ANSYS实体建模教程
ANSYS基础教程—实体建模
ANSYS基础教程—实体建模关键字:ANSYS ANSYS教程实体建模信息化调查找茬投稿收藏评论好文推荐打印社区分享ANSYS 有一组很方便的几何作图工具。
本文将讨论这些作图工具,主要容包括:实体建模定义、如何自上而下建模、以及如何让自下而上建模。
实体建模概述·直接输入几何实体来建模很方便,但有些情况下需要在ANSYS中来建立实体模型。
例如:–需要建立参数模型时,—在优化设计及参数敏感性分析时建立的包含包含变量的模型.–没有ANSYS能够读入的几何实体模型时.–计算机上没有相关的绘图软件时(与ANSYS程序兼容的).–在对输入的几何实体需要修改或增加时,或者对几何实体进行组合时.A. 定义·实体建模可以定义为建立实体模型的过程.·首先回顾前面的一些定义::–一个实体模型有体、面、线及关键点组成。
.–体由面围成,面由线组成,线由关键点组成.–实体的层次从底到高: 关键点→线→面→体. 如果高一级的实体存在,则低一级的与之依附的实体不能删除.·另外,一个只由面及面以下层次组成的实体,如壳或二维平面模型,在ANSYS中仍称为实体.·建立实体模型可以通过两个途径:–由上而下–由下而上·由上而下建模;首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.·由下而上建模;首先建立关键点,由这些点建立线.·可以根据模型形状选择最佳建模途径.·下面详细讨论建模途径。
B. 由上而下建模·由上而下建模;首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.–开始建立的体或面称为图元.–工作平面用来定位并帮助生成图元.–对原始体组合形成最终形状的过程称为布尔运算.·图元是预先定义好的几何体,如圆、多边形和球体.·二维图元包括矩形、圆、三角形和其它多边形.·三维图元包括块体, 圆柱体, 棱体,球体,和圆锥体.·当建立二维图元时,ANSYS 将定义一个面,并包括其下层的线和关键点。
ANSYS建立实体模型
CAD文件可能包含难以进行网格划分的物理细节。 对模型进行修改时,需要知道实体模型和有限元模型中 图元的层次关系,不能删除依附于较高级图元上的低级图元 。否则会引起模型错误。例如不能删除依附于面上的线,依 附于体上的面等。
3.4 ANSYS环境内直接建模方法
3.2.2 IGES格式实体的导入
IGES(Initial Graphics Exchange Specification) 是一种被广泛接受的中间标准格式,用来在不同的CAD和 CAE系统之间交换几何模型。使用该文件格式可以输入全部 或者部分模型文件,因而用户可以通过它来输入模型的全部 或者一部分从而减轻建模工作量,然后在ANSYS里对输入 的模型进行修改。对于输入IGES文件,ANSYS提供如下两 种选项:
第3章 建立实体模型
实体模型是分析的基础,约束和载荷加载在实体模型才能进行分析 计算。实体模型的建立,可以视为前处理器中阶段性的任务。设计工程 师可以通过CAD软件所提供的构建、旋转、平移、放大、缩小等功能, 达到建立、查看和修改产品实体模型的目的。
ANSYS中实体模型的来源有两种,一种方法可以通过常用的中间 文件格式导入;另外一种方式就是在ANSYS前处理器中直接建模。当来 自CAD软件时,可以通过IGES,SAT,STEP,PARASOLID等中间文件格 式进行转换,而输入ANSYS,或者经由直接转换界面,将CAD模型直接 转换至ANSYS中。使用这种方式时,最好先在CAD软件中对模型进行简 化,再把模型输出,这样可以节省处理模型的时间。
进入ANSYS时,有一个默认的工作平面,即总体笛卡尔 坐标系的XY平面。工作平面可以根据需要被移动和旋转。
ANSYS实体建模练习
轴承座实体建模: 自上而下镗孔1.0R, 0.1875 深基座6 x 3 x 1腹板, 厚0.15全部用英尺作单位 1.75四个0.75D 的孔,孔中心距角点0.75轴衬, 0.85R 支架1.5R, 0.75 thick1.按教师指定的工作目录,用“p-block”作为作业名,进入ANSYS2.打开等视图方位:–Utility Menu > PlotCtrls> Pan, Zoom, Rotate …•按[ISO]3.创建轴承座的基础:–Main Menu > Preprocessor > -Modeling-Create > -Volumes-Block > By Dimensions ...•输入X1 = 0, X2 = 3, Y1 = 0, Y2 = 1, Z1 = 0, Z2 = 3,然后按[OK]3.将工作平面移到位置X=2.25, Y=1.25, Z=.75:–Utility Menu > WorkPlane> Offset WP by Increments …•设置X,Y,Z Offsets = 2.25, 1.25, 0.75•设置XY, YZ, ZX Angles = 0, -90, 0, 然后按[OK]4.创建直径为0.75 英寸深度为-1.5 英寸的实体柱:–Main Menu > Preprocessor > -Modeling-Create > -Volumes-Cylinder > Solid Cylinder +•输入Radius= 0.75/2•输入Depth= -1.5, 然后按[OK]5.将实体柱拷贝到DZ=1.5的新位置:–Main Menu > Preprocessor > Copy > Volumes +•拾取柱体(体号2),按[OK]•DZ = 1.5, 按[OK]6.从轴承座基础中挖出两个圆孔:–Main Menu > Preprocessor > -Modeling-Operate > -Booleans-Subtract > Volumes +•拾取轴承座基础的体(体1), 按[OK]•拾取两个圆柱体(体2 和体3), 然后按[OK]10.创建套筒托架的拱:–Main Menu > Preprocessor > -Modeling-Create > -Volumes-Cylinder > Partial Cylinder +•输入WP X = 0•输入WP Y = 0•输入Rad-1 = 0•输入Theta-1 = 0•输入Rad-2 = 1.5•输入Theta-2 = 90•输入Depth = -0.75, 然后按[OK]11.通过套筒托架的孔创建轴承座的柱:–Main Menu > Preprocessor > -Modeling-Create > -Volumes-Cylinder > Solid Cylinder +•WP X = 0•WP Y = 0•Rad=1•Depth= -0.1875,按[Apply]•WP X = 0•WP Y = 0•Rad= 0.85•Depth=-2,按[OK]12.挖掉两个实体柱,形成轴承座和套筒的孔:–Main Menu > Preprocessor > -Modeling-Operate > -Booleans-Subtract > Volumes +•拾取两个形成套筒托架拱和基础的体•按[Apply]•拾取轴承座柱•按[Apply]•拾取同样的两个基础的体•按[Apply]•拾取通过孔的圆柱•按[OK]13.合并相同的关键点:–Main Menu > Preprocessor > Numbering Ctrls> Merge Items …•Label设置“Keypoints”,然后按[OK]14.创建腹板:14a. 在基础正面顶边的中间建立一个关键点:–Main Menu > Preprocessor > -Modeling-Create > Keypoints> KP between KPs+•在基础上拾取两个位于正上方拐角处的关键点,按[OK]•RATI=0.5,然后按[OK]14b.创建三角形面:–Main Menu > Preprocessor > -Modeling-Create > -Areas-Arbitrary > Through KPs+•在轴承座基础和套筒托架基础相交的位置,拾取第一个关键点X=1.5•在拱表面底部和套筒托架基础相交的位置,拾取第二个关键点X=1.5•拾取在14a步骤中建立的位于X=1.5, Y=1, Z=3的第三个关键点•按[Ok]14c.沿面的法线方向拉伸面:–Main Menu > Preprocessor > -Modeling-Operate > Extrude > -Areas-Along Normal +•拾取在步骤14b中建立的三角形面,按[OK]•输入DIST = -0.15, 然后按[OK]14.平面镜射整个模型Main Menu > Preprocessor > -Modeling>Reflect>Volumes+拾取[Pick All]拾取”Y-Z plane”,单击OK15.粘接所有体:–Main Menu > Preprocessor > -Modeling-Operate > -Booleans-Glue > Volumes +•拾取[Pick All]16.打开体号的显示开关并画体:–Utility Menu > PlotCtrls> Numbering …•设置Volume numbers选项为on, 按[OK]17.保存并退出ANSYS:–Pick the “SAVE_DB”button in the Toolbar–Pick the “QUIT”button in the Toolbar•选择“Quit -No Save!”•按[OK]6.52.50.51.80.31.0R 1.4R.4R 0.7R45oSpline through six control pointsC LC LCrank pin endWrist pin endAll dimensions in inches45o0.280.40.334.754.03.25。
ANSYS基础教程—实体建模
ANSYS基础教程—实体建模关键字:ANSYS ANSYS教程实体建模信息化调查找茬投稿收藏评论好文推荐打印社区分享ANSYS 有一组很方便的几何作图工具。
本文将讨论这些作图工具,主要内容包括:实体建模定义、如何自上而下建模、以及如何让自下而上建模。
实体建模概述·直接输入几何实体来建模很方便,但有些情况下需要在ANSYS中来建立实体模型。
例如:–需要建立参数模型时,—在优化设计及参数敏感性分析时建立的包含包含变量的模型.–没有ANSYS能够读入的几何实体模型时.–计算机上没有相关的绘图软件时(与ANSYS程序兼容的).–在对输入的几何实体需要修改或增加时,或者对几何实体进行组合时.A. 定义·实体建模可以定义为建立实体模型的过程.·首先回顾前面的一些定义::–一个实体模型有体、面、线及关键点组成。
.–体由面围成,面由线组成,线由关键点组成.–实体的层次从底到高: 关键点→线→面→体. 如果高一级的实体存在,则低一级的与之依附的实体不能删除.·另外,一个只由面及面以下层次组成的实体,如壳或二维平面模型,在ANSYS中仍称为实体.·建立实体模型可以通过两个途径:–由上而下–由下而上·由上而下建模;首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.·由下而上建模;首先建立关键点,由这些点建立线.·可以根据模型形状选择最佳建模途径.·下面详细讨论建模途径。
B. 由上而下建模·由上而下建模;首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.–开始建立的体或面称为图元.–工作平面用来定位并帮助生成图元.–对原始体组合形成最终形状的过程称为布尔运算.·图元是预先定义好的几何体,如圆、多边形和球体.·二维图元包括矩形、圆、三角形和其它多边形.·三维图元包括块体, 圆柱体, 棱体,球体,和圆锥体.·当建立二维图元时,ANSYS 将定义一个面,并包括其下层的线和关键点。
ANSYS建模两种方法和给材料添加材料属性
ANSYS建模两种方法和给材料添加材料属性ansys 实体建模详细介绍3--体用于描述三维实体,仅当需要体单元的时候才需要定义体。
生成体时自动生成低级别的对象,如点、线、面等。
Main menu / preprocessor / modeling / create / volumes展开体对象创建菜单1.1 Arbitrary :定义任意形状a) Through kps :通过关键点定义体b) By areas :通过边界面生成体1.2 Block :定义长方体a) By 2 corners & Z :通过一角点和长、宽、高来确定长方体。
b) By center,corner,Z:用外接圆在工作平面定义长方体的底,用Z方向的坐标定义长方体的厚度。
c) By dimensions :通过指定长方体对角线两端点的坐标来定义长方体。
1.3 Cylinder :定义圆柱体a)solid cylinder :圆柱体,通过圆柱底面的圆心和半径,以及圆柱的长度定义圆柱b)hollow cylinder(空心圆柱体):通过空心圆柱体底面圆心和内外半径,以及长度定义空心圆柱c)partial cylinder(部分圆柱):通过空心圆柱底面圆心和内外半径,以及圆柱开始和结束角度,长度来定义任意弧长空心圆柱。
d)by end pts&Z :通过圆柱体底面直径两端的坐标和圆柱长度来定义圆柱e)By dimensions:通过圆柱内外半径、圆柱两底面Z坐标、起始和结束角度来定义圆柱。
1.4 Prism :棱柱体a) Triangular:通过定义正三棱柱底面外接圆圆心与棱柱高度来定义正三棱柱b) Square、pentagonal、hexagonal、septagonal、octagonal分别为正四棱柱、五棱柱、六棱柱、七棱柱、八棱柱。
其体操作与正三棱柱生产方法类似。
c) By inscribed rad:通过正棱柱底面内切圆和棱柱高来定义正棱柱。
第四章 ANSYS实体建模
二、ANSYS的坐标系及其操作 的坐标系及其操作
1、总体坐标系 、
最基本的空间描述坐标系。存在与 分析的全部进程中, 最基本的空间描述坐标系。存在与ANSYS分析的全部进程中,是一个绝对的参考 分析的全部进程中 是空间定义的基础,不可以进行坐标变换和修改。 程序提供了4个总体 系,是空间定义的基础,不可以进行坐标变换和修改。ANSYS程序提供了 个总体 程序提供了 坐标系,如图所示。 坐标系,如图所示。
二、ANSYS的坐标系及其操作 的坐标系及其操作
ANSYS程序中,有完整的坐标系用于描述几何模型和有限元模型。坐标系的种 程序中,有完整的坐标系用于描述几何模型和有限元模型。 程序中 类分为总体坐标系、局部坐标系、工作平面、显示坐标系、节点坐标系、 类分为总体坐标系、局部坐标系、工作平面、显示坐标系、节点坐标系、单元坐标 系和结果坐标系。在此主要介绍总体坐标系、局部坐标系、工作平面、 系和结果坐标系。在此主要介绍总体坐标系、局部坐标系、工作平面、显示坐标系 及其相关的操作方法,菜单系统如图所示。 及其相关的操作方法,菜单系统如图所示。
鼠标拾取对话框
2)拾取实体对象 ) 拾取实体对象,包括点、 拾取实体对象,包括点、线、面、体、节点与单元 等,各类实体对象的拾取会弹出如图所示的拾取对象对话 框。以图所示创建一条直线时拾取两个关键点的拾取对话 框为例,该对话框被4个横线分成 个区。 个横线分成5个区 框为例,该对话框被 个横线分成 个区。 为拾取对象, 第1区:选择拾取模式,选中 区 选择拾取模式,选中pick为拾取对象,选中 为拾取对象 unpick表示将已选择的对象反选掉。 表示将已选择的对象反选掉。 表示将已选择的对象反选掉 第2区:选择方法。 区 选择方法。 Single:选择该项则用鼠标逐个拾取对象。 :选择该项则用鼠标逐个拾取对象。 Box:选中该项则用鼠标定义一个矩形框拾取对象。 :选中该项则用鼠标定义一个矩形框拾取对象。 Polygon:选中该项则用鼠标定义一个多边形框拾取对 : 象。 Circle:选中该项则用鼠标定义一个圆形拾取对象。 :选中该项则用鼠标定义一个圆形拾取对象。 Loop:选中该选项则用鼠标选中一个对象链 环上的一 :选中该选项则用鼠标选中一个对象链/环上的一 个对象,从而选中链/环上的所有对象 如一个圆线由4段 环上的所有对象。 个对象,从而选中链 环上的所有对象。如一个圆线由 段 弧组成,只需选中其中一段弧程序会自动搜索并选中所有4 弧组成,只需选中其中一段弧程序会自动搜索并选中所有 段弧。 段弧。
ANSYS实体建模
全局坐标系(续) ■ 缺省时,全局直角坐标系是激活坐标系 ■ 激活坐标系也可为柱(或球、其它坐标系)
局部坐标系(Local CS )
节点坐标系—用于载荷和自由度定向(续)
■ 有时,需要旋转模型中某些节点的节点坐标系,用于 有坡度的滑动支撑或施加径向位移:
节点坐标系—举例
■ 观看节点坐标系: Utility Menu: PlotCtrls > Symbols >
体的生成
选项-创建体的功能 Main Menu: Preprocessor > -Modeling- Create > Volumes-
实体建模的基本途径
■ 由底向上建模: 按点、线、面、体顺序由低级 图元起形成几何实体;
■ 由顶向下建模: 直接生成顶级图元,通过布尔 操作完成目标几何实体。
■ 利用已有的图元
模型
实体建模和直接生成有限元模型的优缺点对比
实体建模的方法
➢ 一、自底向建模:即首先定义关键点,再利用关键点 定义较高级别的图元(线、面、体),即由点到线、 由线到面、由面到体,即由低级到高级
➢ 二、自顶向下建模:即直接建立体、面或线,然后 ANSYS软件自动生成所有从属于该图元的低级图元。
图元: 点、线、面、体 图元的等级:由低至高 => 点、线、面、体
Operate其它操作(续)
➢ Extrude——拖拉,是利用低维数的几何元素按照一定 的拖拉方式获得高维数的几何对象
Operate其它操作(续)
➢ Extand Line——延伸线,在线的一端延长给定长度
Operate其它操作(续)
➢ Scale——比例缩放,是在将激活的坐标系下对单个或 多个图元进行放大或缩小,包含复制和移动两种方式。
02 03ANSYS实体建模
33
• 鼠标左键 拾取 (或取消)距离鼠标光 点最近的实体或位置. • 鼠标中键 相当于拾取图形菜单中的 Apply. 用中键可以节省移动鼠标的 时间. • 鼠标右键 在拾取、取消之间切换.
拾取
执行 切换 拾取 / 不拾取
光标显示:
拾取 不拾取
34
热点的拾取位置: • 面和体 有一个热点在实体模型中心。 • 线 有三个热点— 一个在中间另两个在两端。
7
2)局部坐标系:由于很多分析中的有限元模型非常复杂,仅 使用总体坐标系是不够的,这时用户必须自定义坐标系, 即局部坐标系。
坐标系编号:编号大于10 坐标类型:笛卡儿坐标系、柱坐标系和球坐标系。 坐标系原点 坐标系各轴方向
8
创建局部坐标系
9
3)激活坐标系 • 可以定义任意数目的坐 标系,但任何时候只能 有一个是激活的 • 当坐标系是激活的时候, 当定义几种几何体素时 受到坐标系的影响:
29
• PlotCtrls 菜单是用 于控制图形显示: – 图形的方位 – 缩放 – 颜色 – 符号 – 注释 – 动画 – 等。
30
• 缺省的视图方向是主视图方向: 是从 +Z 轴观察模型。 • 用动态模式(拖动模式)—拖动模 式是用 Control 键和 鼠标键调整观 察方向的途径。 – Ctrl + Left( 鼠标左键)可以平移 模型。 – Ctrl + Middle(鼠标中键): Zooms(缩放) 模型 旋转模型 (绕屏幕 Z轴方向) – Ctrl + Right(鼠标右键)旋转模 型: 绕屏幕X轴方向 绕屏幕Y轴方向
41
重新激活整个集合 • 完成子集的操作之后,应重新激活整个实体集. • 如果求解时不激活所有节点和单元,求解器会发出警告. • 激活整个实体的最简单操作是选择 “everything”: – Utility Menu > Select > Everything – 或用命令 ALLSEL 也可以在选择实体对话框中选择 [Sele All] 按钮分别激 活不同实体(或用命令 KSEL,ALL; LSEL,ALL; 等.)
ANSYS基础教程—实体建模
ANSYS基础教程—实体建模ANSYS是一款广泛应用于工程领域的有限元分析软件,可以用于解决各种工程问题。
在使用ANSYS进行有限元分析之前,我们需要先进行实体建模,即将实际工程问题转化为计算机可解析的几何模型。
本文将介绍ANSYS基础教程中的实体建模部分。
首先,我们需要打开ANSYS软件。
在主界面上选择“几何建模”选项。
接着,我们可以选择不同的几何建模方法,如二维绘图法、三维绘图法或者实体建模法。
在这里,我们选择实体建模法。
在实体建模法中,我们可以利用ANSYS提供的几何绘图工具对几何模型进行创建。
这些绘图工具包括直线、弧线、曲线、曲面等。
我们可以根据实际情况选择不同的绘图工具来创建几何模型。
在创建几何模型之前,我们需要先选择坐标系。
ANSYS提供了多种坐标系选择,如直角坐标系、极坐标系、柱坐标系等。
我们可以根据实际情况选择适合的坐标系。
接下来,我们可以开始创建几何模型。
首先,我们可以选择直线工具来创建直线段。
在鼠标左键作用下,我们可以绘制直线段的起始点和结束点。
当我们绘制好直线段之后,可以按下鼠标右键进行确认。
除了直线段,我们还可以创建曲线和弧线。
曲线可以通过选择多个点来创建,而弧线可以通过选择起点、中点和终点来创建。
这样,我们就可以在实体建模中创建出复杂的几何曲线。
在完成几何曲线创建后,我们可以再利用这些几何曲线来创建曲面。
在ANSYS中,我们可以选择多边形工具来创建曲面。
我们只需要选择几何曲线边界上的点,然后根据需要选择特定的曲面面积来创建曲面。
ansys管单元和实体单元建模
ANSYS管单元和实体单元建模一、引言在工程设计和分析领域,使用计算机辅助工程软件进行建模和仿真是一项重要的任务。
ANSYS是一款广泛使用的工程仿真软件,其中管单元和实体单元建模是常见的两种建模方法。
本文将探讨ANSYS中管单元和实体单元建模的原理、应用、优缺点以及建模实例。
二、管单元建模2.1 管单元建模原理管单元建模是指将结构或流体管道建模为一系列连续的线元素。
管单元建模的基本原理是将管道分割为多个小段,每个小段都可以看作是一根线元素。
在ANSYS中,可以通过输入管道的起始点和终止点坐标、直径和材料等参数来创建管单元模型。
2.2 管单元建模应用管单元建模广泛应用于流体力学、热传导和结构分析等领域。
例如,在流体力学中,可以使用管单元建模来模拟液体或气体在管道中的流动,分析流速、压力和温度等参数的变化。
在热传导分析中,可以使用管单元建模来研究热量在管道中的传递过程。
在结构分析中,管单元建模可以用于研究管道的强度和稳定性。
2.3 管单元建模优缺点管单元建模具有以下优点: - 管单元建模适用于长管道的分析,可以更好地描述流体或热量在管道中的传递过程。
- 管单元建模可以减少模型的复杂度,提高计算效率。
- 管单元建模可以更方便地进行参数化分析和优化设计。
然而,管单元建模也有一些缺点: - 管单元建模无法精确地描述管道内部的细节,例如内部流动的湍流和乱流现象。
- 管单元建模对于非直线管道和复杂几何形状的建模较为困难。
- 管单元建模需要对管道进行前处理和后处理操作,工作量较大。
三、实体单元建模3.1 实体单元建模原理实体单元建模是指将结构或流体建模为一系列连续的体元素。
实体单元建模的基本原理是将结构或流体分割为多个小体元素。
在ANSYS中,可以通过输入结构的几何信息、材料属性和边界条件等参数来创建实体单元模型。
3.2 实体单元建模应用实体单元建模广泛应用于结构力学、流体力学和电磁场分析等领域。
例如,在结构力学中,可以使用实体单元建模来研究零件或整体结构的强度、刚度和变形等特性。
ansysworkbench实体建模及计算(详解)
实例分析(基础)快捷键:滚动鼠标滚轮缩放,按住鼠标滚轮不放移动鼠标旋转,ctrl+鼠标中键(滚轮)移动。
Shift+鼠标中键上下移动改变视图大小。
Ctrl+鼠标左键点选可选择不连续多个对象(可在绘图窗口直接选择或在设计树中选)。
绘图时(草图模式sketching下)选中某个对象按delete 可删除该对象。
打开ansys workbench(点击“开始”----->“程序”----->“ansys12.1”----->“workbench”)出现这个窗口。
左半边儿有很多按钮,可以双击这些按钮打开相应的程序。
这是局部放大后的图片,双击这里面的按钮,加入建模程序。
这时原来空白的地方出现了一个图标。
程序启动后点击选择单位点击OK之后就可以建模了。
建立模型这个窗口就是建模程序的主窗口。
左半边儿白色小窗口里有三个坐标供选择。
分别是“XYPlane”“ZXPlane”“YZPlane”。
绘图前必须选择相应的坐标,在坐标上建立草图。
比如现在要选择“XYPlan”,在这个平面建立草图“sketch1”,在这个草图上进行平面图绘制。
可以看到下图上边儿偏右处有个新建草图按钮,点击这个按钮可以建立一个新的草图。
新建草图后,XYPlan下出现sketch1,如下图。
点击选中这个草图(或者点击选中“XYPlan”),点击正视于(look at)按钮。
这个按钮位于下面的工具栏右边。
也可以点击选中sketch1(或“XYPlan”)右键点击调出快捷键菜单,选中“look at”。
这时绘图区的坐标会自动摆正。
在新建的草图上绘制平面图单击选择下图上的点击这个图左下角的按钮“sketching”,转化到绘图模式下。
开始绘图。
点击后这个图片会变成下面的图片:选择“Line”就可在绘图窗口划线了。
比如在x轴上画一条线,左键点击x轴上的某一点,松开移动到另一点,再点击,就会出现一条直线。
画完后可以对这个直线进行约束,比如让让它关于y轴对称。
ansys建模实例
Ansys建模实例引言Ansys是一种广泛使用的有限元分析软件,可以用来模拟和解决各种工程问题。
本文将介绍一些Ansys的建模实例,包括常见的建模技术和步骤。
通过这些实例,读者可以了解Ansys的基本操作和建模技巧。
实例一:三维实体建模在Ansys中进行三维实体建模是常见的任务之一。
以下是一个简单的三维实体建模实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如圆柱体、球体或立方体,并指定其尺寸和位置。
4.调整模型的属性,如材料属性和边界条件。
5.运行静态或动态分析以获得解决方案。
6.分析结果可以通过数据可视化工具来展示和分析。
这个实例展示了Ansys建模的基本步骤。
读者可以根据自己的需求和具体问题进行相应的调整和修改。
实例二:二维平面建模在某些情况下,我们只需要进行二维平面建模,比如平面结构的分析。
以下是一个二维平面建模的实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如直线、圆弧或多边形,并指定其尺寸和位置。
4.调整模型的属性,如材料属性和边界条件。
5.运行静态或动态分析以获得解决方案。
6.分析结果可以通过数据可视化工具来展示和分析。
这个实例展示了在Ansys中进行二维平面建模的基本步骤。
在实际应用中,读者可以根据具体情况选择适当的元素和属性。
实例三:流体建模Ansys还可以用于流体建模和分析。
以下是一个流体建模实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如管道、储罐或泵,并指定其尺寸和位置。
4.定义流体属性,如流体类型、流速和压力等。
5.调整模型的边界条件,如流入口和流出口的速度或压力。
6.运行流体分析以获得流体的流动情况和压力分布。
7.可以通过动画或图形展示来可视化流体的流动情况。
ansys 中的实体建模
第五章实体建模5.1实体建模操作概述用直接生成的方法构造复杂的有限元模型费时费力,使用实体建模的方法就是要减轻这部分工作量。
我们先简要地讨论一下使用实体建模和网格划分操作的功能是怎样加速有限元分析的建模过程。
自下向上地模造有限元模型:定义有限元模型顶点的关键点是实体模型中最低级的图元。
在构造实体模型时,首先定义关键点,再利用这些关键点定义较高级的实体图元(即线、面和体)。
这就是所谓的自下向上的建模方法。
一定要牢记的是自下向上构造的有限元模型是在当前激活的坐标系内定义的。
图5-1自下向上构造模型自上向下构造有限元模型:ANSYS程序允许通过汇集线、面、体等几何体素的方法构造模型。
当生成一种体素时,ANSYS程序会自动生成所有从属于该体素的较低级图元。
这种一开始就从较高级的实体图元构造模型的方法就是所谓的自上向下的建模方法。
用户可以根据需要自由地组合自下向上和自上向下的建模技术。
注意几何体素是在工作平面内创建的,而自下向上的建模技术是在激活的坐标系上定义的。
如果用户混合使用这两种技术,那么应该考虑使用CSYS,WP或CSYS,4命令强迫坐标系跟随工作平面变化。
图5-2自上向下构造模型(几何体素)注意:建议不要在环坐标系中进行实体建模操作,因为会生成用户不想要的面或体。
运用布尔运算:可以使用求交、相减或其它的布尔运算雕塑实体模型。
通过布尔运算用户可直接用较高级的图元生成复杂的形体。
布尔运算对于通过自下向上或自上向下方法生成的图元均有效。
图5-3使用布尔运算生成复杂形体。
拖拉或旋转:布尔运算尽管很方便,但一般需耗费较多的计算时间。
故在构造模型时,如果用拖拉或旋转的方法建模,往往可以节省计算时间,提高效率。
图5-4拖拉一个面生成一个体〔VDRAG〕移动和拷贝实体模型图元:一个复杂的面或体在模型中重复出现时仅需要构造一次。
之后可以移动、旋转或拷贝到所需的地方。
用户会发现在方便之处生成几何体素再将其移动到所需之处,这样往往比直接改变工作平面生成所需体素更方便。
ANSYS实体建模(上机2,3)讲解
(由底向上建模:定义关键点、线、面等)
■ 缺省时,与全局坐标系 XY平面重合
工作平面的设置和定义
工作平面设置 工作平面的显示方式 栅格显示控制面板
捕捉控制面板
网格调整控制面板
工作平面的移动和旋转
工作平面移动方向
工作平面移动增量 工作平面旋转方向
工作平面旋转角度
全局坐标系 ( Global CS )
交运算
减运算 切分运算
设置
Operate Setting—设置 yes——表示保留原图元; no——表示运算之后删除原始图元
Add—加运算
Add——相加,结果是多个相同维数的几何元素被合并成 一个新的几何元素 ■ A1+A2=A3 ■ A3 包含原来所有面的区域,不再保留原来边界。
Subtract——减运算
■ 节点坐标系 — 用于载荷和自由度定向
■ 结果坐标系 — 用于显示和解释结果
■ 显示坐标系 — 用 Preprocessor > - Modeling Create > Keypoints
在工作平面上生成关键点 在激活的坐标系上生成关键点
全局坐标系(续) ■ 缺省时,全局直角坐标系是激活坐标系
■ 激活坐标系也可为柱(或球、其它坐标系)
局部坐标系(Local CS )
节点坐标系—用于载荷和自由度定向(续)
■ 有时,需要旋转模型中某些节点的节点坐标系,用于 有坡度的滑动支撑或施加径向位移:
节点坐标系—举例 ■ 观看节点坐标系: Utility Menu: PlotCtrls > Symbols > ( Toggle ON Nodal CS )
应用坐标系创建几何模型
几何模型的定位和创建可基于三种坐标系 CS(Coordinate system) ■ 工作平面坐标系( Working Plane CS )
ANSYS立体斜支座的实体建模方法
立体斜支座的实体建模方法建模步骤如下:一、底部建模图形如图所示。
1建立直角坐标系如图所示。
2.由面创建图形。
1)绘制矩形Preprocessor^ Modeling 宀Create 宀Areas 宀Rectangle By dimensions输入信息如下:生成图形如下:2)绘制圆角图形显示为线:绘制倒角,操作过程见下图,弹出选择线选择框:分别拾取两条线,输入圆角半径20,得到图形如下:由线把面分割开,操作如下:I i T . ■. D .! r Trs.M|, r L~fid or c^-tcr arr^a t-i be dellctni| ■■-!■!| hrpc-3 | mi"2| CBSTF -S |rc>:n"L診棺|冷■护0 |虚片回ET5 F T 乩「•・BJMWdlt ,. la_lW ・k^F j *|Q ”事岛爭•3 •绘制四个孔恢复面显示,绘制四个圆孔,操作如下:Ay&YS Main MenuD Prercrencea ti Preproce-ss&r « Type s Keal Constants £i Ns curial Props ® 5ec<lona- s Nod.ellJifl ; B Create 田 Keipoinia s L ilies 曰 ATtaa'3 Artsitrarr s (Leetangle a U^Annuiua ^Partial Annulus- J 1 By End Pointe 日财 DincnsicHis '3 Polyscn ^Arra Fillet 田 V Q I UIKS ® Nodes FH Fl ^iwi t aLIL? 01电京 LLv-i El»1 "a 也卜「】甲 Isrwiw*i*nu7iT]i : BsLun 厨旦釧圄劃到・A^SYS TwlbflrSMEQB ]胆 LVB | 啊1~| PIM 獻时町ANST5 ifa 口 Menju a Pret trenc EA nipr<!proc0ifi0ii ,-S Elwnl T TPE R K H L tons tiuitw ■ lAttriel Props n Secliani n Mode] hug B Create口册TTIlW■ Extrudei^lHicend If neB Bool cans n lntETB«ct Q A ddU 洛 UlH FD F C t 口 DiTide 尹 Ifoluw! brValid 冲 liflFlq 声A TM bj V Q I UMArMJb^Arca 尹 円 ftrrji by IrkPla 第 LI M br V D I UBC 拳 LBiw? bj A F -CAAreal»TPe-3|/Y iFT 二 ©空・》・jt ・lt ・| J J :?:l ■■-点击“OK ”,在弹出菜单中选择拟分割面,点击“ 0K ”,在弹出菜单中选择两圆弧,点 击“0K ”完成分割。
ANSYS实体建模全解
■ 几何实体:由一系列图元组成几何实体 ■ 基本图元的生成及修改:
关键点的生成与修改
选项:Main Menu: Preprocessor > - Modeling - Create > Keypoints
线的生成与修改
选项- 创建线的功能
Main Menu: Preprocessor > -Modeling- …
(由底向上建模:定义关键点、线、面等)
■ 缺省时,与全局坐标系 XY平面重合
全局坐标系 ( Global CS )
全局坐标系(续)
■ 缺省时,全局直角坐标系是激活坐标系 ■ 激活坐标系也可为柱(或球、其它坐标系)
全局坐标系-举例
局部坐标系(Local CS )
节点坐标系—用于载荷和自由度定向(续)
Create > -Lines- Lines
Create > -Lines- Splines
Create > -Lines-Arcs
Operate > Extrude/Sweep
面的生成与修改
选项-生成面的功能
Main Menu: Preprocessor > -Modeling- …
Create >…
粘接的选项
Main Menu:Preprocessor > -Modeling- Operate > -Booleans- Glue
切分
切分的选项
Main Menu:Preprocessor > -Modeling- Operate > -BooleansSubtract or Divide
切分的选项(续一)
最新ANSYS 课件 第三章 建立实体模型讲学课件
通过拾取
面积输入 1.)在图形窗口拾取圆心和半径 2.)或在此输入数值
ANSYS 命令—由上而下建模
建立一个块体: Main Menu > Preprocessor > Modeling > Create Volumes >Block
提示
通过拾取
体输入 1.) 在图形窗口拾取对角线上 的两个端点和 Z轴方向的深度. 2.) 或在拾取对话框中键入相 关尺寸
Utility Menu > File > Import > UG...
激活Defeaturing 选项 缺省为No Defeaturing
只读入选择的层 和几何类型的选 项
ANSYS 命令
➢ 直接输入模型虽然方便,但某些情况下需要在 ANSYS中建立实体模型,例如: 需要建立参数化模型,— 在优化设计及参 数敏感性分析时,需要建立包含变量的模型。 没有ANSYS能够读入的几何模型。 用户计算机平台没有所需的接口产品。 需要对输入的几何模型进行修改或添加。
➢ ANSYS 有一系列方便的几何建模工具,以下 将讨论这些内容。
ANSYS 命令
➢ 实体建模是建立实体模型的过程.
➢ 首先回顾前面的一些定义:
一个实体模型由体、面、线及关键点组 成。
体由面围成,面由线组成,线由关键点组 成。
实体的层次由低到高: 关键点 — 线 — 面。 如果高一级的实体存在,则依附 它的低级实体不能删除。
➢ 使用接口产品,需要购买相应的授权。
输入几何模型—接口产品
➢ Pro/E接口
读入由 Pro/ENGINEER 生成的 .prt 文件 (由 PTC公司提供)。
需要 Pro/ENGINEER 软件。
4. ANSYS实体及有限元建模
WY WY X1 X2 Y1 WX WX
Y2
WP (X,Y)
3.5.3工作平面
工作平面坐标系
与工作平面相连 主要用于实体模型体素的定位和取向 可以利用工作平面通过拾取定义关键点
3.6 实体建模技术
实体建模有两种思路:自底向上构造模型和自顶向下
构造模型
1.二者的区别与联系 自底向上的建模方法是指在构造几何模型时首先定义几何 模型中最低级的图元即关键点,然后再利用这些关键点定义较 高级的图元(即线、面、体)。自底向上构造的模型是在当前 激活的坐标系内定义的。 自顶向下的建模方法是指一开始就通过较高级的的图元来 构造模型,即通过汇集线、面、体等几何体素的方法来构造模 型。当生成一种体素时,ANSYS软件自动生成所有从属于该 体素的低级图元。应该注意的是几何体素是在工作平面上创建 的,因此每一时刻都要清楚地知道当前工作平面的状态。
因为几何体素是高级图元,可不用首先定义任何关键点而形成, 所以称利用体素进行建模为自顶向下建模。几何体素是在工作平面 上生成的。 □面体素包括矩形、圆形或环形、正多边形 创建不规则面 创建矩形面 创建圆面、圆环面
创建正多边形 创建两个面的倒角
3.7 自顶向下建模技术
□实体体素包括长方体、柱体(圆柱和正棱柱)、球体、
部件
STATOR
(体)
集合
STATASM
(体 &amR
( 体)
ROTORASM
( 体 & 线)
MOTOR
MOTOR集合由体,单元和 线组成。
WINDINGS
( 线)
AIRGAP
(单元)
2.12 布尔运算
布尔运算在建模的过程中有着极其重要的作用,只有掌握好 布尔运算强大的功能才能利用ANSYS建模工具随心所欲地建立预 期的模型。 在默认情况下,布尔操作完成后,输入的原始图元被删除,得 到的是新的并且重新编号的图元。通过设置可以改变默认方式。 被删除的图元编号变成”自由“的(这些自由得编号将附给新 创建的图元,从最小的自由编号开始)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章
ANSYS实体建模
湖北工业大学
型相对应的类型参考号组成的表称为单元类型表。在创建实际单元 时(直接创建单元或者划分网格),需要从单元类型表中为其分配 一个类型参考号以选择对应的单元类型生成有限元模型。
此处列出已经定义的单元类型
第2章
ANSYS实体建模
湖北工业大学
单元编号名
单元类别
单元类型参考号
第2章 ANSYS实体建模 2.8.1 建模原则与方法选择
湖北工业大学
1. 模型简化:建立有限元模型时,对于结构形式复杂,而对于要 分析的问题来讲又不是很关键的局部位置,在建立几何模型时 可以根据情况对其进行简化,以便降低建模的难度。 2. 建模方法选择
(1)直接生成方法必须直接确定每个结点的位置,以及每个单元 的大小、形状和连接关系,工作量大。直接生成法适用于小型 简单模型。缺点是改变网格和模型十分困难,易出错,当模型 复杂时,直接生成法叫人无法忍受。
新添加的两个单元类型:
PLANE42:4结点四边形单元
PLANE2:6结点三角形单元
注:beam:梁单元;Link:杆单元; Solid:实体单元;Pipe:管单元; Shell:壳单元
第2章
ANSYS实体建模
湖北工业大学
许多单元有一些另外的选项(KEYOPTs),这些项用于控制单 元刚度矩阵的生成、单元的输出和单元坐标系的选择等。 KEYOPTs可以在定义单元类型时指定(对话框中的Options选项)。
第2章 ANSYS实体建模 2.2 指定作业名和分析标题
湖北工业大学
该项工作与设定工作目录一样,不是进行一个ANSYS分析过程 必须的,但ANSYS推荐使用作业名和分析标题。
1.定义作业名
2. 作业名被用来识别ANSYS作业。当为某个分析定义了作业名 后,作业名就成为分析过程所产生的所有文件名的第一部分 (Jobname)。如果未指定作业名,所有文件的作业名默认为file。 在进入ANSYS软件后,可按下面的方式改变作业名 •Command方式:/FILNAME
第2章
ANSYS实体建模
湖北工业大学
新建立的局部坐标系的 识别号,必须大于10
GUI方式:[Utility Menu] WorkPlane | Local Coordinate Systems | Create Local CS|At Specified Loc
右手法则
原点选取对话框
在指定位置创建局部坐标系对话框
2.6 定义单元实常数
单元实常数是依赖单元类型的单元特性,并不是所有的单元类 型都需要实常数,同一类型的不同单元可以有不同的实常数值。例 如二维梁单元BEAM3的实常数:面积(AREA)、惯性矩(IZZ)、高度 (HEIGHT)、剪切变形常数(SHERZ)、初始应变(ISTRAN)和单位 长度质量(ADDMAS)等。 对应于特定单元类型,每组实常数有一个参考号,与每组实常 数对应的参考号组成的表称为实常数表。在创建单元(直接创建单 元或者划分网格)时,可以为将要创建的单元分配实常数号。在分 配实常数号时,要注意实常数参考号和要创建单元的单元类型参考 号的对应性,这种对应性是由使用者自己保证的,否则在划分网格 时将会报错或出现不可预知的错误。
(2)实体+网格建模法是先生成几何模型,再进行网格划分,相 对来说容易些,适用于庞大而复杂的模型,特别是三维实体模 型,它比直接生成法更加有效和通用,是一般建模的首选方法。 其优点是便于几何上的改进和单元类型的改变,容易实现有限 元模型的生成。
第2章
ANSYS实体建模
湖北工业大学
3. 实体建模中几何模型的生成方法 •对于不太复杂的模型,可以直接ANSYS的实体建模工具完成。 [Main Menu]Preprocessor|Modeling •如果模型过于复杂,可以考虑在专用的CAD中建立几何模型,然 后通过ANSYS提供的接口导入模型。 导入方法:[Utility Menu]File|Import ANSYS支持的接口通常包括以下类型: IGES、CATIA、Pro/E、UG、SAT、PARA、IDEAS
第2章 2.5 定义单元类型
ANSYS实体建模
湖北工业大学
ANSYS单元库中提供了超过150种的不同单元类型,每种单元类 型有一个特定的编号和一个标示单元类型的前缀,如BEAM4(4号梁 单元),PLANE82(82号板单元),SOLID95(95号实体单元)。 单元类型决定了单元的: (1)结点数和自由度;
2.8.2 坐标系
在不同的分析阶段,ANSYS将用到多种不同的坐标系。 • • 总体和局部坐标系:用来定位几何形状参数的空间位置; 显示坐标系:用于几何形状参数的列表和显示;
第2章
ANSYS实体建模
湖北工业大学
•节点坐标系:定义每个节点的自由度方向和节点结果数据的方向; •单元坐标系:确定材料特性主轴和单元结果数据的方向; •结果坐标系:用来列表、显示结点或单元结果 1.总体坐标系 总体坐标系和局部坐标系是用来定位几何体。默认情况下,建 模操作时使用的坐标系是总体笛卡儿坐标系。但是很多情况下,采 用其它坐标表达形式往往会更加方便,比如旋转模型时需要用到柱 坐标表达形式。总体坐标系是一个绝对的参考系。ANSYS提供了3 种坐标表达形式:笛卡儿坐标、柱坐标和球坐标。所有这3种坐标 系都是右手法则,且有相同的原点,它们由其参考号识别:0-笛 卡儿坐标系;1-柱坐标系;2-球坐标系。 ANSYS引用坐标值总是采用固定的方式:X轴、Y轴和Z轴, 而不管实际激活的坐标形式,因此在不同的坐标系下,X轴、Y轴, Z轴代表的意义也不同:
第2章
ANSYS实体建模
湖北工业大学
•笛卡儿坐标形式:X轴、Y轴、Z轴分别代表其原始意义; •柱坐标形式: X轴、Y轴、Z轴分别代表径向R、周向和周向Z; •球坐标形式: X轴、Y轴、Z轴分别代表分别代表R、 和 2.局部坐标系
在许多情况下由于特定的用途需要建立各种各样的局部坐标系。 其原点可能与总体坐标系有一定的偏移,其坐标轴也可能与总体坐 标系有一定的转角。它也有笛卡儿坐标、柱坐标和球坐标3种形式。 总体坐标系和局部坐标系也是构建其它坐标系(结点坐标系、单元 坐标系等)的基础。局部坐标系总是以总体坐标系为参照建立的, 而不是以当前激活的局部坐标系为参照。 (1)局部坐标系的创建 在指定位置定义局部坐标系:指定原点及X,Y,Z轴的旋转角 COMMAND方式:LOCAL
2.3 定义图形界面过滤参数
为了得到一个相对简洁的分析菜单,可以过滤掉与当前所要进行的 分析类型无关的选项和菜单项。 •Command方式:KEYW或/PMETH •GUI方式:[Main Menu]Preferences
第2章 ANSYS实体建模 2.4 ANSYS的单位制
湖北工业大学
ANSYS软件并没有为分析指定系统单位,在结构分析中,可 以使用任何一套自封闭的单位制(所谓自封闭是指这些单位量纲之 间可以互相推导得出),只要保证输入的所有数据的单位都是正在 使用的同一套单位制里的单位即可。 ANSYS提供的/UNITS命令可以设定系统的单位制系统,但这 项设定只有当ANSYS与其它系统比如CAD系统交换数据时才可用 到(表示数据交换的比例关系),对于ANSYS本身的结果数据和 模型数据没有任何影响。例如:ANSYS系统中建立了实体模型 AXIS1,PROE中建立了实体AXIS2,ANSYS中设定的单位制系统 只影响将AXIS2转换到ANSYS中的效果,而不影响AXIS1。
第2章
定义途径:
•Command:/R
ANSYS实体建模
湖北工业大学
•[Main Menu]:Preprocessor|Real Constants|Add/Edit/Delete
2.7 定义材料属性
绝大多数单元类型都需要材料属性。根据应用的不同,材料属性可 以有如下几种: •线性或者非线性; •弹性(各向同性、正交异性)或非弹性;
第2章
ANSYS实体建模
湖北工业大学
通过已有3个结点定义局部坐标系 Command方式:CS GUI方式: [Utility Menu] WorkPlane | Local Coordinate Systems | Create Local CS|By 3 Nodes 坐标系的确定方法如下: • 第1个选取的结点将成为坐标系的原点; • 第1个结点第2个结点的方向为X轴;
第2章
ANSYS实体建模
湖北工业大学
可以将change jobname对话框中New log and error files复选框 选中。
2. 定义分析标题
ห้องสมุดไป่ตู้
•Command方式:/TITLE
•GUI方式:[Utility Menu]File|Change Title ANSYS将在所有的图形显示、所有求解输出中包含该标题。
•不随温度变化或者随温度变化;
像单元类型和单元实常数一样,每一组材料属性也有一个材料属性 参考号。与材料属性组对应的材料属性参考号表称为材料属性表。 在一个分析中,可能有多个材料属性组(对应模型中的多种材料)。
第2章
ANSYS实体建模
湖北工业大学
在创建单元时可以使用相关命令通过材料属性参考号来为单元分配其 采用的材料属性组。
• 三个结点构成的平面为XY面,Y轴为此平面垂直于X轴方向,且 由第3个结点的位置确定Y轴的正向
•根据右手法则确定Z轴; 注:通过这种方式所创建的局部坐标系与结点选取顺序有关,
第2章
Command方式:CSKP
ANSYS实体建模
湖北工业大学
通过已有3个关键点定义局部坐标系
GUI方式: [Utility Menu] WorkPlane | Local Coordinate Systems | Create Local CS|By 3 Keypoints 此方式与By 3 nodes建立局部坐标系原理相同 在当前工作平面定义局部坐标系 Command方式:CSWPLA GUI方式: [Utility Menu] WorkPlane | Local Coordinate Systems | Create Local CS|At WP Origin 这种方式建立的局部坐标系的各个坐标轴和工作平面的各个轴重合, 只需指定使用何种类型坐标系即可。 (2)删除局部坐标系 Command方式:CSDELE GUI方式: [Utility Menu] WorkPlane | Local Coordinate Systems | Delete Local CS