直流输控制保护系统功能介绍
高压直流输电控制保护系统功能及应用
Fu nc t i o n a nd App l i c a t i o n o f H VDC Tr a n s mi s s i o n Co nt r o l a nd Pr o t e c t i o n S y s t e m
WE N B o , XI A Yo n g — j u n ,Z HANG Ka n — j u n , L I He n g — x u a n
t e c t i o n s y s t e m f r o m t he b a s i c c o mp os i t i o n a nd f u nc t i o n,a l l o c a t i o n,t he ke y t e c h no l og y a nd i t s wo r k s t a t us o f HVDC t r a ns mi s s i o n c o nt r o l a nd pr o t e c t i o n s ys t e m e t c ,a nd i t s c o nf i gu r a t i o n ha s be e n d i s —
以及控 制 系统本 身 的相关 信息 l _ E ] 。 控 制 系统采 用分 层分 布式 结构 , 完全 冗余 配置 ,
其 层次 结构 ( 如图 1 ) 分 为 三层 : 站 控层 、 极 控 制 层 和
换 流器 层 。
扩大至 3 9个 , 输 送 容量将 达 到 1 8 7 . 4 5 GW , 最 高 电
Vol I 37 № 3
J u n . 2 0 1 3
湖 北 电 力
箜 2 0 1 3 鲞 年6 箜 塑 月
高压 直 流 输 电控 制 保 护 系统 功 能及 应 用
直流输电系统保护(HVDC protection)
直流输电系统保护(HVDC protection)直流输电系统保护(HVDC protection)指检测发生于直流输电系统中交、直流开关场,或整流逆变两端交流系统的故障,并发出相应的处理指令,以保护直流系统免受过电流、过电压、过热和过大电动力的危害,避免系统事故的进一步扩大。
直流输电保护的特性要求直流输电系统保护除了与交流继电保护一样,应能满足快速性、灵敏性、选择性和可靠性的要求,还应特别注意其抗电磁干扰和抗暂态谐波干扰的性能、双极系统中两个单极的保护必须完全独立等特性;直流保护应为多重化配置,并应具有很强的软、硬件自检功能。
因此,新建的直流工程多采用微机型数字式直流系统保护。
直流输电系统保护通常分为如下保护分区:À换流站交流开关场保护区,包括换流变压器及其阀侧连线、交流滤波器和并联电容器及其连线、换流母线;Á换流阀保护区;Â直流开关场保护区,包括平波电抗器和直流滤波器,及其相关的设备和连线;Ã中性母线保护区,包括单极中性母线和双极中性母线;Ä接地极引线和接地极保护区;Å直流线路保护区。
各保护区的保护范围应是重叠的,不允许存在死区。
直流输电系统保护的特点是与直流控制系统的联系十分紧密,对于直流系统的异常或故障工况,通常首先通过控制的快速性来抑制故障的发展,例如,直流控制可在10mS左右将直流故障电流抑制到额定值左右;又如,当换相电压急剧下降时,直流控制将自动降低直流电流整定值以避免低压大电流的不稳定工况或故障的发展。
而且,根据不同的故障工况,直流保护启动不同的直流自动顺序控制程序,某些保护首先是告警,如果故障进一步发展,则启动保护停运程序。
直流系统保护停运的动作,首先是通过换流器触发脉冲的紧急移相或投旁通对后紧急移相,使直流线路迅速去能,然后闭锁触发脉冲并断开所联的交流滤波器和并联电容器,或进一步断开其它的交、直流场设备,如果需要与交流系统隔离,则进一步跳开交流断路器。
电力系统继电保护原理 第十二章 高压直流输电系统的保护
• 低电压保护属于后备保护,在两站失去通信的 情况下仍能正常工作。
• 纵联差动保护的判据为
| I dL I dL.oth |
• 式中:IdL 为直流线路电流;I dL.oth 为对站直流线路电流。
• 纵联差动保护比较来自整流站和逆变站的直流电流,如 果两站电流差值超过了设定值,保护动作。
– (1)极母线设备的闪络或接地故障。 • 极母线设备包括平波电抗器、直流滤波器等。
– (2)极母线直流过电压、过电流以及持续的直流欠压。 – (3)中性母线开路或接地故障。 – (4)站内接地网过流。 – (5)接地极引线开路或对地故障、接地极引线过负荷。 – (6)直流滤波器过流、过负荷、失谐,高压电容器不平衡以及有源部分
• 在研究保护策略时,除交直流模型外,必须结合相应的控 制系统。
第二节 直流输电系统保护原理与配置
一、直流线路故障过程
直流架空线路发生故障时,从故障电流的特征而论, 短路故障的过程可以分为初始行波、暂态和稳态三个阶段。 1、初始行波阶段
- 与交流输电线路故障时的波过程相似,直流输电线故障后,沿线路的 电场和磁场所储存的能量相互转化形成故障电流行波和相应的电压行 波。
• 横联差动电流保护属于后备保护,只适用于单极金属 回线方式。
三、直流系统保护的配置
(一) 直流系统保护设计原则
- (1)满足可靠性、灵敏性、选择性、速动性的基本要求。 - (2)在直流系统各种运行方式下,对全部运行设备都能提供完全
的保护。能检测到设备的故障和异常情况,并从系统中切除影响运行 的故障设备。 - (3)保护系统应至少双重化配置,每一保护区域具备充分冗余度。保 证保护不误动或拒动,如有可能,后备保护应尽可能使用不同的测量 原理。 - (4)相邻保护区应有重叠,保证无保护死区。采用分区保护、保护区 搭接的方式。 - (5)各保护之间配合协调,并能正确反映故障区域,保护动作尽量避 免双极停运。 - (6)与直流控制系统能密切配合,控制系统故障不引起保护跳闸。
特高压直流输电控制与保护技术的探讨
特高压直流输电控制与保护技术的探讨摘要:随着特高压大电网、交直流并网等领域的不断发展,直流输电技术在实际工程中得到了越来越多的应用。
本文主要基于对直流输电技术和换流技术的深入研究,并结合±800 kV特高压直流输电工程,对其分层冗余结构、控制和保护技术进行了较为系统的阐述,以期更好地确保特高压大电网及交直流并网安全稳定运行提供良好技术支撑。
关键词:特高压;直流输电工程;换流技术;控制和保护技术引言在我国电网发展中,特高压直流输电起着举足轻重的作用。
其中,控制与保护是其中的关键,其能保证传输电源的正常运行,并能有效地保证传输电源的安全。
±800 kV特高压直流每极均采用串联、母线区连接方式,各电极工作方式灵活、完整,这对保证其工作性能将能够发挥良好的辅助作用。
1 直流输电简介1.1 直流输电系统当前直流输电系统通常采用两端直流传输的方式,包括整流站、直流线路和逆变站。
1.2 换流技术换流站的关键部件为换流器,它包括一个或几个换流器,其电路都是三相换流桥,主要材料为晶闸阀。
其基本工作原理是:通过对桥式阀门的触发时间进行控制,从而实现对直流电压瞬时值、电阻上直流电流、直流传输功率的调整。
同时,对各个桥式阀门的晶闸管单元进行同一触发脉冲控制。
2 特高压直流输电的特点特高压直流输电的特点具体包括:①增加传送能力,增加传送距离。
②节约了线路走廊和变电所的空间。
③有利于联网,简化网络结构,降低故障率。
3 直流输电控制系统分层冗余结构UHVDC是指超过600 kV的直流输电系统,它的控制和保护系统是分层、分布式、全冗余的。
本文以±800 kV特高压直流工程为例,将其按控制等级划分为三个层次:运行人员控制层、过程控制层和现场控制层。
4 为满足特高压交直流系统动态性能要求的控制技术4.1 降低和避免直流对交流系统的不良影响由于换流技术的机制存在着两个主要的问题:谐波和无功。
传统的方法是,安装合适的容量和数量的直流滤波器/电容,并采用多脉动式变流器。
柔性直流输电基本控制原理
暂态稳定性分析是评估柔性直流输电系统在故障或其他大的扰动情况下的性能的重要手段。通过模拟 系统在各种故障情况下的响应,可以了解系统的暂态行为和稳定性,为控制策略的制定提供依据。
运行稳定性分析
总结词
运行稳定性分析是研究系统在正常运行 条件下的动态性能,通过仿真和实验等 方法,分析系统的运行稳定性和控制性 能。
促进可再生能源的接入
柔性直流输电能够更好地接入可再生能源,有助于实现能源 的可持续发展。
02
柔性直流输电系统概述
柔性直流输电系统的基本结构
换流阀
换流阀是柔性直流输电系统的核心部件,负责 实现直流电的转换和传输从一端传 输到另一端。
滤波器
滤波器用于滤除谐波和噪声,保证传输电能的 纯净。
柔性直流输电基本控制原理
$number {01}
目 录
• 引言 • 柔性直流输电系统概述 • 柔性直流输电系统的控制策略 • 柔性直流输电系统的稳定性分析 • 柔性直流输电系统的保护与控制
一体化 • 柔性直流输电系统的应用与发展
趋势
01 引言
背景介绍
传统直流输电的局限性
传统直流输电在电压源换流器(VSC) 控制策略上存在局限,难以满足现代 电力系统的需求。
3
保护和控制设备之间的通信应具有高可靠性和实 时性,以确保快速响应和准确控制。
保护与控制一体化的优点与挑战
优点
保护和控制一体化可以提高系统的快速响应 能力和稳定性,减少故障对系统的影响,降 低维护成本和停机时间。
挑战
保护和控制一体化需要解决多种技术难题, 如传感器精度、数据处理速度、通信可靠性 和实时性等,同时也需要加强相关标准和规 范的建设和完善。
柔性直流输电系统的未来展望
直流输电工程控制保护系统总概精选全文
直流控制保护系统概况
Ø 控制位置要求:
– 远方调度中心、集控中心 – 换流站主控室 – 控制系统就地 – 设备就地
Ø 控制位置层次关系:
– 分层结构上越低的位置,其控制优先级越高
PPT文档演模板
直流输电工程控制保护系统总概
提纲
一.直流控制保护系统概况 二.直流控制保护系统构成 三.德宝工程控制保护设备配置情况 四.系统特点与主要技术改进 五.直流控制保护系统硬件简介
系统切换遵循如下原则:在任何时候运行的有效系统应是双重化系 统中较为完好的那一重系统
系统切换逻辑禁止以任何方式将有效系统切换至不可用系统。系统 切换总是从当前有效的系统来发出。这个切换原则可避免在备用系 统中的不当的操作或故障造成不希望的切换。另外,当另一系统不 可用时,系统切换逻辑将禁止该切换指令的执行。
5. 与远方控制中心的接口子系统
包括:远动系统,用于与网调、省调、直流集控中心等交换直流换流站的监 控数据并执行远方调度命令,由远动工作站、远动通讯设备等组成。
PPT文档演模板
直流输电工程控制保护系统总概
直流控制保护系统构成
Ø 典型系统解决方案:
PPT文档演模板
直流输电工程控制保护系统总概
•直流控制(极控)系统
•直流控制(极控)系统
➢ 极控制系统主要包括:
每个极的极控系统主机 分布式现场总线 分布式I/O等设备
PPT文档演模板
直流输电工程控制保护系统总概
•直流控制(极控)系统
➢ PCP控制主机:
– 完成对换流站内换流器、换流变压器、直流场 设备等的控制和监视功能。收集极控系统范围 内的“事件”并上传送入运行人员控制系统。
Ø 极控系统是整个换流站控制系统的核心,主要功 能是通过对整流侧和逆变侧触发角的调节,实现 系统要求的输送功率或输送电流。
特高压直流输电控制欲保护设备技术导则
特高压直流输电控制欲保护设备技术导则下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!特高压直流输电系统作为电力系统中的重要组成部分,其稳定运行与保护至关重要。
浅析直流输电控制保护系统
时候 , 线电压从负到正 , 经过零点时脉冲会触发桥阀, 使得 阀两端的 电压均变为正电压 , 完成阀开通的动作 。六个脉 冲发生器能够各 自 独 立 的完 成 对位 于 单桥 换 流器 中六 个桥 阀 的触 发 , 使 得交 流 正 弦波 刚 好 能够 经 过第 一个 周 期 ,在 线 电压行 进 到 下一 个 零 点 的 时候 , 交 流 弦 电源 开 始 触发 第二 个 周期 , 但是 在 工 程 上所 应 用 的 多 为十 二 脉 的双 桥换 流 器 , 因 为十 二 脉双 桥 换 流器 能 够 产生 更 小 脉波 的直 流输
电 电压 。
2直 流输 电控 制保 护 层 直流 输 电 系统 的控 制 根 据层 级 的不 同可 以分 为三 个 层 面 , 即现 场控制层、 过程控制层 、 运行人员控制层 。 2 . 1现 场控 制层 现场控制层使得交直流主设备能够在就地进行控制 ,通过硬 线 将 交 直 流 主 设 备 与较 近距 离 的设 备 接 口进 行 连 接 ,通 过 现 场 总 线 将 交 直 流 主 设 备 与较 远 距 离 的 设 备 接 口进 行 连 接 。通 过 分 布 式 的I / 0控 制 单 元 实 现 现 场 控 制 , 包 括 高 压 装 置 的联 锁 、 输 出控 制命 令、 控 制命 令 的 监控 , S E R事 件 的产 生 、 自诊 断 、 二 进 制 模 拟 量 的 预 处理等功能 。 通 过 现 场 控 制层 面能 够 实 现控 制系 统 的分 层 式 、 分 布 式 ,来 自调 度 中心 的 控 制 命 令 经 由 高 速 L A N 和 现 场 总 线 进 行 传 达, 监控系统 的实时数据在逐层反馈 , 保 证主系统 、 从 系 统 的 循 环 数 据传 输 过 程 田 。 2 . 2过 程控 制 层 过 程 控 制层 包 括 交 流/ 直流 站 控 制 系 统 和极 控 系 统 ,是 直 流 输 电 控制 系统 的 核 心组 成 。交 流/ 直 流 站 控制 系统 的任 务是 顺 序 控 制 交流场和换流站直流系统 , 为了避免系统故障和系统维护导致 的直 流输电系统不可用 , 所以直流, 交流站控制多采用冗余结构 , 因其具 有 双重 化 配 置 , 能够 包 含各 个 层 面 的 系统 。极 控 系 统在 运 行 人员 下 达命 令 后 , 发 出稳 定 、 有效 、 正 确 的功 率 定值 , 执行 与 双 极 、 换 流 器相 关 的所 有 功 能 , 为阀 和换 流 器 提供 全 部 控 制功 能 。而极 控 系 统包 括 三方面 , 即换流器控制( 也称阀控 系统 ) 、 极控制 、 双极控制 , 其 中双 极 控制 能 够 实现 与 双极 运行 相关 的 所有 控 制 功 能 , 在 接 收到 运 行人 员 的命 令 以后 , 通过 给 极控 制 层 传送 相 应 的 电 流 、 极 功 率 参 考值 , 实 现 两极 之 间 的 功能 协调 , 包 括 电流平 衡 控 制 、 功 率传 输 方 向控 制 、 稳 定控制 、 极 间电流转移 、 运行人员功率参考值设定等功能[ 3 1 。 极控制能够实现与极相关 的功能空中, 接收的命令来 自于双极 控制层 , 然后 产 生换 流 器 闭环 控 制 的 直流 电 压 、 电流、 熄 弧 角 控 制 参 考值 , 最 后 完成 极 电流 协 调 、 换流 器 协 调 、 分 接 头控 制 、 极 解 锁 闭锁 、 空 载 加压 、 故 障 恢复 等 功 能 。 阀控 系统 由漏水 检 测 、 避雷检测 、 光接 收发射 、 电源及接 口、 反 向恢复保护控制单元等硬件组成 , 包括触发
高压直流输电设计手册
高压直流输电设计手册一、引言高压直流输电(HVDC)系统是现代电力传输的重要方式之一,尤其在长距离、大功率输电和分布式能源应用等领域具有显著优势。
本手册旨在为高压直流输电系统的设计、建设和运营提供全面的指导和建议。
二、直流输电系统概述高压直流输电系统主要由换流站、直流输电线路和控制系统等组成。
换流站负责将交流电转换为直流电,或者将直流电逆变为交流电,是整个系统的核心。
直流输电线路负责传输直流电,其设计与常规的交流输电线路有所不同。
控制系统与保护系统协同工作,确保系统的稳定运行和故障时的快速响应。
三、电力电子设备电力电子设备是高压直流输电系统的关键组成部分,主要包括换流器、变压器、滤波器等。
换流器是实现交流电与直流电相互转换的核心设备,其性能直接影响整个系统的性能。
变压器用于升高或降低电压,以适应不同的输电需求。
滤波器用于减小换流过程中产生的谐波,提高供电质量。
四、直流输电线路设计直流输电线路的设计需考虑输电距离、功率等级、地理环境等多种因素。
一般而言,直流输电线路的损耗较小,可以远距离输送电能。
同时,线路的设计还需考虑电磁环境的影响,以降低对周围环境和生物的影响。
五、控制系统与保护系统控制系统是高压直流输电系统的神经中枢,负责调节系统的功率传输和保障系统的稳定性。
保护系统则是系统的安全卫士,负责在系统出现故障时快速切断电源,保护设备和人员的安全。
六、电力电子仿真与建模电力电子仿真与建模是高压直流输电系统设计和优化不可或缺的工具。
通过仿真与建模,可以模拟系统的运行特性,预测潜在的问题,优化系统的性能。
同时,还可以为控制策略的开发和保护系统的设计提供理论支持。
七、环境影响与可持续性高压直流输电系统在建设和运营过程中可能对环境产生一定的影响。
因此,系统的设计应充分考虑环境保护和可持续性发展的原则。
例如,应尽量采用环保型的材料和设备,减少对自然景观的影响等。
八、运行与维护策略为了保证高压直流输电系统的稳定运行和延长设备的使用寿命,需要制定一套完善的运行与维护策略。
特高压直流输电控制系统与控制保护装置
特高压直流输电控制系统硬 件构造
40
特高压直流控制保护旳特点
• 2. 新增功能 • 适应多种运行方式 • 单个换流器投退控制 • 直流融冰控制
41
单个换流器旳投退控制
42
特高压直流控制保护旳特点
• 3. 技术进步 • WINTDC 云广 • DC800 向上 • 主机采用高性能计算机 最新Intel双核处理器,
关量信号 • TDM (Time Division Multiplexed) 用于串行传
播模拟量信号
23
葛站保护分区
24
直流保护区域划分(大地回线)
25
控制保护软件
• ABB技术 • 由MACH2 系统功能块编程,生成图形文献。
• 简朴旳点击、拖动、放下即完毕。再通过编 辑,生成对应代码,下载到对应存储器中。
Converter unit firing
control
Voltage measuring
system
Id
5
葛站直流控制保护系统
6
三常直流工程龙泉站直流控 制保护系统框图
7
国内常规直流控 制保护设备
• 两种类型旳直流控制保护系统
• ABB、南瑞、四方
•
MACH 2系统
• SIEMENS、许继
•
4.特高压直流输电控制系 统与控制保护装置
• 4.1 常规高压直流输电控制系统与控制保护 装置
• 4.2 特高压直流输电控制系统与控制保护装 置旳特点
1
换流站二次设备
1. 运行人员控制和SCADA系统 2. 直流控制 3. 直流保护 4. 交流保护 5. 通信系统 6. 调度自动化 7. 能量计费系统 8. 暂态故障录波器 9. 直流线路故障定位器 10. 站主钟系统
高压直流输电系统的稳定控制与保护
高压直流输电系统的稳定控制与保护引言高压直流输电系统是一种用于长距离电力传输的技术,具有传输能力强、输电损耗小、环境影响少等优势。
然而,高压直流输电系统在运行过程中也面临着一些挑战,例如稳定控制和保护问题。
本文将探讨高压直流输电系统的稳定控制与保护技术,旨在提供一种全面的了解。
一、高压直流输电系统的稳定控制高压直流输电系统的稳定控制是指对系统的电压、功率、频率等进行实时调节,以确保系统的稳定运行。
稳定控制可分为两个方面:电力稳定控制和频率稳定控制。
1. 电力稳定控制电力稳定控制是指根据负荷需求和传输能力,实时调整高压直流输电系统的电压和功率,以保证系统供电的稳定性。
为了实现电力稳定控制,可以采用频率反馈控制方法,通过自动控制装置调整换流变压器的触发角来控制电流。
同时,还可以使用能量储备装置来补偿瞬间负荷变化引起的电力不平衡。
能量储备装置可以是电容器或电感器,通过储存电能或释放电能来调整系统的电力平衡。
此外,还可采用先进的预测控制算法,根据系统的实时运行情况,预测未来的负荷变化,进一步优化电力调控策略。
2. 频率稳定控制频率稳定控制是指在高压直流输电系统中,通过调节直流电流的大小和相位,以及调节换流变压器和直流系统的参数,来控制系统的频率变化。
频率稳定控制可以通过反馈控制的方法实现,根据系统的实时运行情况,调整直流电流和换流变压器的参数,以使系统的频率保持在设定范围内。
此外,还可以使用先进的自适应控制算法,通过监测和分析系统的频率变化,自动调整控制策略,提高系统的频率稳定性。
二、高压直流输电系统的保护技术高压直流输电系统的保护技术是指在系统故障或异常情况下,及时采取措施,限制故障范围和保护设备的安全运行。
保护技术主要包括故障检测、故障定位和故障隔离。
1. 故障检测故障检测是指通过监测高压直流输电系统的各种参数,如电压、电流、功率等,来检测故障的发生。
常用的故障检测方法包括差动保护、过流保护和电压保护等。
高压直流输电的控制和保护系统策略分析
高压直流输电的控制和保护系统策略分析2河南绿控科技有限公司,河南许昌461000摘要:近几年来连缕的雾猩天气,己成为我国当前社会发展和能源策咯选择面临的最迫切需要解决的环境问题,火力发电中燃煤是影响雾靈的主要污染成分PM2.5的一个重要因素。
治理雾靈,首先要控制燃煤排放。
经济发展需要电力能源,但目前燃煤发电仍旧是我国主要电力来源。
随着国内环境和能源的问题突出,对我国电网结构和能源布局提出新的要求。
高压直流输电有着输送能量大、距离远、损耗低、运行可靠、调节快速等优点,越来越被广泛应用。
这就需要对高压直流输电的控制和保护系统策略进行进一步分析,实现最优策略方案。
关键词:高压直流输电;控制;保护系统中图分类号:G31文献标识码:A1引言高压直流输电系统直流分压器传感器故障是导致直流电压波动的直接原因。
从2005年07月至今,高肇直流、天广直流、兴安直流、普侨直流等国内直流工程多次出现电压波动。
发生电压波动时,逆变侧直流电压测量值比实际值偏低,整流侧直流电压在直流控制系统作用下比电压参考值高。
电压波动幅度越大对直流系统造成的影响越严重,甚至会造成整流侧电压幅值达到部分直流保护的电压定值,如直流低电压保护(27DC)或过电压保护(59/37DC),导致直流闭锁。
因此,研究直流电压控制原理,改进直流电压稳定控制方法,降低电压波动对直流系统稳定性的影响,具有十分重要的意义。
2高压直流输电系统电气回路接线方式2.1单极大地回线方式单极大地回线方式是利用整流站和逆变站的同一个极、同一极直流线路、两侧接地极线路和大地构成直流回路。
在此种接线方式下,大地相当于直流回路中的一根导线,流经大地的电流与流经直流线路的电流大小相等,为直流输电系统的运行电流。
这种方式下直流输电过程中的损耗与双极回线方式下一个极的损耗相比要偏大,因为增加了直流电流流经接地极线路和大地的损耗。
如果直流输电系统接地极长期通过比较大的入地电流,将造成极址附近金属设施的电腐蚀,还会导致中性点接地变压器铁芯磁饱和。
高压直流输电系统的保护与控制
高压直流输电系统的保护与控制随着能源需求的不断增长和可再生能源的快速发展,高压直流输电系统作为一种高效、可靠的能源传输方式正逐渐受到广泛关注和应用。
本文将探讨高压直流输电系统的保护与控制措施,以期提高其安全性和稳定性。
一、高压直流输电系统的概述和应用高压直流输电系统是一种以直流电流传输能量的系统,在能量传输距离远、输电损耗小、控制方便等方面具有优势。
它通常由换流站、输电线路和接收站组成,可以广泛应用于远距离、大容量的能源传输,如跨越海洋、山区等地形复杂的区域。
二、高压直流输电系统的保护措施保护措施是高压直流输电系统不可或缺的一部分,它主要包括过电压保护、过电流保护和过温保护等。
过电压保护是指在高压直流输电系统中,当系统中出现电压异常升高的情况时,通过采取相应的保护措施来保护系统的安全运行。
其中,最常见的一种保护方法是安装过电压保护器,它可以有效限制电流的上升速度,避免电流超过设定值。
过电流保护是指在高压直流输电系统中,当系统中出现电流异常升高的情况时,通过采取相应的保护措施来保护系统的设备和电源。
在实际应用中,通常会采用电流保护器、熔断器等设备,当系统中的电流超过设定值时,这些保护装置将迅速切断电路,避免设备受损。
过温保护是指在高压直流输电系统中,当系统中的温度异常升高时,通过采取相应的保护措施来保护系统的设备和人员安全。
一般情况下,会在关键设备上安装温度传感器,当温度超过设定阈值时,保护装置将切断电路,以防止设备过热。
三、高压直流输电系统的控制措施高压直流输电系统的控制措施主要包括稳压控制、防止电弧故障和故障诊断等。
稳压控制是指通过控制换流站的换流变压器和逆变器的工作方式,以保持系统中的电压稳定。
通过使用先进的控制算法和自动化设备,可以实时监测系统中的电压变化,并根据需求调节换流站的工作状态,以确保稳定的电压输出。
防止电弧故障是高压直流输电系统中一个重要的控制环节。
电弧故障是指当系统中的电压或电流超过一定阈值时,导致电路中发生弧光放电。
1000kv特高压直流输电控制与保护设备技术导则
1000kv特高压直流输电控制与保护设备技术导则一、背景介绍在现代社会中,电力输送是至关重要的基础设施之一。
而1000kv特高压直流输电控制与保护设备技术则是这一领域中的重要一环。
本文将从深度和广度的角度,对这一技术进行全面评估,并撰写一篇有价值的文章,进行探讨与总结。
二、1000kv特高压直流输电的定义与意义1000kv特高压直流输电是指在1000千伏电压等级下进行的直流输电。
这是一项十分先进并具有前瞻性的技术,其意义在于提高了电力输送的效率和可靠性,同时有助于减少能源损耗、降低成本,对于解决长途输电和跨区域输电等问题具有重要意义。
三、1000kv特高压直流输电控制与保护设备技术概述1. 控制技术在1000kv特高压直流输电中,控制技术是至关重要的一环。
这涉及到对输电系统的运行状态、功率调节、电压调节等方面的控制,需要借助先进的控制设备和技术手段来实现。
2. 保护设备技术与控制技术相似,1000kv特高压直流输电的保护设备技术也是不可忽视的。
它涉及到对输电系统的故障检测、故障隔离、设备保护等方面,需要确保输电系统的安全稳定运行。
四、深入探讨1000kv特高压直流输电控制与保护设备技术1. 控制技术深入在实际控制技术中,我们需要考虑到电压、功率、电流等多方面的因素。
如何通过先进的控制算法和设备,实现对输电系统的精准控制,是一个值得探讨的话题。
2. 保护设备技术深入在保护设备技术方面,我们需要深入探讨如何通过先进的保护装置,实现对输电系统的智能保护和故障定位。
这涉及到对设备的性能、可靠性等方面的要求,以及与控制技术的协同工作等内容。
五、对1000kv特高压直流输电控制与保护设备技术的个人观点和理解在我看来,1000kv特高压直流输电控制与保护设备技术是一个十分复杂而又具有挑战性的技术领域。
它不仅需要我们拥有扎实的专业知识,更需要我们具备创新意识和解决问题的能力。
只有不断地进行研究和实践,才能不断地推动这一领域的发展,并为实现更高效、更安全的电力输送贡献自己的力量。
直流输电换流阀冷却设备控制保护系统技术要求
直流输电换流阀冷却设备控制保护系统技术要求在谈论直流输电换流阀的冷却设备控制保护系统时,大家可能会觉得这话题有点枯燥,但实际上,它跟我们的日常生活息息相关。
想象一下,炎热的夏天,空调开得啪啪响,电费也跟着水涨船高。
换流阀的冷却设备就像是空调的“冷却水”,让电力设备在高温下保持清凉,确保我们能稳定用电,不然就得吃“黑暗”的苦头了。
冷却系统的设计得好,不能有“马虎”的地方。
要是设备一旦过热,哎哟,那可真是“烧脑”的事情。
不仅影响到换流阀的性能,甚至还可能导致停电事故,简直是得不偿失。
想象一下,如果你在最热的时刻突然失去电力,肯定会有人“抓狂”的。
冷却设备必须保持正常运行,时刻“关注”设备的状态,得有个好的控制系统,像个随时待命的保镖。
而说到控制系统,这可是个“大工程”。
冷却设备得能实时监测温度,任何“风吹草动”都逃不过它的眼睛。
如果温度飙升,那可得立马发出警报,提醒相关人员采取措施。
“三十而立”,这也是冷却设备的标准。
只有准确监测,及时响应,才能保障换流阀的安全运行。
要是设备出现了异常,冷却系统得像火速赶到的医生,迅速“救治”,避免更大的损失。
技术要求可不少,控制系统得有“火眼金睛”,能够分析不同的运行情况,做到精准控制。
这种智能化的保护机制,就像是给设备穿上了“防弹衣”,为设备的稳定运行保驾护航。
这个过程还得“无缝衔接”,确保各个环节都能有效配合。
就像排练的乐队,得每个人都“和谐共鸣”,才能演奏出美妙的乐章。
更有趣的是,冷却设备还得考虑到环境因素。
气温变化、湿度波动,都会影响设备的运行。
想想看,炎热的夏天和寒冷的冬天对设备的要求可不一样,得“因时而变”。
所以,冷却系统不仅要应对极端天气,还得具备一定的适应能力。
这可真是考验技术团队的智慧了。
不得不提的是,定期维护也是至关重要的。
冷却系统不能像“老虎屁股摸不得”,得经常检查,确保各个部件正常运转。
就像我们的人体,定期体检才能发现潜在问题。
维护的同时,也能提升设备的使用寿命,降低后期的故障率,这样一来,省心又省力。
HCM200技术说明书
800kV直流输电控制保护系统介绍HCM200技术说明书许继集团有限公司2006年9月1.概述 (2)2.HCM200的硬件模块 (4)2.1机箱 (6)2.2电源 (8)2.3PM6模块 (10)2.4IT42模块 (14)2.5MM41模块 (19)2.6EB11模块 (21)2.7CS7模块 (25)2.8SS4模块 (27)2.9SS52模块 (30)2.10CS12模块 (33)2.11CS22模块 (35)2.12EP31模块 (37)2.13IT2模块 (44)2.14IM3.1模块 (49)2.15LM3.1模块 (55)2.16IO3.1模块 (57)2.17CSH11模块 (59)2.18各模块之间的关系 (62)2.19硬件系统应用时的注意事项 (63)3.编程软件STRUC G (65)3.1STRUCG的应用 (65)3.2故障检测方法 (68)在高压直流输电工程中,HCM200系统是控制保护系统的核心设备。
它处于控制和保护系统的中间层,即LAN网层和现场总线层的中间位置。
直流输电工程中控制和保护的关键功能都由HCM200来实现。
1.概述HCM200是一个高性能、模块化的数字控制系统,通过图形化的界面灵活配置。
它采用多处理器并行技术,使开环和闭环控制中数学运算、通信、持续数据交换等任务得到快速可靠的处理。
HCM200性能优越,适合于功能要求复杂、计算精度要求高、动态响应性能要求好的高端应用;同时由于具有灵活的配置特性和众多的可选择模块,HCM200可应用在广泛的工业控制领域。
例如:∙对交、直流传动装置的扭矩、速度、位置的闭环控制;∙对精度要求较高的研磨机的驱动控制;∙对动态响应要求较高的水轮机驱动控制;∙特殊的应用场合,如:励磁电流控制,高压直流输电,静态无功补偿系统;HCM200可通过图形化的软件工具将硬件模块和软件组件配置为一个应用系统。
用户根据不同的任务需求将CPU模块、输入/输出模块、通讯模块组合在一个机箱之内。
控制系统与直流保护介绍
龙泉换流站控制系统与直流保护介绍一、高压直流输电系统的基本介绍1、高压直流输电工程的组成部分:交流开关场、换流变、换流阀、直流开关场及直流输电线路。
2、特点适合大功率、远距离输电;输电线路相对于交流输电线路要经济的多;为全国大范围联网提供了便利的条件;填补了我国直流输电技术的空白。
直流设备对环境的要求较高;我国在直流输电方面起步较晚,主要依靠国外技术支持,因此现阶段直流输电设备较昂贵。
3、前景随着我国充分利用丰富的水利资源,大力发展水电建设,直流输电将发挥其重大的经济及社会效益。
二、控制与保护系统设备介绍(按位置及控制区域)1、盘柜介绍:PCP pole control and protectionBCP bipole control and protectionACP ac control and protectionAFP ac filter control and protectionDFT dc field terminationBFT bipole field terminationAFT ac field terminationASI Auxiliary system interfaceTFT Transformer Field TerminationATI auto transformer interfaceCP control pulseCRC cyclic redundancy checkDCOCT dc optical current transducerDPM digital signal processorGWS gate workstationOWS operator workstationEWS ENGINERRING WORKSTA TIONERCS electronic reactive control systemFP fire pulseI/O input/outputLAN local area networkCAN Control Area NetworkTDM Time Division MultiplexLFL line fault recorderMACH2 Modular Advanced Control HVDC(High V oltage Direct Current) and SVC(Static Reactive Power Compensation) 2nd editionDOCT digital optical current transducerOIB optical interface boardRPC reactive power controlSCM Station Control monitoringTHM thyristor monitoringVCU valve control unitCCP cooling control and protectionCFC Converter Firing ControlETCS Electronic Transformer Control SystemHDLC High-level Data Link ControlPCI Peripheral(外围设备)Component Interconnection SCADA Station Control and Data Acquisition(获得)TCC Tap Changer ControlACS自动监视系统COMM通讯程序(主计算机的软件部分)DSP数字信号处理器ETCS电力变压器控制系统GUI图形用户界面GWS网关站(远控)I/O输入/输出MACHMC1(2)主计算机EWS工程师工作站OWS操作员工作站PC个人电脑P IS设备信息系统SUP监视器TFR故障录波VSS软件库ESD静电释放PCB印刷电路板2、板卡介绍:PS801 高性能的DSP板(6个DSP板)PS820 HDLC通讯与监控板(6个DSP板)PS830 I/O处理板PS831 CAN/HDLC光桥PS832 CAN/CAN桥PS841 交流电压测量板PS842 交流电压测量板PS844 电压分配板PS8451A 电流测量板PS850 控制I/O板PS851 110V数字输入板PS853 数字量输入板PS860 高性能的输入/输出板PS862A 隔离模拟测量板PS868 PT100与4-20mA输入板(小电流/电压测量板)PS870 总线连接板PS871 I/O总线连接板PS872 时间同步板(从主时钟分配一个秒脉冲同步信号到最多五个本地用户)PS873 总线延伸与终端板PS876 TDM光通讯板PS877 VCU传输/接收板PS880 21槽底版PS891A 电源板PS900 阀控中央处理单元PS906 阀控16通道光通道输入/输出板控制系统三、控制主要包含的内容控制系统主要包括——ACP控制:断路器、隔离刀闸的顺序控制,主变的分接头控制等。
高压直流输电系统(HVDC)基本概念和应用
高压直流输电系统(HVDC)基本概念和应用1HVDC的基本概念高压直流输电(HVDC)的基本原理是通过整流器将交流电变换为直流电形式,再通过逆变器将直流电变换为交流电,从而实现电能传输和电网互联。
典型双极HVDC的主系统如图2-1所示。
图2-1 高压直流输电系统原理接线图根据直流导线的正负极性,直流输电系统分为单极系统、双极系统和同极系统。
为了提高直流现路的电压和减小换流器产生的谐波,常将多个换流桥串联而成为多个多桥换流器。
多桥换流器的接线方式有双极和同极。
图2-1即为双极接线方式。
换流站中的主要设备有:换流器、换流变压器、平波电抗器、交流滤波器、直流滤波器、无功补偿设备和断路器。
换流器的功能是实现交流电与直流电之间的变换。
把交流变为直流时称为整流器,反之称为逆变器。
组成换流器的最基本元件是阀元件。
现代高压阀元件的额定电压约为3~5kV,额定电流约为 2.5~3kA。
由于阀元件的耐压值和过流量有限,换流器可由一个或多个换流桥串并联组成。
用于直流输电的换流桥为三相桥式换流电路。
一个换流桥有6个桥臂,桥臂由阀元件组成。
换流桥的直流端与直流线路相连,交流端与换流变压器的二次绕组相连。
换流变压器的一次绕组与交流电力系统相连。
换流变压器与普通的电力变压器相同,但通常须带有有载调压分接头,从而可以通过调节换流变压器的变比方便地控制系统的运行状况。
换流变压器的直流侧通常为三角形或星形中性点不接地接线,这样直流线路可以有独立于交流系统的电压参考点。
换流器运行时,在其交流侧和直流侧都产生谐波电压和谐波电流。
这些谐波分量影响电能质量,干扰无线通讯,因而必须安装参数合适的滤波器抑制这些谐波。
平波电抗器的电感值很大,有时可达1H。
其主要作用是减小直流线路中的谐波电压和谐波电流;避免逆变器的换相失败;保证直流电流在轻负荷时的连续;当直流线路发生短路时限制整流器中的短路电流峰值。
另外,换流器在运行时需从交流系统吸收大量无功功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流输电控制保护系统功能介绍一、直流输电基本概念二、直流保护功能的配置及说明一、直流输电基本概念1、直流输电类型•常规两端直流输电背靠背直流输电系统1、直流输电类型1、直流输电类型多端直流输电系统2、换流站主设备•换流的主要设备——换流器(四重阀)2、换流站主设备•换流的主要设备——换流器(双重阀)2、换流站主设备•换流的主要设备——换流变2、换流站主设备•换流变伸入阀厅的换流变套管2、换流站主设备•三广直流惠州站单相双绕组换流变2、换流站主设备•平波电抗器•直流滤波器交流滤波器3、±500kV直流输电直流运行方式常规直流共有5种运行方式:•双极大地回线运行方式•单极大地回线运行方式(极I、极II)•单极金属回线运行方式(极I、极II)常用功率控制方式有3种:•双极功率控制•单极功率控制•单极电流控制4、±500kV直流输电直流部分主接线图5、±500kV直流输电交流场主接线图6、±800kV直流输电主接线图复龙换流站侧奉贤换流站侧复奉直流极线路复奉直流极线路接地极7、简单的控制概念•整流站控制直流系统的电流。
•逆变站控制直流系统的电压。
•通常,每极直流输送功率定义为整流侧功率。
二、直流保护功能的配置及说明直流保护配置目前国网系统运行直流输电系统保护配置情况:•三取二。
•使用切换逻辑。
•完全双重化配置。
保护三取二逻辑保护切换逻辑保护完全双重化配置换流站所包含保护•直流保护(换流变阀侧绕组之间的区域,除直流滤波器)•换流变压器保护•直流滤波器保护•交流滤波器保护•交流滤波器母线保护•断路器保护•交流线路保护•母线保护换流站内保护的分区换流阀区直流线路区金属回线区接地极线区双极中性母线连接区直流滤波器区极中性母线区极高压母线区换流变区保护的配置原则测量的典型配置直流滤波器UacIDPIDNCUDNUDLIDLIDNEIDLIDME IDGNDIANE IDEL1IDEL2NBS NBGSMRTBGRTS直流滤波器UDN IDNENBS极1极2UDLIVYIVDY Y Y DUacIDPIDNCIVYIVDY Y Y D保护的配置原则要求:•配置要求:不存在死区,不存在未被保护的故障情况(全面性)。
•装置要求:具有高度的可靠性、安全性。
应防止保护装置本身的故障或为了对其维护而引起的系统停运,或使系统失去保护。
保护的配置原则按保护所针对的情况,配置的保护分为以下几类:1.第一类:针对故障的保护,如阀短路保护、极母线保护。
2.第二类:针对过应力的保护,如过压、过载。
3.第三类:针对器件损坏的保护,如电容器不平衡保护、转换开关保护。
4.第四类:其它,如功率振荡等。
保护的分区配置•换流阀区(CONVPR)。
•极高压母线区(POLEPR)。
•极中性母线区(POLEPR)。
•直流滤波器区(POLEPR)。
•直流线路区(LINEPR)。
•双极中性母线区(BIPOLEPR)。
•接地极线区(BIPOLEPR)。
•金属回线区(LINEPR) 。
和网省调密切相关的一个功能----最后断路器跳闸功能•配置原则:逆变侧交流出线不多于两回,且都接入同一个对端交流站,需配置最后断路器跳闸功能。
•主要目的:在对端交流站跳开交流出线时,防止换流站内产生过电压,需要立即停运直流。
•运行规定:对端交流站内最后断路器跳闸装置与换流站内接受装置一一对应,仅当本端作为逆变侧运行时投入最后断路器跳闸功能。
可以短时退出一套进行缺陷处理,当两套均退出运行时,直流需陪停。
换流站交流出线重合闸运行规定•运行规定:当换流站有两回及以上交流线路运行时,可投入线路重合闸;若出现单回交流线路运行时,重合闸应停用。
•主要目的:防止交流缺相运行,对换流器产生过应力。
保护的原理•换流阀区换流阀区域主要故障•换流阀短路、换流器接地短路•丢失触发脉冲•换相失败•过电压针对过电压的保护保护原理:•Udi0>Ui0_set•Udi0/F>Udi0_set*与系统的绝缘配合针对阀区短路故障的保护阀短路保护:IacY –max(IDP,IDNC)>△IacD –max(IDP,IDNC)>△过流保护:IacY > IacY_setIacD > IacD_set换流器差动保护原理:|IDP -IDNC|> Icd_set针对阀区短路故障的保护SHORT CIRCUIT CURRENT PATHDC CURRENT PATHIVY135UDL462IVD135462IDNEUDN换流阀整流波形600650700750800 0PR_TFR LingBao PR 20031221 10;12;26_395000.CFGID;IVY330;L1IVY330;L2IVY330;L3 780800820840860880900920940960 1000120014001600180020002200240026002800阀短路波形图19001950200020502100-2-1.5-1-0.500.511.52x 104PR_TFR LingBao PR 20031221 10;12;26_395000.CFGID;IVY 330;L1IVY 330;L2IVY 330;L3针对换相失败、丢失脉冲的保护换相失败保护:max(IDP,IDNC) -IacY>Iycfp _setmax(IDP,IDNC) -IacD>Iycfp _set导致换相失败的原因:•逆变侧换相电压下降•逆变侧交流系统不对称故障•暂态过程或谐波引起换相电压畸变•脉冲丢失针对换相失败、丢失脉冲的保护264531264531IVYIVDIDNEIDLUDLUDNNORMAL DC CURRENT PATHCURRENT PATH AT A COMMUTATION FAILURE**** THE COMMUTATION FROM VALVE 1 TO 3 FAILS** AT THE NEXT FIRING OF VALVE 4 THE COOMUTATION FAILURE IS FULLY DEVELOPED换相失败波形图800900100011001200130014001500160017001800-1000-50050010001500TFR GS_S1P1PPRA1 PR_TFR 20040804 16;30;11_492000.CFGIVD330;L1IVD330;L2IVD330;L3ID33050Hz保护50Hz 保护:IDNC (50Hz)>Id50 _set120014001600180020002200240026002800-100100200300400500600P R _T F R L i n g B a o P R 20031112 20;05;19_577000.C F GID ;100Hz保护100Hz 保护:IDNC (100Hz)>Id100 _set80010001200140016001800200022002400260028002004006008001000120014001600P R _T F R L i n g B a o P R 20031112 20;39;25_395000.C F GID ;极母线、中性母线区域保护极母线区、中性母线区的主要故障•接地短路•过电压•低电压极母线故障相关保护过电压:|Vd|> Vd_set|Vd -Vdn|> V_set接地故障:极高压母线差动保护|IDP –IDL –If1T1 –If2T1|>Ihbd _set直流低电压保护:|Vd|< Vd_set极母线区域故障波形500600700800900100011001200130014001500-600-400-2000200U D ;500600700800900100011001200130014001500-10000100020003000I D Y C ;500600700800900100011001200130014001500-2000-1000010002000I D Y L ;500600700800900100011001200130014001500-400-2000200400I F 1Y ;500600700800900100011001200130014001500-2000200400TFR G S_S1P2PPRA1 PR_TFR 20040526 18;56;11_322000.CFGI F 2Y ;05010015020025030035040045050050TFR GS _S 1P 2P P R A 1 P O LE _T FR 20040526 18;56;11_322000.CFGI D IF_PB US ;P B D P_RE S;。