电磁感应双棒问题
电磁感应双杆问题含电容器问题
电磁感应双杆问题+含电容器电路1、“双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
典型例题1. 如图所示,间距为l、电阻不计的两根平行金属导轨MN、PQ(足够长)被固定在同一水平面内,质量均为m、电阻均为R的两根相同导体棒a、b垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a棒连接,其下端悬挂一个质量为M的物体C,整个装置放在方向竖直向上、磁感应强度大小为B的匀强磁场中。
开始时使a、b、C都处于静止状态,现释放C,经过时间t,C的速度为v1、b的速度为v2。
不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g,求:(1)t时刻C的加速度值;(2)t时刻a、b与导轨所组成的闭合回路消耗的总电功率。
模型:导体棒等效为发电机和电动机,发电机相当于闭合回路中的电源,电动机相当于闭合回路中的用电元件2. (2003年全国理综卷)两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20 m.两根质量均为m=0.10 kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0s,金属杆甲的加速度为a=1.37 m/s2,问此时两金属杆的速度各为多少?3. 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
电磁感应双棒问题
电磁感应双棒问题
1. 如图所示,两根平行的光滑金属导轨MN、PQ放在水平面上,左端向上弯曲,导轨间距为L,电阻不计。
水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度为B。
导体棒a与b的质量均为m,电阻值分别为R a=R,R b=2R。
b棒放置在水平导轨上足够远处,a棒在弧形导轨上距水平面h高度处由静止释放。
运动过程中导体棒与导轨接触良好且始终与导轨垂直,重力加速度为g。
(1)求a棒刚进入磁场时受到的安培力的大小和方向;
(2)求最终稳定时两棒的速度大小;
(3)从a棒开始下落到最终稳定的过程中,求b棒上产生的内能。
2.如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。
试求:
(1)ab、cd棒的最终速度。
(2)全过程中感应电流产生的焦耳热。
电磁感应中单棒、双棒问题 PPT课件 课件 人教课标版
(2) cd棒能达到的最大速度是多大?
(3)ab棒由静止到达最大速度过程中,
系统所能释放的热量是多少?
解析:
(1)ab棒由静止从M滑下到N的过程中,只有重力做功,机械 能守恒,所以到N处速度可求,进而可求ab棒切割磁感线时 产生的感应电动势和回路中的感应电流. ab棒由M下滑到N过程中,机械能守恒,故有
•
9、永远不要逃避问题,因为时间不会给弱者任何回报。
•
10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。
•
11、明天是世上增值最快的一块土地,因它充满了希望。
•
12、得意时应善待他人,因为你失意时会需要他们。
•
13、人生最大的错误是不断担心会犯错。
•
14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。
b mg
解析: 因所为以导电体键棒K闭ab合自瞬由间下a落b的的速时度间无t没法有确确定定,,a
使得ab棒受到的瞬时安培力F与G大小无 法比较,因此存在以下可能: (1)若安培力F <G: 则ab棒先做变加速运动,再做匀速直线运动
(2)若安培力F >G: 则ab棒先做变减速运动,再做匀速直线运动
(3)若安培力F =G: 则ab棒始终做匀速直线运动
K
F b
mg
7.几种变化 (1) 电路变化
F
(2)磁场方向变化
B
F
(3) 导轨面变化(竖直或倾斜) (4)拉力变化
B
C
B
F
P
Q
A
D
竖直
倾斜
例4、如图1所示,两根足够长的直金属导轨MN、PQ平行
电磁感应中双棒问题
例2:如图所示,两根间距为l的光滑金属导轨(不计电 阻),由一段圆弧部分与一段无限长的水平段部分组 成.其水平段加有竖直向下方向的匀强磁场,其磁感 应强度为B,导轨水平段上静止放置一金属棒cd,质 量为2m,电阻为2r.另一质量为m,电阻为r的金属棒 ab,从圆弧段M处由静止释放下滑至N处进入水平段, 圆弧段MN半径为R,所对圆心角为60°,求: (1)ab棒在N处进入磁场区速度多大?此时棒中 电流是多少? (2) cd棒能达到的最大速度是多大? (3)ab棒由静止到达最大速度过程中, 系统所能释放的热量是多少?
解析: (1)刚开始运动时回路中的感应电流为:
Blv0 E 1 0.5 10 I 2.5 A Rb Rc Rb Rc 11
刚开始运动时C棒的加速度最大:
BIl 1 2.5 0.5 a 12.5 m 2 s mc 0.1 B
N M c b
(2)在磁场力的作用下,b棒做减速运动,当两棒速 度相等时,c棒达到最大速度。取两棒为研究对象, 根据动量守恒定律有:
1 v 3
gR
(3)系统释放热量应等于系统机械能 减少量,故有: (3)系统释放热量应 等于系统机械能减少量 1 2 ,故有: 1 2
Q mv 3mv 2 2
解得
1 Q mgR 3
O
最终两棒具有共同速度
t
4.两个规律
(1)动量规律 两棒受到安培力大小相等方向相反, 1 系统合外力为零,系统动量守恒.
2
v0
m2v0 ( m1 m2 )v共
(2)能量转化规律 系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞)
1 1 2 2 m2 v0 ( m1 m2 )v共 +Q 2 2 Q1 R1 两棒产生焦耳热之比: Q2 R2
电磁感应中的单棒、双棒切割问题
开始时,,杆加速,杆运动,产生反电动势,杆运动,电容器充电,杆受安培力,速度减小,电能转化为热能和动做功带来的能量转化为杆杆的动能一部分转化为电势能,一部分转化为内能,一部分耗散.外力和安培力冲17/04/04
F B L =|BLv −E |BLv −Q C 能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本
开始时,两杆做变加速运
两杆做变加速运动,稳定后两杆做对于直线运动,教科书中讲解了由图像求位移的方法.请你借鉴此方法,根据图示的图像,若电容器电容为,两极板间电压为,求电容器所储存的电场能.
1v −t Q −U
C U 如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为的电容器.框架上一
质量为、长为的金属棒平行于地面放置,离地面的高度为.磁感应强度为的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.求:
.金属棒落地时的速度大小;
.金属棒从静止释放到落到地面的时间.
2C m L h B a b 如图,与水平地面成.和是置于导轨上
,其余电阻可忽略不计.整个装置处在CD EF
金属棒所能达到的最大速度;
1EF v m 在整个过程中,金属棒产生的热量.
2EF Q 光滑的平行金属导轨如图所示,轨道的水平部分位于竖直向上的匀强磁场中,部分的宽度为部分
宽度的倍,、部分轨道足够长,将质量都为的金属棒和分别置于轨道上的段和段,棒位于距水平轨道高为的地方,放开棒,使其自由下滑,求棒和棒的最终速度及回路中所产生的电能.4bcd bc cd 2bc cd m P Q ab cd P h P P Q。
(完整版)电磁感应中双杆模型问题答案
电磁感应中双杆模型问题一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。
再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。
开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。
在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。
当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。
释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。
在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。
电磁感应双杆问题含电容器问题
电磁感应双杆问题+含电容器电路1、“双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
2•“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时, 相当于两个电池反向串联。
3.“双杆”中两杆在等宽导轨上做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
典型例题1.如图所示,间距为I、电阻不计的两根平行金属导轨MN、PQ (足够长)被固定在同一水平面内,质量均为m、电阻均为R的两根相同导体棒a、b垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a棒连接,其下端悬挂一个质量为M的物体C,整个装置放在方向竖直向上、磁感应强度大小为B的匀强磁场中。
开始时使a、b、C都处于静止状态,现释放C,经过时间t, C的速度为、b的速度为v2 o不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g,求:(1)t时刻C的加速度值;的感应电动势£ == ①回路中感应电流I =—②2R以"为研究对象,根据牛顿第二定律T - B" ma ③ 以C 为研完对象,根据牛顿第二定律Mg_ T= Ma ④2R (M +〃z )<2)解法一:单位时问内,通过。
棒克服安培力做功,把C 物体的一部分亟力势能转化为闭合 回路的电能,而闭合回路电能的-啷分以隹耳热的形式消耗掉.另一部分则转化为“梓的动能. 所以,f 时刻闭合回路的电功率等于“棒克服安培力做功的功率,即P = Bll u f (5-5)勺12R解法二:&棒可等效为发电机,方棒可等效为电动机"棒的感应电动势为E<t = 闭合回路消耗的总电功率为P=IE联立①®©©解得P 二-一5)5故闭合回路消耗的总电功率为P = P 热+G =丹(5 一。
电磁感应中的双棒运动问题高中物理专题
第9课时电磁感应中的双棒运动问题一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R vL B BIL F 22,F 与速度有关;2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点); 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。
二、例题分析:1、两棒一静一动:【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角。
完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能保持静止。
取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少?2、两棒不受力都运动:满足动量守恒,分析最终状态:【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。
已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。
开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。
求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值?3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
电磁感应中的双棒问题
长兴金陵高中高三物理备课组 主备人:唐梦健1电磁感应中的“双棒”问题一:一静一动例1:如图所示,两条间距l =1m 的光滑金属导轨制成倾角37°的斜面和水平面,上端用阻值为R =4Ω的电阻连接。
在斜面导轨区域和水平导轨区域内分别有垂直于斜面和水平面的匀强磁场B 1 和B 2,且B 1 =B 2=0.5T 。
ab 和cd 是质量均为m =0.1kg ,电阻均为r =4Ω的两根金属棒,ab 置于斜面导轨上,cd 置于水平导轨上,均与导轨垂直且接触良好。
已知t =0时刻起,cd 棒在外力作用下开始水平向右运动(cd 棒始终在水平导轨上运动),ab 棒受到F =0.6-0.2t (N )沿斜面向上的力作用,处于静止状态。
不计导轨的电阻,试求:(1)流过ab 棒的电流强度I ab 随时间t 变化的函数关系;(2)分析并说明cd 棒在磁场B 2中做何种运动;(3)若t =0时刻起,1.2s 内作用在cd 棒上外力做功为W =16J ,则这段时间内电阻R 上产生的焦耳热Q R 多大?二、两根都动例2、如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c 、d ,置于边界水平的匀强磁场上方同一高度h 处.磁场宽为3h ,方向与导轨平面垂直.先由静止释放c ,c 刚进入磁场即匀速运动,此时再由静止释放d ,两导体棒与导轨始终保持良好接触.用a c 表示c 的加速度,E kd 表示d 的动能,x c 、x d 分别表示c 、d 相对释放点的位移.下图中正确的是( )例3.相距L =1.5 m 的足够长金属导轨竖直放置,质量为m 1=1 kg 的金属棒ab 和质量m 2=0.27 kg 的金属棒cd 均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab 棒光滑,cd 棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab 棒在方向竖直向上、大小按图(b)所示规律变化的外力F 作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.(g =10 m/s 2)(1)求出磁感应强度B 的大小和ab 棒加速度的大小;(2)已知在2 s 内外力F 做功40 J ,求这一过程中两金属棒产生的总焦耳热; (3)求出cd 棒达到最大速度所需的时间t 0,并在图(c)中定性画出cd 棒所受摩擦力f cd 随时间变化的图线.课后作业1、如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
高考物理专题复习-电磁感应现象中的“双棒”问题研究
高考物理专题复习-电磁感应现象中的“双棒”问题研究“双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。
笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。
一、分类1.按棒的长度可分为两类:等宽与不等宽(即一长一短)2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类二、规律(仅讨论水平导轨,且导棒的材料相同) 1.等长“双棒”两棒质量均为m ,长度均为L ,电阻均为R ,两间距足够大,所处磁场的磁感应强度为B(1)导轨光滑①冲量型:给棒1一个水平向右的速度0v ,则最终稳定后两棒均匀速直线运动,且速度均为0122v v v ==,系统的动量守恒,动能损失204k mv E Q ==,两棒从相对运动到相对静止,相对滑动的距离为022mv s B L =。
v t -图象如下: 010203040506070809000.51V1iV2i t i②恒定外力型:对棒1施加一个恒定外力F ,则最终稳定后,两棒均作匀加速直线运动,且两棒的加速度相等2F a m =,两棒的速度之差为一定值1222FR v v v B L =-=,两棒速度之和与时间成正比12F v v t m+=。
v t -图象如下: 0102030405060708090204060V1iV2i t i21③恒定功率型:以恒定功率作用在棒1上,则最终两棒的速度趋于无穷大,而两棒的速度差将趋于零,此时对应的外力为无穷小(零),v t -图象如下 0102030405060700102030V1iV2i t i(2)导轨粗糙①冲量型:给棒1初速度0v ,则两棒的运动类型有如下三种情况:10当2202B L v mg R μ≤时,则只有棒1运动,最终速度减小为零,棒2始终不动,v t -图象如下:02468101250100V1i t i 20当2202B L v mg Rμ>时,两棒一起运动,棒2先不动后加速最后减速,棒1一直减速运动,最后均静止。
电磁感应中的双棒运动问题高中物理专题
第9课时 电磁感应中的双棒运动问题一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22==,F 与速度有关;2、分析清楚每个棒的运动状态 → 服从规律(牛顿定律、能量观点、动量观点);3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。
二、例题分析:1、两棒一静一动:【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l =0.5m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角。
完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R =0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B =0.2T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能保持静止。
取g =10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1J 的热量,力F 做的功W 是多少?2、两棒不受力都运动:满足动量守恒,分析最终状态:【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。
已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。
开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。
求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值?3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加 速度做匀加速直线运动。
专题65 电磁感应中的双棒问题(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题65 电磁感应中的双棒问题导练目标导练内容目标1无外力等距式双棒问题目标2有外力等距式双棒问题目标3无外力不等距式双棒问题目标4有外力不等距式双棒问题模型规律无外力等距式(导轨光滑)1、电流大小:21211212Blv Blv Bl(v v)IR R R R--==++2、稳定条件:两棒达到共同速度3、动量关系:2012()m v m m v=+4、能量关系:2122211m v(m m)v Q22=+共+;1122Q RQ R=有外力等距式(导轨光滑)1、电流大小:1221Blv BlvIR R-=+2、力学关系:11AFam=;22AF Fam-=。
(任意时刻两棒加速度)3、稳定条件:当a2=a1时,v2-v1恒定;I恒定;F A恒定;两棒匀加速。
4、稳定时的物理关系: 12F (m m )a =+;1A F m a =;2112A Bl(v v )F BIlB lR R -==+;121212212(R R )m F v v B l (m m )+-=+无外力不等距式 (导轨光滑)1、动量关系:11110BL I t m v m v -∆=-;2220BL I t m v -∆=-2、稳定条件:1122BL v BL v =3、最终速度:21222122110m L v v m L m L =+;12122122120m L L v v m L m L =+4、能量关系:222101122111222Q m v m v m v =-- 5、电量关系:2202BL q m v =-有外力不等距式 (导轨光滑)F 为恒力,则:1、稳定条件:1122l a l a =,I 恒定,两棒做匀加速直线运动 2、常用关系:111A F F a m -=;222A F a m =;1122l a l a =;1122A A F l F l =3、常用结果:2121221221A l m F F l m l m =+;1222221221A l l m F F l m l m =+; 221221221l a F l m l m =+; 122221221l l a F l m l m =+; 此时回路中电流为:12221221l m F I l m l m B=⋅+与两棒电阻无关一、无外力等距式双棒问题【例1】如图,水平面内固定有两根平行的光滑长直金属导轨,导轨间距为l ,电阻不计。
电磁感应力电综合——双棒问题(答案)
电磁感应力电综合——双棒问题(参考答案)一、选择题1. 【答案】BCD【解析】根据题意可知,两棒组成回路,电流大小相同,故所受安培力等大反向,两棒组成的系统动量守恒,故任何一段时间内,导体棒b 动量改变量跟导体棒a 动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 动能减少量的数值等于b 动能增加量与系统产生的焦耳热之和,故A 错误,B 正确;对系统由动量守恒定律有2mv 0=(2m +m )v ,对b 棒由动量定理有mv -0=B I -l ·t =Blq ,解得q =2mv 03Bl,根据能量守恒定律,两棒共产生的焦耳热为Q =12×2mv 20-12(2m +m )v 2=mv 203,故C 、D 正确。
2. 【答案】D 。
【解析】解:A 、根据右手定则知:回路中产生沿NMPQM 的感应电流,根据左手定则可知,MN 棒受到的安培力水平向右,PQ 棒受到的安培力也水平向右,且通过两棒的安培力大小相等,所以,两棒受到的安培力冲量大小相等,方向相同,故A 错误;B 、当两棒产生的感应电动势大小相等,相互抵消,回路中感应电流为零时,两棒均做匀速运动,达到稳定状态,设最终MN 棒和PQ 棒的速度大小分别为1v 和2v 。
稳定时,有:12BLv BLv = 得:12v v =对PQ 棒,根据动量定理得:20I mv =-对MN 棒,根据动量定理得:10I mv mv -=-解得:0122vv v ==,1v 水平向左,2v 水平向右,方向相反,故B 错误;C 、设MN 棒产生的焦耳热为Q ,则PQ 棒产生的焦耳热也为Q ,根据能量守恒定律得;2220121112()222Q mv mv mv =-+解得208mv Q =,故C 错误;D 、对PQ 棒,根据动量定理得:20BIL t mv =-通过PQ 棒某一横截面的电荷量为q It =,可得02mv q BL=,故D 正确。
高三物理辨析电磁感应现象中的双金属棒问题
辨析电磁感应现象中的双金属棒问题电磁感应现象中的双金属棒问题一般可以分为四种情况,具体分析如下。
一、两棒都只在安培力作用下运动的双金属棒问题。
例1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒a 和b ,构成矩形回路,如图1所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒b 静止,棒a 有指向棒b 的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当a 棒的速度变为初速度的3/4时,b 棒的加速度是多少?分析:(1)a 、b 两棒产生电动势和受力情况如图2所示。
a 、b 两棒分别在安培力作用下做变减速运动和变加速运动,最终达到共同速度,开始匀速运动。
由于安培力是变化的,故不能用功能关系求焦耳热;由于电流是变化的,故也不能用焦耳定律求解。
在从初始至两棒达到速度相同的过程中,由于两棒所受安培力等大反向,故总动量守恒,有mv mv 20=根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=(2)设a 棒的速度变为初速度的3/4时,b 棒的速度为v1,则由动量守恒可知10043mv v m mv +=由于两棒产生的感应电动势方向相同,所以回路中的感应电动势1043BLv v BL E -=,感应电流为 R E I 2=此时棒所受的安培力 IBL F =,所以b 棒的加速度为 m F a =由以上各式,可得 m R v L B a 4022=二、两棒除受安培力外,还受拉力F 作用的双金属棒问题。
例2.如图3所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离L=0.20m 。
物理-第99讲-电磁感应——两棒问题
电磁感应——两棒问题一、学习目标通过分析两个导体棒在磁场切割磁感线的运动,进一步深化对电磁感应规律的理解。
通过电学、力学等知识的复习,提高综合分析能力。
二、例题解析【例1】如图所示,a、b是同种材料(非超导材料)的等长的导体棒,静止于水平面内足够长的光滑水平导轨上,b的质量是a的2倍,匀强磁场竖直向下。
若给a以4.5J的初动能,使之向左运动,不计导轨的电阻,则整个过程中a棒产生的热量最大为()A.2J Array B.1.5JC.3 JD.4.5J【例2】(2014,天津卷)如图所示,两根足够长的平行金属导轨固定在倾角 =300的斜面上,导轨电阻不计,间距L=0.4m。
导轨所在空间被分成区域I和Ⅱ,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5T,在区域I中,将质量m1=0.1kg,电阻R1=0.1 的金属条ab放在导轨上,ab刚好不下滑。
然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1 的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10m/s2,问(1)cd下滑的过程中,ab中的电流方向;(2)ab将要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少。
三、课后习题1、两根足够长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。
导轨间的距离L=0.2m。
磁感强度B=0.50T的匀强磁场与导轨所在平面垂直。
两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。
现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)拉力变化
F
竖直
倾斜
最大电流 最小电流
Blv0 当v1=0时: I m R1 R2
当v2=v1时: I=0
3.两棒的运动情况特点
2 2 B l ( v2 v1 ) 安培力大小: FB BIl 1 R1 R2
v0 2
两棒的相对速度变小,感应电流变小,安培力变小.
棒1做加速度变小的加速运动
棒2做加速度变小的减速运动 v v0 v共
等距双棒特点分析
1.电路特点 棒2相当于电源;棒1受安培力而加 速起动,运动后产生反电动势. 2.电流特点
v0 1 2
Blv2 Blv1 Bl( v2 v1 ) I R1 R2 R1 R2
随着棒2的减速、棒1的加速,两棒的相对速 度v2-v1变小,回路中电流也变小。 两 个 极 值
5.几种变化:
(1)初速度的提供方式不同 (2)磁场Байду номын сангаас向与导轨不垂直
m
B
M
h
FB
m
v0 1 2
O1
(3)两棒都有初速度
v1 1 2 v2
(4)两棒位于不同磁场中
e c v0 B2 f O2 d B1
7.几种变化
(1) 电路变化
F
(2)磁场方向变化
B
F
(3) 导轨面变化(竖直或倾斜)
B P A C Q D
电磁感应双棒问题
北京市朝阳区高三年级第一次综合练习
电 磁 单棒问题 感 应 动力学观点 受力情况分析 中 的 动量观点 导 运动情况分析 能量观点 轨 问 题 双棒问题
牛顿定律 平衡条件 动量定理
动量守恒
动能定理 能量守恒
二、双棒问题(等间距)
例1.无限长的平行金属轨道M、N,相距L=0.5m, 且水平放置;金属棒b和c可在轨道上无摩擦地滑 动,两金属棒的质量mb=mc=0.1kg,电阻 Rb=RC=1Ω,轨道的电阻不计.整个装置放在磁感 强度B=1T的匀强磁场中,磁场方向与轨道平面垂 直(如图).若使b棒以初速度V0=10m/s开始向右运 动,求: B (1)c棒的最大加速度; N (2)c棒的最大速度。 M c b
O
最终两棒具有共同速度
t
4.两个规律
(1)动量规律 两棒受到安培力大小相等方向相反, 1 系统合外力为零,系统动量守恒.
2
v0
m2v0 ( m1 m2 )v共
(2)能量转化规律 系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞)
1 1 2 2 m2 v0 ( m1 m2 )v共 +Q 2 2 Q1 R1 两棒产生焦耳热之比: Q2 R2