沪科版-数学-八年级上册-易错点突破和重难点解析
沪科版初二数学知识点总结
初二上学期数学知识点归纳分式方程一、理解定义1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四总结”3、增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根;注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
八年级上册数学知识点沪科版1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的所有点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形初二数学复习方法按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
八年级上数学知识点沪教版
八年级上数学知识点沪教版数学作为一门基础学科,对于每个人的学习和生活都有着至关重要的作用。
在八年级数学学习中,需要掌握一些基本的知识点。
本文将从各章节的角度出发,总结八年级上数学知识点。
1. 整式的加减乘除在学习整式的加减乘除中,需要了解如何化简整式、如何将整式因式分解、整式除法等。
其中,整式因式分解是该章节的难点。
需要掌握二次差、三次差、平方差等基本的公式与技巧。
2. 一次函数及其应用一次函数是线性函数的一种,它的重要性在于可以用来描述很多实际问题,如直线运动、比例关系等。
在学习一次函数及其应用中,需要了解函数的定义、函数的性质、函数的图像、函数的应用等内容。
3. 二元一次方程组的解法二元一次方程组是一类比较典型的方程组,也是中学数学中较为基础的知识点。
在学习二元一次方程组的解法中,需要掌握变量消元法、代入法、加减法等解法。
4. 角的概念与性质角是图形中非常重要的一个概念,如三角形的面积、正方形的对角线长度等都涉及到了角的概念。
在学习角的概念与性质中,需要了解角的定义、角的分类、角的度量、角的平分线、相似三角形等内容。
5. 三角形的面积三角形是中学数学中最基本的图形之一,它的面积计算是中学数学中非常重要的一个知识点。
在学习三角形的面积时,需要了解高度定理、海伦公式、正弦定理、余弦定理等内容。
6. 等比数列及其应用等比数列是数学中常见的一种数列,其应用非常广泛。
在学习等比数列及其应用时,需要了解等比数列的概念、通项公式、求和公式等。
7. 数据的收集和整理在现实生活中,经常需要对数据进行收集和整理,以便更好地进行分析与研究。
在学习数据的收集和整理时,需要了解数据的搜集方法、数据的分类方法、数据的整理方法等内容。
以上就是八年级上数学知识点的整体总结。
这些知识点虽然基础,但它们是未来学习中的重要基础,在掌握它们的基础上,将能更轻松地学习和应用更高深的数学知识。
2024年沪科版八年级数学上册知识点总结
2024年沪科版八年级数学上册知识点总结一、有理数的加减乘除运算1. 有理数的加法运算:同号相加,异号相减。
将分子分母化为最简整数形式,要注意约分。
2. 有理数的减法运算:减去一个数等于加上这个数的相反数。
3. 有理数的乘法运算:同号得正,异号得负。
将分子分母化为最简整数形式,要注意约分。
4. 有理数的除法运算:除以一个数等于乘以这个数的倒数。
5. 有理数的四则运算综合运用。
二、平方根与立方根1. 平方根:给定一个非负实数a,且a≥0,开根号的结果称为a的平方根。
记作√a。
2. 整数的平方根:如果一个整数的平方等于一个非负整数,那么这个非负整数就是该整数的平方根;否则,这个整数没有平方根。
3. 立方根:给定一个实数a,开立方根的结果称为a的立方根。
记作3√a。
三、带有根号的计算1. 同底数的相加相减:进行根号运算时,同底数的根号可以相加相减,底数不变。
2. 同底数的乘方:进行根号运算时,同底数的根号可以进行乘方运算,即合并同底数的指数。
3. 分数的根号运算:分子分母同时进行根号运算,然后约分,也可以先约分再进行根号运算。
四、代数式1. 代数式的定义:用字母表示数的式子,包含一个或多个字母和常数、运算符号组成。
2. 代数式的值:为了求代数式的值,需要给字母赋予特定的数值,将字母用数代替,然后进行计算。
3. 代数式的运算:常用的代数式运算有加法、减法、乘法和除法。
五、线性方程与方程的解1. 线性方程:只含有一次幂的方程称为线性方程。
2. 化简与解方程:对于方程要进行化简,恢复原来的形式,再解方程。
3. 解方程的方法:常用的解方程的方法有相加相减法、代入法、等式交换法和系数分离法。
六、百分数1. 百分数的概念:以分号“%”表示,百分数等于百分数的百分之一。
2. 百分数与小数的互相转化:将百分数转化为小数,就是将百分号去掉,除以100;将小数转化为百分数,就是乘以100再加上百分号。
3. 百分数的应用:常用的百分数应用有百分数的简化、比较大小和求百分数。
最新(沪科版)八年级数学上册知识点总结
最新(沪科版)八年级数学上册知识点总结
本文档对最新(沪科版)八年级数学上册的知识点进行了总结,旨在帮助学生回顾和巩固所学的数学知识。
第一章:整数
- 整数的定义和性质
- 整数的加法和减法运算
- 整数的乘法和除法运算
- 整数的应用问题解决
第二章:小数
- 小数的概念和性质
- 小数的加法和减法运算
- 小数的乘法和除法运算
- 小数的应用问题解决
第三章:代数式
- 代数式的概念和性质
- 代数式的加法和减法运算
- 代数式的乘法和除法运算
- 代数式的因式分解和提公因式
- 代数式的应用问题解决
第四章:方程
- 方程的概念和性质
- 一元一次方程的解
- 一元一次方程的应用问题解决
第五章:平面图形
- 点、线、线段、射线、角的概念和性质- 三角形、四边形、多边形的概念和性质- 平行线和平行四边形的性质
- 圆的概念和性质
- 平面图形的应用问题解决
第六章:数的比和相等
- 数的比的概念和性质
- 比例的概念和性质
- 比例的应用问题解决
第七章:百分数
- 百分数的概念和性质
- 百分数的四则运算
- 百分数的应用问题解决
第八章:数据的收集、整理和分析
- 数据的收集和整理方法
- 数据的图表表示和分析
- 数据的应用问题解决
以上是最新(沪科版)八年级数学上册的知识点总结,希望对学生复习和备考有所帮助。
沪科版数学八年级上册全册教案及单元知识点总结
4.通过这节课的学习,你还有哪些疑惑,大家交流.
【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.
1.课本第5页练习1、2、3.
2.完成练习册中相应的作业.
基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合.通过学习使学生理解和掌握平面直角坐标系的有关知识,领会其特征,经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台,体会现实生活中的坐标的应用价值,激发学习的兴趣.
2.教师归纳
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
(1)建立直角坐标系,选择一个适当的参照为原点,确定x轴、y轴的正方向.
(2)依据具体问题确定适当的比例尺,在坐标轴上标出单位长度.
(3)在坐标平面的内部画出这些点,写出各点的坐标和各个地点的名称.
二、问题牵引,引入研究
【问题】如图,△ABC在坐标平面上平移后得到新图形△A1B1C1.
A.第一象限B.第二象限
C.第三象限D.第四象限
2.在平面直角坐标系中,若点P(a-3,a+1)在第二象限,则a的取值范围为()
A.-1<a<3B.a>3
C.a<-1D.a>-1
3.如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为.
4.写出图中点A、B、C、D、E、F的坐标.(注:每小格的长度代表单位“1”.)
【教学说明】学生通过思考问题,复习旧知识,为新知识建立铺垫.
2.问题提出.
提问:请同学们观看屏幕投影片,你发现了什么?
沪科版-数学-八年级上册-一次函数易错点分析
一次函数的易错点分析一、忽视b kx y +=中0≠k 的条件造成错误例1.已知3)2(32+-=-m x m y ,当m =_____时,y 是x 的一次函数.错解 由于y 是x 的一次函数,故132=-m ,解得2±=m ,填“2±”.点评 一次函数b kx y +=中的k 必须满足0≠k ,当2=m 时,02=-m 必须舍去,故2-=m .二、忽视正比例函数是特殊的一次函数而造成错误例2.一次函数b kx y +=不经过第三象限,则下列正确的是( ).A .0,0><b kB .0,0<<b kC .0,0≤<b kD .0,0≥>b k错解 由于一次函数b kx y +=不经过第三象限,则它必经过一、二、四象限,故0,0><b k ,选A .点评 由于正比例函数是特殊的一次函数,因而b kx y +=不经过第三象限,则它可能经过一、二、四象限,此时满足0,0><b k ,也可能是只经过二、四象限的正比例函数,此时满足0,0=<b k ,故应选D .三、忽视一次函数图象的性质而造成错误例3.一次函数b kx y +=的自变量的取值范围是63≤≤-x ,相应函数值的取值范围是25-≤≤-y ,求这个函数的解析式.错解 把5,3-=-=y x 和2,6-==y x 分别代入b kx y +=中,得到⎩⎨⎧+=-+-=-b k b k 6235,解得⎪⎩⎪⎨⎧-==431b k ,所以一次函数的解析式为431-=x y . 点评 由于此题中没有明确k 的正负,而一次函数b kx y +=只有在0>k 时,y 随x 的增大而增大,而在0<k 时,y 随x 的增大而减小,故此题要分0>k 和0<k 两种情况进行讨论.(1)当0>k 时,解法如上;(2)当0<k 时,把2,3-=-=y x 和5,6-==y x 分别代入b kx y +=中,解得3,31-=-=b k ,所以一次函数的解析式为331--=x y .综上所述,一次函数的解析式为431-=x y 或331--=x y . 四、忽视自变量的取值范围而造成错误 例4.从甲地向乙地打长途电话,计时收费,前3分钟收费4.2元,以后每增加1分钟收1元,则电话费y (元)与通话时间t (分)之间的函数关系式是 .错解 根据题意,通话费y 应等于前3分钟的通话费用4.2元加上超过3分钟的部分的通话费用,所以6.01)3(4.2-=⨯-+=x x y .点评 此题中的通话时间t 是大于3分钟还是小于3分钟不清楚,故而上述解法缺少了t 小于3分钟的情况,正确结果为⎩⎨⎧>-≤<=)3(6.0)30(4.2t x t y . 五、对两个不同函数的比例系数看成一个造成错误例5.已知y y y =+12,而y 1与x +1成正比例,y 2与x 2成正比例,并且x =1时,2=y ;x =0时,2=y ,求y 与x 的函数关系式.错解 设)1(1+=x k y ,22kx y =,得221)1(kx x k y y y ++=+=,把x =1,2=y 得到k k +=22,解32=k 得,所以)1(322++=x x y . 点评 由于y 1和y 2是两个不同的函数,故要设两个不同的k 即1k 、2k ,不可草率地将1k 、2k 都写成k ,题中给出了两对数值,从而决定了可利用方程组求出1k 、2k 的值.正确的解答如下:设)1(11+=x k y ,222x k y =,得22121)1(x k x k y y y ++=+=,把x =1,2=y 及x =0,2=y 代入得到⎩⎨⎧=+=121222k k k ,解得⎩⎨⎧-==2221k k ,所以2222++-=x x y .六、对成正比例与正比例函数的混淆造成错误例6.若y 与1-x 成正比例,且当2=x 时,1=y .求y 与x 的函数解析式.错解 既然y 与1-x 成正比例,就设其解析式为)1(-=x k y ,把点2=x ,1=y 代入即可解得k=1,故其解析式为x y =.点评 若y 与1-x 成正比例,并不就是指y 是x 的正比例函数,此题的y 是x 的一次函数,正确解为1-=x y .七、对自变量或函数代表的实际意义理解不准确而造成错误例7. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s (千米)与行驶时间t (小时)的关系用图象表示应为( ).A B C D错解 由于路程等于速度乘以时间,在速度一定的条件下,路程是时间的正比例函数,选B . 点评 此题中路程s 并不是汽车行驶的距离,而是剩下来没有走的路程,不能被思维定势所左右,要仔细看清题目,理解题意,实际上s 与t 的函数关系式为t s 100400-=,s 是t 的一次函数,故选C .八、不能正确的用坐标表示线段而造成错误例8.若一次函数2+=kx y 与两坐标轴围成的三角形面积是4,求k 的值.错解 因为一次函数2+=kx y 与两坐标轴的交点坐标分别为(k 2-,0)和(0,2),由于线段不可能为负数,所以得42221=⨯⨯k ,解得21=k . 点评 用坐标表示线段时,若不知道坐标的符号应加绝对值.事实上一次函数2+=kx y 的图象是始终经过定点(0,2)的一条直线,可以经过一、三象限,也可经过二、四象限,k 的值应有两解.正确解法可分类讨论,也可这样解:42221=⨯-⨯k ,解得21±=k . 400200t (。
八上数学知识点总结归纳沪科版
八上数学知识点总结归纳沪科版数学,就像一座神秘的城堡,八年级上册的沪科版数学知识,那可是开启城堡深处大门的钥匙!咱们先来说说全等三角形。
全等三角形就像是一对双胞胎,不仅长得一模一样,各个部分的尺寸也完全相同。
要判断两个三角形全等,那可得有一双火眼金睛。
比如“边边边”,三条边都相等,它们就全等啦,这就好比你有三把一样长的尺子,那能做出一模一样的图形不是?还有“边角边”,两边及其夹角相等,这俩三角形也全等。
你想想,要是给你两条同样长的绳子和一个固定的夹角,是不是也只能画出一样的形状?再聊聊一次函数。
这一次函数啊,就像是一辆行驶中的汽车。
k 是斜率,决定了车爬坡的陡峭程度,b 是截距,就像是车出发的起始位置。
当 k 大于 0 时,车是向上爬坡,图像从左到右上升;k 小于 0 呢,车就开始下坡啦,图像从左到右下降。
这不就跟咱们生活中开车的感觉很像吗?整式的乘法与因式分解也很有趣。
乘法就像是盖房子,把一个个小砖块组合在一起,变得越来越大。
而因式分解呢,则是把大房子拆成一个个小砖块。
比如说,(a + b)(a - b) = a² - b²,这不就像是把一个大拼图拆成了两块嘛!还有分式,分式就像是分蛋糕。
分子是你能拿到的那份,分母是整个蛋糕。
要是分母为 0 ,那不就相当于没有蛋糕可分,这可不行!在学习这些知识的时候,可别像小猴子掰玉米,学一个丢一个。
要多做练习题,就像练武要多打拳一样,把知识练得滚瓜烂熟。
遇到难题别退缩,要像勇士一样勇往直前。
每次解决一个难题,都像是登上了一个小山峰,那种成就感,别提多棒啦!总之,八年级上册沪科版的数学知识丰富多彩,只要咱们用心去学,就能在数学的城堡里畅游,发现更多的奇妙之处!。
沪科版-数学-八年级上册-13.2一次函数 解一次函数问题中的几点小错误
解一次函数问题中的几点小错误解决一次函数有关问题,考虑问题要周密,不要出现下列错误.一、忽视分类例1 已知一次函数y=kx+b 的图象经过点A (3,0),且与坐标轴围成的三角形面积为6,求这个一次函数的关系式.错解:当x=0时,y=b ,即一次函数与y 轴的交点为(0,b ),由S=21×3×b=6,得b=4,将x=3,y=0,代入y=kx+4,得k=34-,所以一次函数的关系式为y=34-x+4. 分析:根据已知条件,直线y=kx+b 经过点A (3,0),且与坐标轴围成的面积为6,可能存在两种情况,如图1,图2,所以相应的函数关系式应有两个,错解中漏掉了一个.正解: 根据已知可得21×3×|b|=6. 解得b=±4,当b=4时,可得k=34-;当b=-4时,可得k=34, 所以一次函数的关系式为y=34-x+4或y=434-x .图1 图2二、忽视自变量的范围例2 一辆汽车由内江匀速驶往成都,下列图像中能大致反映汽车距离成都的路程s (千米)和行驶时间t (小时)的关系的是( )错解:选D.分析:图象D 表示汽车离开内江的距离随着时间的增加而不断增加,而题意是反映汽车距离成都的路程与行驶时间的关系,即随着时间的增加路程越来越近,,能够正确反映这一变化的应该是B.正解:选B.三、忽视隐含条件砝码的质量x(克) 0 100 200 300 400 500弹簧的长度y(厘米) 2 4 6 7.5 7.5 7.5根据表格中数据信息画出相应的一次函数图象.错解:根据表格信息可得y=501x+2,从表格中,当x ≥300时,y 都等于7.5,所以所画的函数图象如图3所示.图3 图4分析:根据表格信息可知,当x=0时,y=2,当x=250时,y=7,所以可求得 y=501x+2,而当y=7.5时可求得x=275,也就是当x=275时,弹簧已达到最大长度,而不是当x=300才达到最大长度.错解忽视了这一隐含条件.正解:设y=kx+b,将x=0,y=2和x=100,y=4,代入可得k=501,b=2,所以 y=501x+2,当y=7.5时,x=275.所以所画的函数图象如图4所示.。
八年级数学的知识点沪科版
八年级数学的知识点沪科版知识是取之不尽,用之不竭的。
只有限度地挖掘它,才能体会到学习的乐趣。
任何一门学科的知识都需要大量的记忆和练习来巩固。
虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
八年级上册数学知识点沪科版一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限:x;0,y;0点P(x,y)在第二象限:x;0,y;0点P(x,y)在第三象限:x;0,y;0点P(x,y)在第四象限:x;0,y;0(2)、坐标轴上的点的特征点P(x,y)在x轴上,y=0,x为任意实数点P(x,y)在y轴上,x=0,y为任意实数点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
沪科版八年级数学上册知识点总结(2篇)
沪科版八年级数学上册知识点总结初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
位置与坐标1、确定位置在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
沪科版数学八年级上册重点知识点汇总
沪科版数学八年级上册重点知识点汇总第十一章平面直角坐标系知识导图重点知识点要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系平面内两条互相垂直的数轴构成平面直角坐标系,简称直角坐标系.水平的数轴称为x 轴或横轴,向右为正方向;铅直方向的数轴称为y轴或纵轴,向上为正方向,两轴的交点O 是原点.如下图:要点诠释:(1)两条坐标轴将平面分成4个区域:第一象限、第二象限、第三象限、第四象限,x轴与y 轴上的点(包括原点)不属于任何一个象限.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积常用方法:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x 轴、y 轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.第十二章一次函数知识导图重点知识点要点一、函数的相关概念一般地,在一个变化过程中.如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.变化的世界函数建立数学模型应用概念选择方案概念再认识表示方法图象性质一次函数(正比例函数)一元一次方程一元一次不等式二元一次方程组与数学问题的综合与实际问题的综合列表法解析法图象法2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行;12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象.要点四、用函数的观点看方程、方程组、不等式方程(组)、不等式问题函数问题从“数”的角度看从“形”的角度看求关于x 、y的一元一次方程ax b +=0(a ≠0)的解x 为何值时,函数y ax b =+的值为0?确定直线y ax b =+与x 轴(即直线y =0)交点的横坐标求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等?确定直线11y a x b =+与直线22y a x b =+的交点的坐标求关于x 的一元一次不等式ax b +>0(a ≠0)的解集x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围第十三章三角形中的边角关系、命题与证明知识导图重点知识点要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)正确的命题称为真命题,不正确的命题称为假命题.(3)公认的真命题叫做公理.(4)经过证明的真命题称为定理.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.第十四章全等三角形知识导图重点知识点要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.第十五章轴对称图形与等腰三角形知识导图重点知识点要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.。
新泸教版数学八年级上册课件:小专题(三) 一次函数常见易错点专题概述
=
-3,
解得
������
=
1 2
,
������ = -4,
所以直线 AB 的函数表达式为 y=12x-4. ( 2 )将直线 AB 向上平移 6 个单位,得直线 y=12x-4+6,即 y=12x+2. ( 3 )因为直线 y=12x-4 与 x 轴交于点( 8,0 ),
所以将直线 AB 向左平移 6 个单位后过点( 2,0 ).
代入 y=kx+b 中,得
-3������ + ������ = -5, 6������ + ������ = -2,
解得
k=13,b=-4,
所以一次函数的表达式为 y=13x-4.
②当 k<0 时,y 随着 x 的增大而减小,把 x=-3,y=-2 和 x=6,y=-5 分别
代入 y=kx+b 中,得
综上可知,当 m=0 或-3 或-12时,函数 y=( m+3 )x2m+1+4x-5( x≠0 )是 关于 x 的一次函数.
8.一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这
个函数的表达式.
解:分两种情况:
①当 k>0 时,y 随着 x 的增大而增大,把 x=-3,y=-5 和 x=6,y=-2 分别
小专题( 三 ) 一次函数常见易错点专题概述
在解决一次函数问题时,往往由于忽视一些条件,导致问题解答错误或者不全面.我们在解一 次函数问题时,既要结合该函数的本身特点,又要考虑该问题是否有限制条件,是否需要分类讨 论;实际问题的应用还要结合实际问题情境来考虑,特别是自变量的取值范围,进而对问题作出 正确的解答.
沪教版八年级上册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)
沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的概念和性质(提高)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简.【要点梳理】要点一、二次根式及代数式的概念1.二次根式:一般地,我们把形如 (a≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.要点二、二次根式的性质1、;2.;3..要点诠释:1.二次根式 (a≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即.2.与要注意区别与联系:1).的取值范围不同,中≥0,中为任意值.2).≥0时, ==; <0时,无意义, =.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式.满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开放数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变(合并同类二次根式的方法与整式加减运算中的合并同类项类似).要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.【典型例题】类型一、二次根式的概念1.(2016春•天津期末)已知y=+﹣4,计算x﹣y2的值.【思路点拨】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【答案与解析】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.【总结升华】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.举一反三【变式】方程,当时,的取值范围是()A. B.≥2 C. D.≤2【答案】 C.类型二、二次根式的性质2.根据下列条件,求字母x的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三【变式】(2014春•铁东区校级月考)问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3. (2015•罗平县校级模拟)已知,1≤x≤3,化简: =_______.【思路点拨】由题意1≤x≤3,可以判断1﹣x≤0;x﹣3≤0,然后再直接开平方进行求解.【答案】2.【解析】解:∵1≤x≤3,∴1﹣x≤0,x﹣3≤0,∴=x﹣1+3﹣x=2.【总结升华】此题主要考查二次根式的性质和化简,计算时要仔细,是一道基础题.【:高清: 381279:经典例题4】4.已知为三角形的三边,则=.【答案】.【解析】为三角形的三边, ,即原式==.【总结升华】重点考查二次根式的性质:的同时,复习了三角形三边的性质.类型三、最简二次根式5.已知0<<,化简.【答案与解析】原式===.【总结升华】成立的条件是>0;若<0,则.类型四、同类二次根式6. 如果两个最简二次根式和是同类二次根式,那么、的值是( ) A. =2, =1 B. =1, =2 C. =1, =-1 D. =1, =1 【答案】 D.【解析】根据题意,得,解之,得,故选D.【总结升华】同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式】若最简根式与根式是同类二次根式,求、的值.【答案】同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简==|b|×由题意得,∴,∴=1,b=1.沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的概念和性质(提高)巩固练习【巩固练习】一、选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.使式子有意义的未知数x有( )个A.0 B.1 C.2 D.无数3. 把根号外的因式移到根号内,得().A. B. C. D.4.(2015•蓬溪县校级模拟)下列四个等式:①;②(﹣)=16;③()=4;④.正确的是()A.①②B.③④C.②④D.①③5. 若,则等于()A.B. C. D.6.将中的移到根号内,结果是()A. B. C. D.二. 填空题7. 若最简二次根式与是同类二次根式,则.8. (2015•江干区一模)在,,,﹣,中,是最简二次根式的是_________.9.已知,求的值为____________.10.若,则化简的结果是__________.11. 观察下列各式:,,,……请你探究其中规律,并将第n(n≥1)个等式写出来________________.12.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.三. 综合题13. 已知,求的值.14. 若时,试化简.15. (2015春•武昌区期中)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.【答案与解析】一、选择题1.【答案】C.【解析】依题意得:x﹣1>0,解得x>1.2.【答案】B.3.【答案】C.4.【答案】D.【解析】解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确;④==4≠﹣4,不正确.①③正确.故选:D.5.【答案】D.【解析】因为=,即.6.【答案】 A.【解析】因为≤0,所以=.二、填空题7.【答案】1;1.【解析】,所以.8.【答案】.9.【答案】.【解析】,即,,即原式=.10.【答案】3.【解析】因为原式==.11.【答案】 .12.【答案】 3.【解析】由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.三、解答题13.【解析】因为,所以2x-1≥0,1-2x≥0,即x=,y=则.14.【解析】因为,所以原式==.15.【解析】解:由题意得,b﹣c≥0且c﹣b≥0,所以,b≥c且c≥b,所以,b=c,所以,等式可变为+|a﹣b+1|=0,由非负数的性质得,,解得,所以,c=2,a+b+c=1+2+2=5,所以,a+b+c的平方根是±.沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的运算(提高)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(≥0,≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(≥0,≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足≥0,≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(≥0, >0),即两个二次根式相除,根指数不变,把被开方数相除.。
沪科版八年级数学上册期末复习讲义(含答案)
期末复习(一) 平面直角坐标系01 知识结构图02 重难点突破重难点1 平面直角坐标系中点的坐标特征【例1】 (长沙中考)若点P(2m +1,3m -12)在第四象限,则m 的取值范围是(C )A .m <13B .m >-12C .-12<m<13D .-12≤m<13根据点所在的位置和平面直角坐标系内点的坐标特征,构建方程或不等式(组)求解即可.1.(淮北月考)若点P(a +1,1-2a)在x 轴上,则a 的取值为(B ) A .a =-1 B .a =12C .a =2D .a =-1或a =122.(济宁中考)已知点P(x ,y)位于第四象限,并且x ≤y +4(x ,y 为整数),写出一个符合上述条件的点P 的坐标(1,-2)(答案不唯一).3.(阜阳颍东区期末)已知点P(2,-6)到x轴的距离为a,到y轴的距离为b,则a-b=4.重难点2建立坐标系表示点的坐标【例2】(蚌埠段考)象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘.如果“帅”坐标是(0,1),“卒”坐标是(2,2),那么“马”坐标是(C)A.(-2,1)B.(2,-2)C.(-2,2)D.(2,2)根据点的坐标建立坐标系的方法:若(a,b)是某坐标系中的点,当a>0(a<0)时,向左(向右)|a|个单位长度的铅直线即为y轴;当b>0(b<0)时,向下(向上)|b|个单位长度的水平线即为x轴.4.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为(C) A.(0,3) B.(2,3) C.(3,2) D.(3,0)第4题图第5题图5.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是(B)A.景仁宫(4,2) B.养心殿(-2,3)C.保和殿(1,0) D.武英殿(-3.5,-4)重难点3图形在坐标系中的平移【例3】(大连中考)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB,得到线段A′B′.已知A′的坐标为(3,-1),则点B′的坐标为(B)A.(4,2) B.(5,2) C.(6,2) D.(5,3)图形中任意一点的平移方向和距离都与图形的平移保持一致,所以我们可以通过图形上某一点的坐标变化确定出图形的平移方向和距离,从而确定其他点平移后对应点的坐标.6.(亳州高炉学校期末)点P(x,y)平移后得到点P′(x+1,y-2),其平移的方式是(D)A.先向左平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向下平移2个单位长度C.先向右平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度7.(兰州中考)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则点B1的坐标为(B)A.(1,2)B.(2,1)C.(1,4)D.(4,1)重难点4坐标系中的对称问题【例4】(广西中考)已知△ABC在平面直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于x轴对称,那么点B的对应点B′的坐标为(C)A.(-1,4) B.(1,-4)C.(-1,-4) D.(-4,1)点M(x,y)关于x轴对称的点的坐标为(x,-y),关于y轴对称的点的坐标为(-x,y).8.(海南中考)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是(B) A.(-3,2) B.(2,-3)C.(1,-2) D.(-1,2)第8题图第9题图9.如图,在平面直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB沿y轴翻折,点A落在点C处,那么点C的横坐标是-2.重难点5坐标系中的规律探索问题【例5】在平面直角坐标系中,横坐标、纵坐标都为整数的点叫做整点.如图,设坐标轴的单位长度为1 cm,整点P从原点O出发向右或向上运动,速度为1 cm/s,则点P运动1 s后可以到达(0,1),(1,0)两个整点;它运动2 s后可以到达(2,0),(1,1),(0,2)三个整点;运动3 s后它可以到达(3,0),(2,1),(1,2),(0,3)四个整点;….问:(1)当整点P从点O出发4 s后可以到达的整点是(4,0),(3,1),(2,2),(1,3),(0,4);(2)当整点P从点O出发8 s后,在平面直角坐标系中描出它所能到达的整点,并顺次连接这些整点;(3)当整点P从点O出发14s后可到达整点(9,5)的位置.【思路点拨】由动点在第一象限运动所到达的整点坐标可知,这些整点的横、纵坐标的和等于运动的秒数,所以由此规律可以推得出发后4 s可以到达的整点及要到达整点(9,5)需要的时间.通过观察、猜想、验证找到整点的横、纵坐标与运动的秒数之间的关系,然后由规律写出答案.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中规律排列,如:(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1),…,根据这个规律,第17个点的坐标为(6,-1).11.(北京中考)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是3或4;当点B的横坐标为4n(n为正整数)时,m=6n-3(用含n的代数式表示).03复习自测一、选择题(本大题共10小题,每小题4分,满分40分)1.如图,在平面直角坐标系中,点E的坐标为(a,b),则ab的值为(B)A.1 B.2 C.-1 D.-2第1题图 第2题图2.(安徽模拟)如图,小手盖住的点的坐标可能是(B) A .(3,-4) B .(-4,-3) C .(-4,3) D .(4,2)3.如图,在平面直角坐标系中,点P(-3,5)关于y 轴的对称点的坐标是(B )A .(-3,-5)B .(3,5)C .(3,-5)D .(5,-3)4.(六安校级月考)在平面直角坐标系中,点A(-2,-2m +3)在第三象限,则m 的取值范围是(C ) A .m<-32B .m>-32C .m>32D .m<325.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为(D ) A .(1,2)B .(-1,-2)C .(1,-2)D .(2,1)或(2,-1)或(-2,1)或(-2,-1)6.(蚌埠四校联考)对任意实数x ,点(x ,x 2-2x)一定不在(C ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.如图是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为(D )A .(0,0)B .(0,1)C .(1,0)D .(1,2)8.已知正方形ABCD 的边长为3,点A 在原点,点B 在x 轴正半轴上,点D 在y 轴负半轴上,则点C 的坐标是(C )A .(3,3)B .(-3,3)C .(3,-3)D .(-3,-3)9.(安徽模拟)甲、乙两位同学用围棋子做游戏,如图所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(说明:棋子的位置用数对表示,如A 点在(6,3))(C )A .黑(3,7);白(5,3)B .黑(4,7);白(6,2)C .黑(2,7);白(5,3)D .黑(3,7);白(2,6)10.如图,△ABC 的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1).若将B 点向右平移2个单位长度后再向上平移4个单位长度到达B 1点.若设△ABC 的面积为S 1,△AB 1C 的面积为S 2,则S 1,S 2的大小关系为(B )A .S 1≥S 2B .S 1=S 2C .S 1<S 2D .S 1>S 2二、填空题(本大题共4小题,每小题5分,满分20分)11.已知两点A(4,2),B(4,-3),则经过A ,B 两点的直线与y 轴平行.12.(蚌埠期末)在平面直角坐标系中,点M(-3,-4)先向右平移3个单位长度,再向下平移2个单位长度,此时点M 的坐标为(0,-6).13.已知点A(a ,3),过点A 向x 轴、y 轴作垂线,两条垂线与两坐标轴围成的图形的面积是15,则a 的值是±5.14.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1),A 5(2,1),…,则点A 2 019的坐标是(-505,-505).三、解答题(本大题共5小题,满分40分)15.(6分)(陕西中考)已知点P(a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围. 解:依题意,得点P 在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0.解得-1<a <12.∴a 的取值范围是-1<a <12.16.(6分)如图,面积为12的△ABC 向x 轴正方向平移至△DEF 的位置,相应坐标如图所示(a ,b 为常数). (1)求点E ,D 的坐标(用含a ,b 的式子表示); (2)求四边形ACED 的面积.解:(1)E(-a ,0),D(-2a ,b).(2)由题意,得OE =-2a -(-a)=-a ,AD =-2a ,OA =b. ∵S △ABC =12=12(-a)b ,∴-ab =24.∴S 四边形ACED =-2ab -(-12ab)=-32ab =36.17.(9分)各写出3个满足下列条件的点,并在平面直角坐标系中描出它们:(1)横坐标与纵坐标相等;(2)横坐标与纵坐标互为相反数; (3)横坐标与纵坐标的和是6.观察各小题中3个点的位置,指出它们有什么特点.解:(1)答案不唯一,如(1,1),(6,6),(-2,-2),它们在第一、三象限的角平分线上.图略. (2)答案不唯一,如(1,-1),(-2,2),(3,-3),它们在第二、四象限的角平分线上.图略. (3)答案不唯一,如(2,4),(3,3),(-2,8),它们在直线x +y =6上.图略.18.(9分)(淮北杜集区月考)△ABC 在平面直角坐标系xOy 中的位置如图所示,已知A(-2,3),B(-1,1),C(0,2).(1)作△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)将△A 1B 1C 1向右平移4个单位长度,作出平移后的△A 2B 2C 2;(3)在x 轴上求作一点P ,使PB 1+PC 2的值最小,并写出点P 的坐标(不写解答过程,直接写出结果).解:(1)如图所示. (2)如图所示.(3)如图所示,作出B 1关于x 轴的对称点B′,连接B′C 2,交x 轴于点P ,此时PB 1+PC 2的值最小,可得点P 的坐标为(2,0).19.(10分)在平面直角坐标系中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“识别距离”,给出如下定义: 若|x 1-x 2|≥|y 1-y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“识别距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“识别距离”为|y 1-y 2|. (1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,写出满足条件的B 点的坐标(0,2)或(0,-2); ②直接写出点A 与点B 的“识别距离”的最小值为1;(2)已知C(m ,34m +3),D(0,1),求点C 与点D 的“识别距离”的最小值及相应的C 点坐标.解:依题意,得|m -0|=|34m +3-1|.解得m =8或-87.当m =8时,“识别距离”为8; 当m =-87时,“识别距离”为87.所以当m =-87时,“识别距离”最小,为87,此时C(-87,157).期末复习(二) 一次函数01 知识结构图02 重难点突破重难点1 自变量的取值范围【例1】 已知函数y =2x +1x -2,则自变量x 的取值范围是(D ) A .x ≠2 B .x >2C .x ≥-12D .x ≥-12且x ≠2几种常见类型函数自变量的取值范围如下:1.(西昌中考)下列函数中自变量x 的取值范围是x >1的是(A )A .y =1x -1 B .y =x -1C .y =1x -1D .y =11-x2.(泰州中考)要使y=3-xx-1有意义,则x应该满足(C)A.0≤x≤3 B.0<x≤3且x≠1C.1<x≤3 D.0≤x≤3且x≠1重难点2函数图象【例2】(合肥月考)合肥万达主题公园的“极速升降”项目惊险而刺激,乘坐着先匀速“极速上升”到达顶端,立即又以相同的速度下降到达地面.下列最能反映乘坐时距离地面的高度y(m)与运行时间x(s)之间函数关系的图象是(C)A B C D判断函数图象从以下几方面考虑:(1)看图象的升降趋势,当函数随着自变量的增加而增加时,图象呈上升趋势,反之,呈下降趋势;(2)看图象的曲直,函数随着自变量的变化而均匀变化的,图象是直线,函数随着自变量的变化不均匀变化的,图象是曲线;(3)表示函数不随自变量的变化而变化,即函数是一个定值时,图象与横轴平行.3.小兵从家步行到公交车站台,等公交车去学校.图中的折线表示小兵的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是(D)A.他离家8 km共用了30 minB.他等公交车时间为6 minC.他步行的速度是100m/minD.公交车的速度是350 m/min4.(广元中考)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是(C)A B C D重难点3 一次函数的图象和性质【例3】 (蚌埠期末)直线y =-kx +k -3与直线y =kx 在同一坐标系中的大致图象可能是图中的(B )A B C D一次函数的图象和性质,列表如下:k >0k <0一二三一三一三四一二四二四二三四5.(呼和浩特中考)一次函数y =kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过(A ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.(怀化中考)一次函数y =-2x +m 的图象经过点P(-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是(B )A .12B .14C .4D .8 重难点4 一次函数与方程(组)、不等式的关系【例4】 如图,若直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(a ,2),则关于x 的不等式x +1≥mx +n 的解集为x ≥1.一次函数与不等式关系密切,求解的关键是从“形”的角度观察对应的自变量的取值范围.7.(安徽模拟)如图,直线y =kx +b 经过A(-2,-1)和B(-3,0)两点,则不等式组12x <kx +b <0的解集为-3<x <-2.第7题图第8题图8.(北京中考)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b >mx-2的解集是1<x<2.重难点5一次函数的应用【例5】(荆门中考)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数表达式,并写出自变量x 的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16 460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?【思路点拨】(1)A城运往C乡的农机为x台,则可得A城运往D乡的农机为(30-x)台,B城运往C乡的农机为(34-x)台,B城运往D乡的农机为[40-(34-x)]台,从而可得出W与x的函数关系;(2)根据题意,可知w≥16 460,从而求得x的取值范围,且x为整数,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意,得W =(140-a)x+12 540,所以当a=200时,可得w与x的函数关系式,然后由函数的增减性可算出w的最小值,从而得到结论.【解答】(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x+12 540(0<x≤30).(2)根据题意,得140x+12 540≥16 460,∴x≥28.∵x≤30,∴28≤x≤30.∴有3种不同的调运方案.第一种调运方案:从A城调往C乡28台,调往D乡2台,从B城调往C乡6台,调往D乡34台;第二种调运方案:从A城调往C乡29台,调往D乡1台,从B城调往C乡5台,调往D乡35台;第三种调运方案:从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台.(3)W=(250-a)x+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12 540,∴当a=200时,W最小=-60x+12 540,此时x=30,W最小=10 740.此时的方案:从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台.解最优方案问题的步骤:(1)设出实际问题中的变量;(2)建立一次函数模型;(3)利用待定系数法求得一次函数表达式;(4)确定自变量的取值范围;(5)根据一次函数增减性确定自变量取值;(6)作答.9.(淮北月考)移动公司推出两种话费套餐,套餐一:每月收取月租34元后,送50分钟的通话时间,超过部分每分钟收费0.20元,并约定每月最低消费40元,低于40元一律按40元收取;套餐二:每月没有最低消费,但每分钟均收取0.40元的通话费用.若分别用y1,y2(单位:元)表示套餐一、套餐二的通话费用,用x(单位:分钟)表示每个月的通话时间.(1)分别求y 1,y 2关于x 的函数表达式;(2)在给定的平面直角坐标系中,画出这两个函数的图象,并直接写出两个函数图象的交点坐标; (3)①结合图象,如何选择话费套餐,才可使每月支付的通话费用较少?②若小亮的爸爸这个月的通话费用是64元,求这两种套餐的通话时间相差多少分钟?解:(1)y 1=⎩⎨⎧40(0≤x ≤80),0.2x +24(x >80),y 2=0.4x(x ≥0).(2)过点A(0,40)和点(80,40)画线段AB ,且过点B(80,40)和点P(120,48)画射线BP ,得到折线ABP 就是函数y 1的图象;过点O(0,0)和点P(120,48)画线段OP 就得y 2的图象.这两个函数图象的交点坐标为(120,48).(3)①由图象可知,当x <120时,y 2<y 1,选择套餐二每月支付的通话费用较少; 当x =120时,y 2=y 1,选择两种套餐每月支付的通话费用一样多; 当x >120时,y 2>y 1,选择套餐一每月支付的通话费用较少;②由于64>40,当y 1=64时,0.2x +24=64,解得x =200;当y 2=64时,0.4x =64,解得x =160.两种套餐的通话时间相差200-160=40(分钟).(套餐一比套餐二通话时间多40分钟)03 复习自测一、选择题(本大题共10小题,每小题4分,满分40分)1.(淮北濉溪县期末)函数y =2x +1中自变量x 的取值范围是(A ) A .x ≥-12B .x ≥0C .x ≥12D .x >-122.若正比例函数的图象经过点(-1,2),则这个图象必经过点(D ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)3.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是(D ) A .-2 B .-1 C .0 D .24.一次函数y =(k -2)x +3的图象如图所示,则k 的取值范围是(B )A .k >2B .k <2C .k >3D .k <35.(温州中考)已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是(B ) A .0<y 1<y 2 B .y 1<0<y 2 C .y 1<y 2<0 D .y 2<0<y 16.(淮北月考)按照下列运算程序,当输入x =-2时,输出的y 的值是(A )输入x ―→y =2x -3(x ≤-1)y =x 2+x +1(x >-1)―→输出yA .-7B .-5C .1D .3 7.小亮用作图象的方法解二元一次方程组时,在同一平面直角坐标系内作出了相应的两个一次函数的图象l 1,l 2,如图所示,他解的这个方程组是(D )A .⎩⎪⎨⎪⎧y =-2x +2y =12x -1B .⎩⎪⎨⎪⎧y =-2x +2y =-x C .⎩⎪⎨⎪⎧y =3x -8y =12x -3D .⎩⎪⎨⎪⎧y =-2x +2y =-12x -1第7题图 第8题图8.(宜宾中考)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是(C ) A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,在长方形ABCD 中,AB =4,BC =3,点P 从起点B 出发,沿BC ,CD 逆时针方向向终点D 匀速运动.设点P 所走过路程为x ,则线段AP ,AD 与长方形的边所围成的图形面积为y ,则下列图象中能大致反映y 与x 函数关系的是(A )10.(枣庄中考)如图,直线y =23x +4与x 轴,y 轴分别交于点A ,B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,当PC +PD 值最小时,点P 的坐标为(C )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)二、填空题(本大题共4小题,每小题5分,满分20分)11.(眉山中考)若函数y =(m -1)x |m|是正比例函数,则该函数的图象经过第二、四象限.12.一个y 关于x 的函数同时满足两个条件:①图象过点(2,1);②当x>0时,y 随x 的增大而减小.这个函数表达式为y =-x +3(答案不唯一)(写出一个即可).13. (淮北月考)某图书馆规定,图书借阅费用标准是:借阅图书3天内(含3天)2元,借阅图书超过3天,超过的部分每天收费1.1元.小红同学在该图书馆借阅一种图书阅读了x 天(x>3),则她借阅图书的费用y(元)与借阅时间x(天)之间的函数表达式是y =1.1x -1.3(x>3).14.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米; ②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒; ④隧道长度为750米.其中正确的结论是②③.(把你认为正确结论的序号都填上)三、解答题(本大题共4小题,满分40分)15.(8分)已知y 与x +2成正比例,且当x =1时,y =-6.(1)求y 与x 之间的函数表达式;(2)若点M(m ,4)在这个函数的图象上,求m 的值. 解:(1)根据题意,设y =k(x +2). 把x =1,y =-6代入,得 -6=k(1+2).解得k =-2.∴y 与x 之间的函数表达式为y =-2(x +2), 即y =-2x -4.(2)把点M(m ,4)代入y =-2x -4,得4=-2m -4.解得m =-4.16.(10分)如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的表达式;(2)若直线AB 上一点C 在第一象限且点C 的坐标为(2,2),求△BOC 的面积.解:(1)设直线AB 的表达式为y =kx +b(k ≠0). 将A(1,0),B(0,-2)代入表达式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2. ∴直线AB 的表达式为y =2x -2. (2)S △BOC =12×2×2=2.17.(10分)设关于x 的一次函数y =a 1x +b 1与y =a 2x +b 2,则称函数y =m(a 1x +b 1)+n(a 2x +b 2)(其中m +n =1)为此两个函数的生成函数.(1)当x =1时,求函数y =x +1与y =2x 的生成函数的值;(2)若函数y =a 1x +b 1与y =a 2x +b 2的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.解:(1)当x =1时,y =m(x +1)+n(2x)=m(1+1)+n(2×1)=2m +2n =2(m +n). ∵m +n =1,∴y =2.(2)点P 在此两个函数的生成函数的图象上. 理由:设点P 的坐标为(a ,b), ∵a 1×a +b 1=b ,a 2×a +b 2=b , ∴当x =a 时,y =m(a 1x +b 1)+n(a 2x +b 2) =m(a 1×a +b 1)+n(a 2×a +b 2) =mb +nb =b(m +n)=b.∴点P 在此两个函数的生成函数的图象上.18.(12分)(绥化中考)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km )与小芳离家时间x(h )的函数图象.(1)小芳骑车的速度为20km /h ,H 点坐标为(32,20);(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?解:(2)设直线AB 的表达式为y 1=k 1x +b 1, 将点A(0,30),B(0.5,20)代入y 1=k 1x +b 1,得⎩⎪⎨⎪⎧b 1=30,0.5k 1+b 1=20.解得⎩⎪⎨⎪⎧k 1=-20,b 1=30.y 1=-20x +30. ∵AB ∥CD ,∴设直线CD 的表达式为y 2=-20x +b 2. 将点C(1,20)代入表达式,得b 2=40. ∴y 2=-20x +40.设直线EF 的表达式为y 3=k 3x +b 3. 将点E(43,30),H(32,20)代入表达式,得⎩⎨⎧43k 3+b 3=30,32k 3+b 3=20.解得⎩⎪⎨⎪⎧k 3=-60,k 3=110.∴y 3=-60x +110.联立⎩⎨⎧y =-60x +110,y =-20x +40,解得⎩⎪⎨⎪⎧x =1.75,y =5.∴点D 坐标为(1.75,5).30-5=25(km ).∴小芳出发1.75 h 后被妈妈追上,此时距家25 km .(3)将y =0代入直线CD 的表达式,得 -20x +40=0.解得x =2.将y =0代入直线EF 的表达式,得 -60x +110=0.解得x =116.2-116=16(h )=10(分钟).答:小芳比预计时间早10分钟到达乙地.期末复习(三)三角形中的边角关系、命题与证明01知识结构图02重难点突破重难点1三角形的三边关系【例1】(莆田中考)已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是(B) A.13 cm B.6 cmC.5 cm D.4 cm“三角形两边之和大于第三边,两边之差小于第三边”是判断三条线段能否构成三角形的重要依据.在实际判断时,不需要去将三角形的任意两边都相加,然后判断其和是否大于第三边.只需选取较小的两边相加,判断其和是否大于最大边即可.1.(湛江中考)在下列长度的四根木棒中,能与长度为3 cm,7 cm的两根木棒钉成一个三角形的是(C)A.3 cm B.4 cmC.9 cm D.10 cm2.(合肥瑶海区期中)如图,为估计荔香公园小池塘岸边A,B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15 m,OB=10 m,则A,B间的距离可能是(B)A.5 mB.15 mC.25 mD.30 m3.(濉溪期中)一等腰三角形,一边长为9 cm,另一边长为5 cm,则等腰三角形的周长是19_cm或23_cm.重难点2命题与逆命题【例2】命题“直角三角形的两个锐角互余”的逆命题是有两个角互余的三角形是直角三角形.对于一些简单命题的逆命题可直接交换此命题的条件和结论,而遇到一些高度概括的命题时,则需改写后再交换.特别注意:在交换一个命题的条件和结论时,语言表达要准确,防止用词不当而造成错误.例如,本题的逆命题就不能写成“两个锐角互余的三角形是直角三角形”.4.(泉州中考)下列四个命题中,是假命题的是(B)A.三角形三边垂直平分线的交点有可能在一边上B.过三点一定可以画三条直线C.成轴对称的两个图形中,对应点的连线被对称轴垂直平分D.三角形的内角和等于180°5.(南京中考)请写出一个原命题是真命题,逆命题是假命题的命题:对顶角相等(答案不唯一).6.(福建中考)请给假命题“两个锐角的和是锐角”举出一个反例:α=50°,β=60°,α+β>90°(答案不唯一).重难点3三角形的内角和定理及推论【例3】如图,已知在△ABC中,D点在AC上,E点在BC的延长线上.求证:∠ADB>∠CDE.【思路点拨】因为∠ADB和∠CDE并不在一个三角形上,所以没有办法直接证明,因此需要一个中间量来过渡一下,从图中不难发现,∠DCB正好是∠ADB和∠CDE联系的桥梁.【解答】∵∠DCB是△DCE的一个外角,(外角定义)∴∠DCB>∠CDE.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠ADB是△BCD的一个外角,(外角定义)∴∠ADB>∠DCB.(三角形的一个外角大于任何一个和它不相邻的内角)∴∠ADB>∠CDE.(不等式的性质)证明角的不等关系,往往不能直接证明,所以借助外角就成了解决问题的法宝.7.如图,已知AB∥CD,则(A)A.∠1=∠2+∠3B.∠1=2∠2+∠3C.∠1=2∠2-∠3D.∠1=180°-∠2-∠38.(安庆调研)如图甲,四边形纸片ABCD中,∠B=120°,∠D=50°.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图乙所示,则∠C等于(C)A.80°B.85°C.95°D.110°重难点4推理与证明【例4】如图1,已知直线l1∥l2,直线l3分别和直线l1,l2交于点C,D,在C,D之间有一点P,如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化?若点P在C,D两点的外侧运动时(P 点与点C,D不重合),试探索∠PAC,∠APB,∠PBD之间又有怎样的关系?【思路点拨】若P点在C,D之间运动时,只要过点P作出l1的平行线即可知道∠APB=∠PAC+∠PBD;若点P在C,D两点的外侧运动时(P点与点C,D不重合),则可以分为图2和图3两种情形,同样分别过点P作出l1或l2的平行线,即有∠APB=∠PBD-∠PAC或∠APB=∠PAC-∠PBD.【解答】若P点在C,D之间运动时,∠APB=∠PAC+∠PBD.理由:如图1,过点P作PE∥l1,则∠APE =∠PAC.又∵l1∥l2,∴PE∥l2.∴∠BPE=∠PBD.∴∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.若点P在C,D两点的外侧运动时(P点与点C,D不重合),则有两种情形:①如图2,结论:∠APB=∠PBD-∠PAC.理由:过点P作PE∥l1,则∠APE=∠PAC.又∵l1∥l2,∴PE∥l2.∴∠BPE=∠PBD.∴∠APB=∠BPE-∠APE,即∠APB=∠PBD-∠PAC.②如图3,结论:∠APB=∠PAC-∠PBD.理由:过点P作PE∥l2,则∠BPE=∠PBD.又∵l1∥l2,∴PE∥l1.∴∠APE=∠PAC.∴∠APB=∠APE-∠BPE,即∠APB=∠PAC-∠PBD.解答动态问题时,要从动中求静,运用分类讨论的数学思想方法,在运动变化过程中探索问题的不变性,既要考虑问题的一般情形,也要考虑问题的特殊情形.9.如图,A,B,C三点在同一直线上,∠1=∠2,∠3=∠D.求证:BD∥CE.证明:∵∠1=∠2,∴AD∥BE.∴∠D=∠DBE.∵∠3=∠D,∴∠3=∠DBE.∴BD∥CE.03复习自测一、选择题(本大题共10小题,每小题4分,满分40分)1.下列语句不是命题的是(C)A.三角形的两边之和大于第三边B.射线不是几何图形C.同位角相等吗D.两个锐角的和不可能大于90°2.(茂名中考)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是(B)A.1 B.5 C.7 D.93.(十堰中考)如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=(B)A.40°B.50°C.60°D.70°第3题图第4题图4.如图,已知在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是(B)A.0<x<3 B.x>3C.3<x<6 D.x>65.直角三角形两锐角平分线相交所夹的钝角为(B)A.125°B.135°C.145°D.150°6.已知在△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于(A)A.40°B.60°C .80°D .90°7.△ABC 的三边长分别为a ,b ,c ,且a +2ab =c +2bc ,则这个三角形是(B ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形8.(合肥瑶海区期末)一副三角板有两个直角三角形如图叠放在一起,则∠α的度数是(A)A .165°B .120°C .150°D .135°9.(呼伦贝尔中考)锐角三角形的三个内角是∠A ,∠B ,∠C ,如果α=∠A +∠B ,β=∠B +∠C ,γ=∠C +∠A ,那么α,β,γ这三个角中(A )A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角10.如图,在△ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB ,AD ,AC 及BC 的延长线于点E ,H ,F ,G ,则下列四个式子中正确的是(C )A .∠1=12(∠2-∠3)B .∠1=2(∠2-∠3)C .∠G =12(∠3-∠2)D .∠G =12∠1二、填空题(本大题共4小题,每小题5分,满分20分)11.将命题“两点确定一条直线”改写成“如果……那么……”的形式:如果过两个已知点作直线,那么能且只能作一条直线.12.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B =∠F =72°,则∠D =36°.第12题图 第13题图13.(宿迁中考)如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为32.14.(合肥四十二中期中)如图,已知△ABC 的面积是60.若CD ,BE 分别是△ABC 的边AB ,AC 上的中线,则四边形ADOE 的面积为20.。
沪科版八年级数学上册知识点
沪科版八年级数学上册知识点学习沪科版八年级数学要有侧重的重点记忆,针对性地练习,把每章所涉及到的知识点弄明白,能够举一反三。
下面小编给大家分享一些沪科版八年级数学上册的知识点,大家快来跟小编一起欣赏吧。
沪科版八年级数学上册知识点(一)平面内点的坐标特征1、各象限内点P(a ,b)的坐标特征:第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。
)2、坐标轴上点P(a ,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0(说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。
)3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:沪科版八年级数学上册知识点(二)三角形的边角性质1、三角形的三边关系:三角形中任何两边的和大于第三边;任何两边的差小于第三边。
2、三角形的三角关系:三角形内角和定理:三角形的三个内角的和等于180°。
三角形外角和定理:三角形的三个外角的和等于360°。
3、三角形的外角性质(1)三角形的一个外角等于与它不相邻的两个内角的和;(2)三角形的一个外角大于与它不相邻的任何一个内角。
沪科版八年级数学上册知识点(三)一次函数1、一般形式:y=k x+b(k、b为常数,k≠0),当b=0时,y=k x(k≠0),此时y是x的正比例函数。
2、一次函数的图像与性质3、确定一次函数图像与坐标轴的交点(1)与x轴交点:(2)与y轴交点:(0,b),求法:令x=0,求y。
4、确定一次函数解析式———待定系数法确定一次函数解析式,只需x和y(1)设函数关系式为:y=k x+b;(2)代入x和y的两对对应值,得关于k、b的方程组;(3)解方程组,求出k和b。
初二年级数学上下册每章节重难点及易错点整理
初二年级数学上下册每章节重难点及易错点整理初二年级数学上册每章节重难点及易错点整理第一章教学内容:勾股定理重点:勾股定理的内容及应用,判断怎样得到直角三角形难点:勾股定理的应用,圆柱的展开,勾股定理的逆定理易错点:侧面展开图后直角三角形的理解与应用第二章教学内容:实数重点:平方根,立方根的概念,实数的定义,计算器的应用难点:理解无理数是无限不循环小数,实数运算的某些技巧掌握,分母有理化易错点:无限不循环小数是无理数,无限循环或者有限小数是有理数,理解平方根有两个第三章教学内容:图形的平移与旋转重点:平移的特征,简单的平移作图,旋转特征的了解难点:旋转作图,图案的设计易错点:简单的平移作图与旋转作图第四章教学内容:平行四边形性质的探索重点:特殊平行四边形的性质多边形内角和的推导难点:特殊平行四边形的性质与判断,多边形外角和的推导过程易错点:平行四边形的判定,特殊平行四边形的判定第五章教学内容:位置的确定重点:平面直角坐标系的理论,坐标的变化难点:物体位置变化的确定,坐标变化后物体的变化易错点:平面直角坐标系中坐标的表示,坐标变化的情况第六章教学内容:一次函数重点:一次函数的解析式及其图像,一次函数的感念及其性质,待定系数法难点:变量与函数对应关系的了理解,一次函数图像的应用。
易错点:一次函数的表达式及其用待定系数法确定一次函数的表达式第七章教学内容:二元一次方程组重点:用代入法和加减消元法解二元一次方程组难点:二元一次方程组的应用题,二元一次方程组及一次函数易错点:二元一次方程组的解法及其应用题初二年级数学下册每章节重难点及易错点整理第一章教学内容:一元一次不等式及其一元一次不等式组重点:不等式的基本性质,一元一次不等式的解法难点:一元一次不等式去解集用一元一次不等式解决实际问题易错点:不等式的基本性质,不等式组解集的确定第二章教学内容:分解因式重点:提公因式法公式法分解因式难点:综合运用两种方法进行因式分解易错点:运用公式法注意其准确性第三章教学内容:分式重点:分式的意义,运用分式的基本性质解题,分式的计算难点:求取最大公分母,分式方程应用题易错点:分式方程的应用题必须检验有没有曾根第四章教学内容:相似三角形重点:成比例线段,相似三角形的比例及其性质难点:利用相似三角形解决实际问题易错点:相似比的平方等于面积比第五章教学内容:数据的收集重点:了解抽样,个体,总体,样本的概念难点:理解频数频率的概念,方差,标准差的运用易错点:方差与标准差的计算第六章教学内容:证明(一)重点:定义和命题,平行线的判定和性质的证明难点:判定条件和结论组成命题的真假,三角形内角和定理,三角形内角和定理的证明易错点:体会证明的严密性。
2023年沪科版数学重难点易错点
2023年沪科版数学重难点易错点1相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心考核要求:知道重心的定义并初步应用。
2锐角三角比(2个考点)考点6:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点7:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
3二次函数(4个考点)考点8:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。
考点9:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点10:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。
沪科版八年级数学上册知识点总结
沪科版八年级数学上册知识点总结《沪科版八年级数学上册》是根据国家课程标准编写的教材,主要涵盖了代数、函数、图像、几何、统计等多个数学领域的知识。
以下是对该教材中的重要知识点进行总结:一、代数1. 代数式的概念:由字母、数字和运算符号组成,可以进行运算和化简。
2. 代数式的加、减、乘、除运算法则。
3. 一元一次方程:由一个未知数的项组成,如ax+b=0,可以通过移项、合并同类项、消数等方法求解。
4. 一元一次方程的应用:解决实际问题,如速度、距离、价格等。
5. 通解和特解的概念:一元一次方程的通解是形如x=a的解集,特解是指满足具体条件的解。
6. 一元一次方程的实际应用:解决实际问题,如购买商品打折、折扣等。
7. 负数的概念和性质:负数的定义、加减法运算规则,及负数与正数的关系。
二、函数和图像1. 函数的概念和表示方法:函数是一种对应关系,用公式、图表、文字等形式表示。
2. 函数的自变量、因变量、定义域、值域的概念和含义。
3. 一次函数的概念和性质:一次函数的一般形式为y=kx+b,斜率k和截距b的含义和作用。
4. 一次函数的图像特点:斜率可表示直线的斜率及其变化趋势,截距可表示直线与y轴的交点。
5. 一次函数的应用:解决实际问题,如速度、距离、价格等。
6. 函数的增减性:用导数的概念表示函数的增减性,确定函数在定义域内的上升区间和下降区间。
7. 直线与曲线的交点:两条直线或曲线的交点是使其方程同时成立的点。
三、几何1. 几何基本概念:点、线、面及其相互关系的基本概念和性质。
2. 图形的分类和命名:按照边数、角数、对称性等进行分类。
3. 三角形的分类和性质:按照边长、角度等进行分类和判断,了解等腰三角形、等边三角形的性质。
4. 三角形的面积:根据底边和高,计算三角形的面积。
5. 相似三角形的判定和性质:通过角度和边长的比较判断相似三角形,了解相似三角形的性质。
6. 平面镶嵌:将平面图形按照一定规则组合排列,了解平面镶嵌的基本概念和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易错点突破和重难点析解
易错点突破
1.运用三角形三边关系性质致误
例1 若等腰三角形的一条边长为6厘米,另一边长为2厘米,则它的周长为( ).
A .10厘米
B .14厘米
C .10厘米或14厘米
D .无法确定
错解:由于本题未指明所给边长是等腰三角形的腰还是底,所以需讨论:①当腰长为6厘米时,底边长为2厘米,则周长为()66214cm ++=;②当腰长为2厘米时,底边长为6厘米,则周长为()62210cm ++=. 故选C.
分析:本题错在没有注意到三角形成立的条件:“三角形的任意两边之和大于第三边”,当腰长为2厘米,底边长为6厘米时,不能构成三角形.
正解:本题只能把6厘米作为腰,2厘米作为底,故三角形的周长为14厘米,故选B.
2.应用判定方法致误
例2 如图3,已知AB=DC ,OA=OD ,∠A=∠D. 问∠1=∠2吗?试说明理由.
错解:∠1=∠2. 理由如下:
在△AOB 和△DOC 中,因为AB=DC ,OA=OD ,∠AOB=∠DOC.
所以△AOB ≌△DOC ,所以∠1=∠2.
分析:不存在“角角角(AAA )”和“边边角(SSA )”的判定方法,即对于一般三角形,“有三个角对应相等的两个三角形不一定全等”和“有两边和其中一边的对角对应相等的两个三角形不一定全等.”
正解:在△AOB 和△DOC 中,因为AB=DC ,∠A=∠D ,OA=OD.
所以△AOB ≌△DOC (SAS ),所以∠1=∠2.
3.不理解“对应”致误
例3 已知在两个直角三角形中,有一对锐角相等,又有一组边相等,那么这两个三角形是否全等?
错解:这两个三角形全等.
分析:对“ASA”全等判定法中“对应边相等”没有理解,错把边相等当成对应边相等. 正解:这两个三角形不一定全等. 如图4所示,在Rt EDC ∆,12∠=∠,CD=AB ,90C C ∠=∠=︒,显然ABC ∆与EDC ∆不全等.
重难点析解
图3 图4
1
2 A E
1.三角形的有关概念
例1 能把一个三角形分成面积相等的两部分的是该三角形的一条( )
A .中线
B .角平分线
C .高线
D .边的垂直平分线
分析:根据三角形中线的特征及其面积公式可知,等底同高的两三角形的面积相等. 解:只有三角形的一条中线才能把三角形的面积分成相等的两部分. 故选A.
评注:三角形的“三线”在解题中有着广泛的应用,因此,要正确认识其定义及特征.
2.三角形的三边之间的关系
例2 下列长度的三条线段,能组成三角形的是( ).
A .1厘米,2 厘米,3厘米
B .2厘米,3 厘米,6 厘米
C .4厘米,6 厘米,8厘米
D .5厘米,6 厘米,12厘米
分析:判断三条线段能否构成三角形,只需检验两条较短的线段之和是否大于最长线段即可,若大于则能构成,否则不能构成.
解:根据“三角形的两边之和大于第三边”.然后观察四个选项,满足两边之和大于第三边的只有4厘米,6 厘米,8厘米. 故选C.
评注:涉及三角形三边关系的问题时,应注意三角形三边关系的应用.
3.三角形的内角和
例3 如图5,11002145∠=∠=,,那么∠3的度数是( ).
A .55°
B .65°
C .75°
D .85°
分析:本题可利用平角及邻补角的定义,把1∠和2∠转化为三角形的内角.
解:由图5可知:与∠1相邻的补角为80︒,与∠2相邻的补角为35︒,由三角形的内角和为180︒,可得∠3=180803565︒-︒-︒=︒. 故选B.
评注:涉及三角形有关的角度计算问题,一般要考虑到三角形内角和的应用.
4.全等三角形的性质
例4 如图6,已知AB AD =,AC AE =,12∠=∠.
试说明BC DE =.
分析:要说明BC DE =,只要说明ABC ADE △≌△即可. 由已知条件可知,这两个三角形已经具备两边对应相等,因此再找这两边的夹角相等即可.
解:12=∠∠,所以12DAC DAC +=+∠
∠∠∠, 即BAC DAE =∠∠. 又AB AD =,AC AE =,
所以ABC ADE △≌△(SAS ),所以BC DE =.
评注:因为全等三角形的对应边相等,所以要说明分别属于两个三角形的线段相等,常常通过说明这两个三角形全等来解决问题.
5.利用三角形全等解决实际问题
例5 如图7,A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,BD=1千米,DC=1千米,村庄AC 、AD 间也有公路相连,且AD ⊥BC ,AC=3千米,只有村庄AB 之间由于间隔了一个小湖,所以无直接相连的公路. 现准备在湖面上造一座斜拉桥,测得AE=1.2千米,BF=0.7千米. 试求所建造的斜拉桥长有多少千米?
分析:由于村庄AB 之间间隔了一个小湖,无法直接测量,故可利用转化思想,由△ADB ≌△ADC ,得AB=AC=3千米,从而计算出EF 的长.
解:在△ADB 和△ADC 中,因为BD=DC ,∠ADB=∠ADC 0
90=,AD=AD.
所以△ADB ≌△ADC (SAS ).所以AB=AC=3千米.
所以()()3 1.20.7 1.1EF AB AE BF =-+=-+=(千米).
评注:三角形全等是证明线段、角相等的重要依据,教材中全等三角形的例题、习题有很多是与生活息息相关的,其基本思路是通过建立数学模型,把实际问题先转化为数学问题.。