

内容包括:随机事件的定义,事件的关系与运算,概率的定义及其性质,等可能事件的概率计算。

二、教学目标1. 理解并掌握随机事件的定义,能区分不同类型的随机事件。

2. 掌握事件的关系与运算,能正确进行事件的并、交、补运算。

3. 理解概率的定义及其性质,掌握等可能事件的概率计算方法。

三、教学难点与重点重点:随机事件的定义,事件的关系与运算,概率的定义及其性质,等可能事件的概率计算。

难点:事件的并、交、补运算,等可能事件的概率计算。

四、教具与学具准备1. 教具:PPT,黑板,粉笔。

2. 学具:教材,练习本,计算器。

五、教学过程1. 实践情景引入(5分钟)利用PPT展示抛硬币、掷骰子、抽签等实际情景,引导学生思考这些活动中包含的随机现象。

2. 知识讲解(10分钟)介绍随机事件的定义,通过示例使学生理解并区分不同类型的随机事件。

讲解事件的关系与运算,通过例题使学生掌握并、交、补运算。

3. 概率定义及其性质(10分钟)引出概率的定义,讲解概率的三个性质。

结合具体例子,使学生理解概率的含义。

4. 等可能事件的概率计算(10分钟)介绍等可能事件的概率计算方法,通过例题讲解,使学生掌握如何求解等可能事件的概率。

5. 随堂练习(5分钟)出示练习题目,让学生独立完成,巩固所学知识。

七、作业设计1. 作业题目:(1)判断下列事件是否为随机事件,并说明理由。

抛掷两枚硬币,求得到两个正面的概率。

从一副扑克牌中随机抽取一张,求得到红桃的概率。

(3)某班有30名学生,其中有男生18名,女生12名。

随机选取3名学生,求选取的学生中至少有一名女生的概率。

2. 答案:(1)略。

(2)1/4;1/4。

(3)19/20。

八、课后反思及拓展延伸1. 反思:本节课学生对随机事件的定义、事件的关系与运算掌握较好,但在等可能事件的概率计算上存在一定难度,需要在课后加强巩固。

随机事件的概率教案

随机事件的概率教案

随机事件的概率教案【随机事件的概率教案】一、引言随机事件的概率是概率论的基础概念之一,它在现代科学和日常生活中都有广泛的应用。

本教案旨在通过具体的案例和实践活动,匡助学生理解随机事件的概念、计算概率的方法以及概率在实际问题中的应用。

二、教学目标1. 理解随机事件的概念和基本术语;2. 掌握计算随机事件的概率的方法;3. 能够运用概率理论解决实际问题。

三、教学内容1. 随机事件的概念1.1 随机事件的定义:随机事件是指在一定条件下,可能发生也可能不发生的事情。

1.2 样本空间和事件:样本空间是指随机试验所有可能结果的集合,事件是样本空间的一个子集。

1.3 事件的分类:必然事件、不可能事件、简单事件和复合事件。

2. 计算概率的方法2.1 经典概型:指样本空间中所有基本事件的概率相等的情况。

2.2 频率概率:指通过实验统计数据计算概率的方法。

2.3 几何概型:指利用几何图形计算概率的方法。

2.4 古典概型:指利用罗列组合等数学方法计算概率的方法。

3. 概率在实际问题中的应用3.1 生活中的概率问题:如掷骰子、抽奖等。

3.2 统计学中的概率问题:如抽样调查、统计判断等。

3.3 金融领域的概率问题:如股票涨跌、投资收益等。

四、教学方法1. 讲授法:通过讲解理论知识,引导学生理解随机事件的概念和计算概率的方法。

2. 案例分析法:通过具体案例,匡助学生掌握概率在实际问题中的应用。

3. 实践活动:设计一些实践活动,让学生亲自进行概率计算和实际问题的解决,提高学生的动手能力和实际运用能力。

五、教学过程1. 导入:通过一个生活中的例子引入随机事件的概念,如抛硬币的结果。

2. 理论讲解:讲解随机事件的定义、样本空间和事件的概念,以及概率的计算方法。

3. 案例分析:通过一些实际案例,引导学生运用概率理论解决问题,如抽奖中奖的概率计算、掷骰子的概率计算等。

4. 实践活动:设计一些实践活动,让学生自己进行概率计算和实际问题的解决,如设计一个抽奖游戏、进行一次投资决策等。

随机事件的概率 说课稿 教案 教学设计

随机事件的概率  说课稿  教案 教学设计

随机事件的概率教学目标:1.通过在抛硬币等试验获取数据,了解随机事件、必然事件、不可能事件的概念.2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.教学重点:理解随机事件发生的不确定性和频率的稳定性.教学难点:理解频率与概率的关系.教学方法:讲授法课时安排1课时教学过程一、导入新课:在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.(故事略)在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.二、新课讲解:1、提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.注:以上3问初中已经学习了.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?观察:(1)掷一枚硬币,出现正面;(2)某人射击一次,中靶;(3)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.2、活动做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下思考:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步 由组长把本小组同学的试验结果统计一下,填入下表.思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步 把全班实验结果收集起来,也用条形图表示.思考:这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.思考:如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数A n 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.三、课堂练习:四、课堂小结:本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A 的概率),这个常数越接近于1,事件A 发生的概率就越大,也就是事件A 发生的可能性就越大.反之,概率越接近于0,事件A 发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.。

《随机事件的概率》教案

《随机事件的概率》教案

《随机事件的概率》教案一、教学内容本节课选自人教版《普通高中数学课程标准实验教科书·数学》必修3第2章“随机事件的概率”第1节。

详细内容包括:1. 随机事件的定义及分类;2. 概率的定义及性质;3. 概率的计算方法,包括理论计算和频率估计;4. 古典概型及其概率计算。

二、教学目标1. 让学生理解随机事件的定义,能够正确区分随机事件、必然事件和不可能事件;2. 让学生掌握概率的定义和性质,能够运用概率的计算方法解决实际问题;3. 让学生掌握古典概型的特点,能够熟练运用排列组合知识进行古典概型的概率计算。

三、教学难点与重点教学难点:随机事件的分类、概率的计算方法、古典概型的概率计算。

教学重点:随机事件的定义、概率的性质、概率的计算方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入利用多媒体展示抛硬币、掷骰子、抽签等实际场景,引导学生思考这些事件的特点,从而引出随机事件的定义。

2. 理论讲解(1)随机事件的定义及分类;(2)概率的定义、性质及计算方法;(3)古典概型的特点及概率计算。

3. 例题讲解(1)判断下列事件是否为随机事件、必然事件或不可能事件;(2)计算古典概型的概率问题;(3)频率估计概率问题。

4. 随堂练习(1)填空题:随机事件、必然事件、不可能事件的判断;(2)选择题:概率的性质;(3)计算题:古典概型的概率计算。

六、板书设计1. 随机事件的定义及分类;2. 概率的定义、性质及计算方法;3. 古典概型的特点及概率计算;4. 例题及解题方法。

七、作业设计1. 作业题目(1)判断下列事件是否为随机事件、必然事件或不可能事件;(2)计算古典概型的概率问题;(3)频率估计概率问题。

2. 答案(1)随机事件:A、C;必然事件:B;不可能事件:D;(2)解答过程及答案;(3)解答过程及答案。

八、课后反思及拓展延伸1. 反思:本节课学生对随机事件的分类掌握较好,但在古典概型概率计算方面还需加强练习;2. 拓展延伸:引导学生思考现实生活中的随机事件,尝试运用所学知识解决实际问题,提高学生的应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机现象教学目标:了解随机现象,概率论的历史教学重点:了解随机现象,概率论的历史教学过程:1.从随机现象说起在自然界和现实生活中,一些事物都是相互联系和不断发展的。

在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。

这类现象是在一定条件下,必定会导致某种确定的结果。

举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾。

事物间的这种联系是属于必然性的。

通常的自然学各学就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律。

另一类是不确定性的现象。

这类现象是在一定条件下,它的结果是不确定的。

举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。

又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。

为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先一一能够掌握的。

正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。

事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。

在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。

比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。

因此,我们说:随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。

随机现象这种结果的不确定性,是由于一些次要的、偶然的因素影响所造成的。

随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。

但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。

大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。

比如掷硬币,每一次投掷很难判断是那一面朝上,但是如果多次重复的掷这枚硬币,就会越来越清楚的发现它们朝上的次数大体相同。

我们把这种由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。

概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学。

2.概率论的产生和发展概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢m局就算赢,全部赌本就归谁。

但是当其中一个人赢了a局赌本如何分配?三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。

近几十年来,随着技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学领域。

许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。

课堂练习:第98页,练习A,练习B小结:通过本届课的学习我们了解随机现象,概率论的历史课后作业:略3.1.2事件与基本事件空间教学目标:理解事件与基本事件的定义,会求试验中的基本事件空间以及事件A包含的基本事件的个数. 教学重点:基本事件与基本事件空间的概念.只有理解了基本事件的定义,才能准确的找出试验的基本事件空间.教学难点:在实际问题中,正确的求出试验中事件A包含的基本事件的个数和基本事件空间中的基本事件的总数.写基本事件空间的方法比较多,如何能快速有效地解决问题是课堂教学的难点.学情分析及教学内容分析:概率这一章与其他章节的联系不大,并且与实际生活息息相关,如彩票中奖等,所以学生的学习兴趣非常高,学习热情高涨.但班级学生之间的差异较大,思维灵活的学生学起来游刃有余,而思维慢一点的学生则感觉这部分内容比较抽象,学的比较吃力.本节内容是古典概型的基础,只要掌握熟练,就可以应用公式快速地求出古典概型的概率值.教学过程:一、创设情境,导入新课以一个出手指的小游戏导入新课.每位同学可以伸出1 5根手指,同位俩像玩剪刀、石头、布一样伸出自己的手指数,记下自己的数字.游戏规则是:将两人的数字相加,和为6算坐在南排的同学赢,和不为6算北排的同学赢.游戏结束后,统计输赢情况.问题1:这个游戏规则公平吗?小组讨论.(学情预设)小组代表1:这种游戏规则不公平,和为6可能性小,和不为6可能性大.小组代表2:两人出手指,手指数之和可以是2,3,4,5,6,7,8,9,10.和为6只是其中一种情况,和不为6胜算大.对学生回答给予肯定,并提出问题2:两人出手指,所有可能的结果究竟有哪些?“和为6”包含了哪些结果?“和不为6”又包含了哪些结果呢?为了解决这个问题,我们先来学习几个概念.设计意图:用游戏引起学生的兴趣,从具体的情景入手调动学生思维的积极性和活跃性.问题2的提出贯穿课堂始终,成为整堂课的主线,并且强化了教学目标.二、问题牵引,生成概念问题3:观察下列试验和试验的结果,分析它们的特点试验一:在10个同类产品中有8个正品,2个次品,从中任意抽出3个检验,观察出现的正次品数.结果1:“抽到3个次品”结果2:“抽到至少1个正品”结果3:“抽到2个正品,1个次品”试验二:小明进行投篮练习,投篮5次结果1:“投进6次”结果2:“投进次数小于6”结果3:“投进4次”(学情预设)同学A:两个实验的结果1都是不可能发生的,结果2都是一定会发生的,结果3是可能发生也可能不发生的.由同学A的回答给出不可能事件、必然事件与随机事件的定义,并强调用大写英文字母A、B、C等来表示随机事件.问题4:同学们,你能举出生活中的一些不可能事件、必然事件与随机事件吗?(学情预设)同学自由发言,师生共同点评.设计意图:有具体事例引入定义,通俗易懂,水到渠成.由同学举例能加深对概念的理解,并且能活跃课堂气氛.问题5:观察下列实验,每一个试验可能出现的结果都有哪些?试验1:掷一枚硬币,观察硬币落地后哪一面朝上.试验2:掷一颗骰子,观察掷出的点数.(学情预设)同学B:试验1有两个结果,正面向上、反面向上.试验2有六个结果,1点,2点,3点,4点,5点,6点.点评:以上这些结果都是实验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件我们称之为基本事件,所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω来表示.如试验2中Ω={}6,5,4,3,2,1问题6:那么掷两枚不同的硬币,基本事件有哪些呢?小组讨论.(学情预设)小组代表3:有3个基本事件,两正,两反和一正一反.小组代表4:不对,有4个基本事件,正正,反正,正反,反反.结合学生发言总结:代表4说的很正确,我们通常把这样的结果表示为Ω{})=,正,反正,正.,,反,反))((()(反,正问题7:那么“一正一反”为什么不是基本事件呢?拿出事先准备好的一枚5角硬币和一枚1元硬币,现场演示,掷出“一正一反”.(学情预设)同学C :可以清楚的看到“一正一反”包括“5角正面向上、1元反面朝上”和“5角反面朝上、1元正面朝上”两个基本事件,它是可以再分的.因此“一正一反”是一个随机事件,但不是基本事件.肯定同学C 的回答,进而指出若记事件A =“掷出一正一反”,则A ={})(正,反),(反,正. 问题8:在上题中,记事件B =“至少有一次出现正面”,则B =?(学情预设)同学D :B ={})反,正),(正,反),(正,正(总结:(1)如果掷两枚不同的硬币,出现了集合B 中的某个基本事件,比方说出现了(正,正),我们就说事件B 发生了,否则,就说事件B 没有发生.(2)随机事件是基本事件空间的子集.如上A 、B 是Ω的子集.设计意图:先用简单的例子引出基本事件,再用两枚硬币的试验加深对基本事件的理解.让学生在具体的情景中体会基本事件与一般的随机事件的区别与联系.问题串的设计能紧紧抓住学生的思维,使课堂生动有序.三、巩固概念,学习例题例1:一个盒子中装有10个完全相同的球,分别标以1,2,3,…,10,从中任取一球观察球的号码,写出这个试验的基本事件和基本事件空间.解:这个试验的基本事件是取得的小球号码为i ,i=1,2, (10)基本事件空间Ω={}10,,2,1 .例2:连续掷3枚硬币,观察落地后这3枚硬币的正反面情况.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?思考片刻后,分组讨论,请小组代表板演(1),并讲述自己的思路.(学情预设)小组代表5:“我在两枚的基础上做,以问题6的结果作为第1次和第2次所抛硬币的结果,把第3次的结果加在后面,第3次的结果有两种,正或反.所以Ω={(正,正,正),(正,正,反),(反,反,正),(反,反,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反)}.”小组代表6:“按照正面向上的次数的多少来写,分为有3次为正,有2次为正,有1次为正,有0次为正,所以Ω={(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)}.”小组代表7:“我觉得用树形图更清楚.第一行是第一次掷的结果,第二行是第二次掷的结果,第三行是第三次掷的结果.对照板演,点评(2)、(3)问.设计意图:小组讨论,能拓展学生的思路,增强合作探究的能力.请小组代表讲解,可以有很好的示范性与带动性,提高学生的课堂参与度.用该例题进一步巩固基本事件与一般随机事件的区别.例3:做投掷红、蓝2颗骰子的试验,用(x,y)表示结果,写出(1)基本事件空间;(2)事件A“出现的点数相等”;(3)事件B “出现的点数之和等于8”;(4)事件C “出现的点数之和大于8”;(5)事件D “点(x,y )落在圆1622=+y x 内”.请同学们独立思考,并解答.用课件演示出规范列法并用flash 演示了点数之和的规律性.问题9:你现在能回答问题2吗?请同学板演并讲解.(学情预设)同学E :Ω={(1,1)(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3)(2,4)(2,5)(3,1)(3,2)(3,3)(3,4)(3,5)(4,1)(4,2)(4,3)(4,4)(4,5)(5,1)(5,2)(5,3)(5,4)(5,5)}记“和为6”为事件A ,则A ={(1,5),(2,4),(3,3),(4,2),(5,1)}讲解:“和为6”包含了6个基本事件, “和不为6”包含了19个基本事件,所以“和不为6”发生的可能性大,游戏规则确实有失公平.设计意图:用例3规范这一类基本事件空间的列法,并且要学会寻找规律.用引例中的问题做为练习进一步巩固例3的方法,并为古典概型的引入埋下伏笔.四、课堂小结,布置作业问题10:同学们,通过这节课的探讨,你都有哪些收获?(学情预设)同学F :我知道了什么是不可能事件、必然事件和随机事件;什么是基本事件,它是试验中不能再分的、最简单的随机事件,其他事件可以用它们来描绘.同学G 补充:我会求试验的基本事件空间以及某个随机事件所包含的基本事件.同学H 补充:我会列掷1枚、2枚、3枚硬币的基本事件空间以及掷1颗、2颗骰子的基本事件空间.同学I补充:我知道出手指这个游戏规则不公平,“和不为6”胜算大.课件演示归纳课堂小结内容.p练习A 1、3及练习B作业:94思考题:袋中有标号为1,2,3,4的四个大小相同小球,写出下列试验的基本事件空间.(1)从袋中一次性任取两球;(2)从袋中不放回地先后各取一球;(3)从袋中有放回地先后各取一球.设计意图:同学自由发言既锻炼了学生的语言组织能力和表达能力,又加深学生所学内容的理解与巩固,一举两得.课后习题及思考题的配备能有效地巩固本节课的重、难点,并为下一节打下基础.3.1.3频率与概率教材分析频率与概率是两个不同的概念,但是二者又有密切的联系.如何从二者的异同点中抽象出概率的定义是本案例的主要内容.本节课蕴涵了具体与抽象之间的辩证关系.讲授过程中对教材处理稍有不当,可能直接影响学生对本节重点(即概念的理解)的掌握程度.因此,如何设计合适的实例,怎样引导学生理解和总结是处理好本节的关键,也是处理好本节教材的难点.教学目标通过本节课教学,使学生能理清频率和概率的关系,并能正确理解概率的意义,增强学生的对立与统一的辩证思想意识.任务分析由于频率在大量重复试验的前提下可以近似地叫作这个事件的概率,因此本节课应从具有大量重复试验的实例入手.为加深学生的理解程度,可采用学生亲自参与到试验中去,从操作中去体会,去总结.概率可看作频率理论上的期望值,从数量上反映了随机事件发生的可能性大小.因此,为巩固学生总结出的知识,最后还要回归到实例中去,让学生去运用,以符合认知过程.教学设计一、问题情境在日常生活中,我们经常遇到某某事件发生的概率是多少,如2004年2月5日《文汇报》登载的两则消息.本报讯记者梁红英报道:2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时投中10注一等奖,独揽48571620元巨额奖金,创下中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”2004015期开奖号码完全一致.本报讯记者江世亮报道:……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此,记者于昨日午夜电话连线采访了本市一位数学建模专家,他说,以他现在不完全掌握的情况来分析,像这名幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗地讲就是接近于零.对文中的“万亿分之一”我们怎样理解呢?再如:天气预报说“明天降雨的概率是80 ,我们明天出门要不要带伞?收音机里广播报道2004年冬某地“流行性感冒的发病率为10 ”,我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80 ,10 等,我们该作何理解呢?二、建立模型为了解决诸如以上的实际问题,我们不妨先从熟悉的频率的概念入手.首先,将全班同学平均分成三组,第一组做掷硬币试验,次数越多越好,观察掷出正面向上的次数,然后把试验结果和计算结果分别填入下表.表28-1()第二组做抓阄试验.写五个阄,即分别标号为1,2,3,4,5,有放回地抓,每次记录下号数,次数越多越好.不妨统计一下各号数所占频率.第三组做摸围棋子试验.预先准备黑、白围棋子若干,然后给该组学生黑子30粒,白子10粒,让该组学生有放回地摸,次数为100次,每次摸出1粒,并记录下每次摸到的棋子的颜色,求出白子出现的频率.试验结束,让各组学生回答试验结果.第一组正面向上的频率必然接近,第二组结果肯定是每个号出现的频率接近,而第三组结果肯定位于附近.各组学生所得结果可能大于预定数,也可能小于预定数,但都比较接近.让学生讨论:出现与上述结果比较接近的数字受何因素影响?(学生思考,讨论,教师投影以下表格)历史上有些学者还做了成千上万次掷硬币的试验,结果如下表所示:表28-2)正面向上的频率()观察上表后,引导学生总结:在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度的越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.通过三组试验,我们可以发现:虽然,,三个数值不等,但是三个试验存在共性,即随机事件的频率随试验次数的增加稳定在某一数值附近.同时还可看出,不同的随机事件对应的数值可能不同.我们就用这一数值表示事件发生的可能性大小,即概率.(引出概率定义)定义可采用学生口述、教师补充的方式,然后可以投影此定义:一般地,在n次重复进行的试验中,事件A 发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆度幅度越来越小,这时就把这个常数叫作事件A的概率,记为P(A).学生可考虑如下问题:(1)概率P(A)的取值范围是什么?(2)必然事件、不可能性事件的概率各是多少?(3)频率和概率有何关系?其中重点是问题(3),应启发、引导学生总结出:在大量重复试验的前提下,频率可以近似地称为这个事件的概率,而概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小.为加深对二者关系的理解,可以进行如下类比:给定一根木棒,谁都不怀疑它有“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”值.这里测量值就像本节中的频率,“客观”长度就像概率.概率的这种定义叫作概率的统计定义.在实践中,经常采用这种方法求事件的概率.三、解释应用[例题]1. 把第三组试验中的黑棋子减少10粒,即20粒黑子,10粒白子,那么摸到黑子的概率约为多少?学生通过多次试验,可以发现此概率约为.2. 为确定某类种子的发芽率,从一批种子中抽出若干批做发芽试验,其结果如下:表28-3发芽率()从以上的数据可以看出,这类种子的发芽率约为0.9.[练习]某射击手在同一条件下进行射击,结果如下:表28-4击中靶心频率()(1)计算表中击中靶心的各个频率.(表中各频率分别为0.8,0.95,0.88,0.92,0.89,0.91)(2)这个射手射击一次,击中靶心的概率约是多少?(由此(1)可知,这个射手射击一次,击中靶心的概率约是0.9)四、拓展延伸“某彩票的中奖概率为”是否意味着买1000张彩票就一定能中奖?从概率的统计定义出发,我们先来考虑此题的简化情形:在投掷一枚均匀硬币的随机试验中,正面出现的概率是,这是否意味着投掷2次硬币就会出现1次正面呢?根据经验,我们投掷2次硬币有可能1次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,如掷10000次硬币,则出现正面的次数约为5000次.买1000张彩票相当于做1000次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以“彩票中奖概率为”并不意味着买1000张彩票就一定能中奖.只有当所买彩票的数量n非常大时,才可以将大量重复买彩票这个试验看成中奖的次数约为(比如说买1000000张彩票,则中奖的次数约为1000),并且n越大,中奖次数越接近于.由此我们可以说,对于小概率事件,从理论上来讲,发生的可能性很小,甚至在一定条件下可能不会发生.但是,实际上小概率事件仍有发生的可能,如本节开头提到的万亿分之一的概率事件就发生了.点评针对这节课以概念为主,而又抽象的特点,案例设计了以学生动手试验为主,引导学生体会概念的教学方法,同时对这节中较抽象的内容:频率和概率的关系做了形象的类比,以便学生理解.这篇案例增加了试验内容,其目的是更有力地帮助学生理解定义.另外,例题与练习的配备有利于学生加深对这节内容的理解.因此,这节课的整体设计符合学生对新知识认识的规律,符合新课程标准的精神.3.1.4概率的加法公式【教学目的】使学生了解概率加法公式的应用范围和具体运算法则。

相关文档
最新文档