尺规作图的定义

合集下载

尺规作图的定义

尺规作图的定义

尺规作图的定义尺规作图的定义:尺规作图是指⽤没有刻度的直尺和圆规作图。

五种基本作图:1、作⼀条线段等于已知线段;2、作⼀个⾓等于已知⾓;3、作已知线段的垂直平分线;4、作已知⾓的⾓平分线;5、过⼀点作已知直线的垂线;题⽬⼀:作⼀条线段等于已知线段。

已知:如图,线段a .求作:线段AB,使AB = a .作法:①作射线AP;②在射线AP上截取AB=a .则线段AB就是所求作的图形。

题⽬⼆:作已知线段的中点。

已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:①分别以M、N为圆⼼,⼤于1/2MN的相同线段为半径画弧,两弧相交于P,Q;②连接PQ交MN于O.则点O就是所求作的MN的中点。

(试问:PQ与MN有何关系?)题⽬三:作已知⾓的⾓平分线。

已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。

作法:①以O为圆⼼,任意长度为半径画弧,分别交OA,OB于M,N;②分别以M、N为圆⼼,⼤于1/2MN的相同线段为半径画弧,两弧交∠AOB内于P;③作射线OP。

则射线OP就是∠AOB的⾓平分线。

题⽬四:已知三边作三⾓形。

已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:①作线段AB = c;②以A为圆⼼b为半径作弧,以B为圆⼼a为半径作弧与前弧相交于C;③连接AC,BC。

则△ABC就是所求作的三⾓形。

题⽬五:已知两边及夹⾓作三⾓形。

已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.作法:①作∠A=∠α;②在AB上截取AB=m ,AC=n;③连接BC。

则△ABC就是所求作的三⾓形。

题⽬六:已知两⾓及夹边作三⾓形。

已知:如图,∠α,∠β,线段m .求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.作法:①作线段AB=m;②在AB的同旁作∠A=∠α,作∠B=∠β,∠A与∠B的另⼀边相交于C。

尺规作图九种基本作图

尺规作图九种基本作图

a尺规做图之阳早格格创做【知识回瞅】1、尺规做图的定义:尺规做图是指用不刻度的曲尺战圆规做图.最基原,最时常使用的尺规做图,常常称基原做图.一些搀纯的尺规做图皆是由基原做图组成的.2、五种基原做图:1、做一条线段等于已知线段;2、做一个角等于已知角;3、做已知线段的笔曲仄分线;4、做已知角的角仄分线;5、过一面做已知曲线的垂线; (1)题目一:做一条线段等于已知线段.已知:如图,线段a .供做:线段AB ,使AB = a . 做法:(1) 做射线AP ;(2)正在射线AP 上截与AB=a .则线段AB 便是所供做的图形.(2)题目二:做已知线段的笔曲仄分线. 已知:如图,线段MN.供做:面O ,使MO=NO (即O 是MN 的中面). 做法:(1)分别以M 、N 为圆心,大于MN 21的相共线段为半径绘弧,二弧相接于P ,Q ;(2)对接PQ 接MN 于O .则面PQ 便是所供做的MN的笔曲仄分线. (3)题目三:做已知角的角仄分线. 已知:如图,∠AOB ,供做:射线OP, 使∠AOP =∠BOP (即OP 仄分∠AOB ). 做法:(1)以O 为圆心,任性少度为半径绘弧,分别接OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于MN 21的线段少为半径绘弧,二弧接∠AOB 内于P;(3)做射线OP.则射线OP 便是∠AOB 的角仄分线. (4)题目四:做一个角等于已知角. 已知:如图,∠AOB.供做:∠A’O’B’,使A’O’B’=∠AOB 做法:(1)做射线O’A’;(2)以O 为圆心,任性少度为半径绘弧,接OA 于M ,接OB 于N ;BAP(3)以O’为圆心,以OM 的少为半径绘弧,接O’A’于M’; (4)以M’为圆心,以MN 的少为半径绘弧,接前弧于N’; (5)对接O’N’并延少到B’. 则∠A’O’B’便是所供做的角.(5)题目五:通过曲线上一面干已知曲线的垂线. 已知:如图,P 是曲线AB 上一面.供做:曲线CD ,是CD 通过面P ,且CD ⊥AB. 做法:(1)以P 为圆心,任性少为半径绘弧,接AB 于M 、N ; (2)分别以M 、N 为圆心,大于MN 21的少为半径绘弧,二弧接于面Q ;(3)过D 、Q 做曲线CD. 则曲线CD 是供做的曲线. (6)题目六:通过曲线中一面做已知曲线的垂线已知:如图,曲线AB 及中一面P.供做:曲线CD ,使CD 通过面P ,且CD ⊥AB.做法:(1)以P 为圆心,任性少为半径绘弧,接AB 于M 、N ; (2)分别以M 、N 圆心,大于MN 21少度的一半为半径绘弧,二弧接于面Q ;c abmn (3)过P、Q做曲线CD.则曲线CD便是所供做的曲线.(7)题目七:已知三边做三角形.已知:如图,线段a,b,c.供做:△ABC,使AB = c,AC = b,BC = a. 做法:(1)做线段AB = c;(2)以A为圆心,以b为半径做弧,以B为圆心,以a为半径做弧与前弧相接于C;(3)对接AC,BC.则△ABC便是所供做的三角形.(8)题目八:已知二边及夹角做三角形.已知:如图,线段m,n,∠α.供做:△ABC,使∠A=∠α,AB=m,AC=n.做法:(1)做∠A=∠α;(2)正在AB上截与AB=m ,AC=n;(3)对接BC.则△ABC便是所供做的三角形.(9)题目九:已知二角及夹边做三角形.已知:如图,∠α,∠β,线段m .供做:△ABC,使∠A=∠α,∠B=∠β,AB=m.做法:(1)做线段AB=m;(2)正在AB的共旁做∠A=∠α,做∠B=∠β,∠A与∠B的另一边相接于C.则△ABC便是所供做的图形(三角形).。

中考数学考点一遍过考点20尺规作图含解析

中考数学考点一遍过考点20尺规作图含解析

考点 20 尺规作图一、尺规作图1.尺规作图的定义在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.3.根据基本作图作三角形(1)已知三角形的三边,求作三角形;(2)已知三角形的两边及其夹角,求作三角形;(3)已知三角形的两角及其夹边,求作三角形;(4)已知三角形的两角及其中一角的对边,求作三角形;(5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键(1)先分析题目,读懂题意,判断题目要求作什么;(2)读懂题意后,再运用几种基本作图方法解决问题.2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例 1 如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线M N交AB于点D,交BC于点E,连接C D,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】 D【解析】∵M N为A B的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴C D=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例 2 如图,已知∠MAN,点B在射线A M上.(1)尺规作图:①在A N上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.【解析】(1)①以B点为圆心,B A长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作B D平分∠MBC;如图,B D即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MB=D∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.1.根据下图中尺规作图的痕迹,可判断A D一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作A D平分∠BAC,交B C于点D(要求:保留作图痕迹);(2)∠ADC的度数.考向二复杂作图利用五种基本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段B D与射线AC相交于点O;③在线段AC上作一条线段C F,使C F=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线A C即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l 的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,C A为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A.BH垂直平分线段AD B.A C平分∠BADC.S△ABC=BC·AH D.AB=AD4.如图,点C在∠AOB的O B边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧F G是A.以点C为圆心,O D为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,O D为半径的弧D.以点E为圆心,DM为半径的弧5.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交B C边于点D.则∠ADC的度数为A.65°B.60°C.55°D.45°6.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确7.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交A C于点D,连接BD.若C D=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段A B的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:D C=D B.1.(2019?河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12A C长为半径作弧,两弧交于点E,作射线BE交A D于点F,交A C于点O.若点O是AC的中点,则CD的长为A.2 2 B.4 C.3 D.102.(2019?包头)如图,在Rt △ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、A C于点D,E,再分别以点D、E为圆心,大于12D E为半径画弧,两弧交于点F,作射线AF交边B C于点G,若BG=1,AC=4,则△ACG的面积是A.1 B.32C.2 D.523.(2019?北京)已知锐角∠AOB,如图,(1)在射线O A上取一点C,以点O为圆心,OC长为半径作?PQ ,交射线OB于点D,连接C D;(2)分别以点C,D为圆心,CD长为半径作弧,交?PQ于点M,N;(3)连接O M,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD4.(2019?广西)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为A.40°B.45°C.50°D.60°5.(2019?新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径画弧,分别交BA,B C于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线B P交A C于点D.则下列说法中不正确的是A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.C D= 12 BD6.(2019?荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,O N上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,B D交于点E,作射线OE,则射线O E平分∠MO.N有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是A.①②B.①③C.②③D.①②③7.(2019?河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A.B.C.D.8.(2019?长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交B C于点D,连接AD,则∠CAD的度数是A.20°B.30°C.45°D.60°9.(2019?襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是A.正方形B.矩形C.梯形D.菱形10.(2019?广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,D E交A C于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若A DDB=2,求A EEC的值.11.(2019?长春)如图,在△ABC中,ACB 为钝角.用直尺和圆规在边AB 上确定一点D .使ADC 2 B ,则符合要求的作图痕迹是A.B.C.D.12.(2019?贵阳)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12B D长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则E C的长度是A.2 B.3C.3 D.513.(2019?宜昌)通过如下尺规作图,能确定点D 是BC 边中点的是A.B.C.D.14.(2019?潍坊)如图,已知AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交AOB的两边于C,D两点,连接CD;②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在AOB内交于点E,连接CE,DE;③连接OE交CD于点M.下列结论中错误的是A.CEO DEO B.CM MDC.OCD ECD D.1 S四边形CD OEOCED215.(2019?东营)如图,在RtV ABC中,ACB90,分别以点B和点C为圆心,大于12BC的长为半径作弧,两弧相交于D,E两点,作直线DE交AB于点F,交BC于点G,连接CF.若AC3,CG2,则CF的长为A.52B.3C.2D.7 216.(2019?宁夏)如图,在Rt△ABC中,C90,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若A30,则S△S△BCDABD__________.17.(2019?贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.18.(2019?玉林)如图,已知等腰△ABC顶角A30.(1)在A C上作一点D,使AD BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.19.(2019?长春)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且EFG90.20.(2019?哈尔滨)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角△ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰△ACD,点D在小正方形的顶点上,且△ACD的面积为8.21.(2019?济宁)如图,点M和点N在AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.22.(2019?河池)如图,AB为e O的直径,点C在e O上.(1)尺规作图:作BAC的平分线,与e O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.23.(2019?赤峰)已知:AC是Y ABCD的对角线.(1)用直尺和圆规作出线段AC 的垂直平分线,与AD 相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB 3,BC 5,求△DCE 的周长.24.(2019?杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与B C边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.25.(2019?吉林)图①,图②均为4×4 的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段C D,其中A、B、C、D均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F 为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGD,H且G,H为格点,∠CGD=∠CHD=90°.26.(2019?武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使A F∥D C,且AF=D C.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.27.(2019?江西)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦E F,使EF∥BC;(2)在图2中以B C为边作一个45°的圆周角.变式拓展1.【答案】B【解析】由作图的痕迹可知:点D是线段BC的中点,∴线段AD是△ABC的中线,故选B.如图,在△ABC中,∠C=90°,∠B=40°.2.【解析】(1)如图,AD为所作;(2)∵∠C=90°,∠B=40°.∴∠BAC=90°–40°=50°,∵A D平分∠BAC,∴∠BAD= 12∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.3.【解析】首先作一条射线,进而截取AB=A′B′,∠CAB=∠C′A′B′,进而截取AC=A′C′,进而得出答案.如图所示:△A′B′C′即为所求.考点冲关1.【答案】C【解析】根据已知条件作符合条件的三角形,需要使三角形的要素符合要求,或者是作边等于已知线段,或者是作角等于已知角,故选C.2.【答案】D【解析】选项A,画线段MN=3 cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;选项B,用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;选项C,用三角尺作过点A垂直于直线l 的直线,三角尺也不在作图工具里,错误;选项D,正确.故选D.3.【答案】A【解析】由作法可得BH为线段AD的垂直平分线,故选A.4.【答案】D【解析】作图痕迹中,弧F G是以点E为圆心,DM为半径的弧,故选D.5.【答案】A【解析】由题意得AG为∠CAB的角平分线,则∠ADC=25°,∵∠C=90°,∴∠ADC=65°,故选A.6.【答案】A【解析】(甲)如图一所示,∵△ABC为等边三角形,AD是∠BAC的角平分线,∴∠BEA=90°,∴∠BED=90°,∴∠BEA=∠BED=90°,由甲的作法可知,AB=BD,A B=BDABC=DBC∴∠ABC=∠DBC,在△ABC与△DBC中,,BC BC=∴△ABC≌△DBC,故甲的作法正确;(乙)如图二所示,∵BD ∥AC ,C D ∥AB ,∴∠ ABC =∠DCB ,∠ACB =∠DBC ,ABC = DCB在△ABC 和△ DCB 中,BC =CB,ACB = DBC∴△ABC ≌△DCB (ASA ),∴乙的作法是正确的.故选 A . 7.【答案】 40°【解析】∵根据作图过程和痕迹发现 MN 垂直平分 AB , ∴D A =D B ,∴∠ DBA =∠A =35°,∵C D =BC ,∴∠ CDB =∠CBD =2∠A =70°,∴∠ C =40°, 故答案为: 40°. 8.【答案】 37【解析】∵ AB =AC ,∠A =32°, ∴∠ABC =∠ACB =74°, 又∵BC =D C ,∴∠CDB =∠CBD = 1 2∠ACB =37°,故答案为: 37. 9.【解析】作法:(1)分别以 A ,B 点为圆心,以大于A B 2的长为半径作弧,两弧相交于 M ,N 两点;(2)作直线 MN ,MN 即为线段 AB 的垂直平分线.10.【解析】( 1)射线 BD 即为所求.(2)∵∠ A =90°,∠ C =30°,∴∠ABC =90°﹣30°=60°,∵BD 平分∠ ABC ,∴∠CBD = 1 2∠ABC =30°, ∴∠C =∠CBD =30°,∴D C =D B .直通中考1.【答案】 A【解析】如图,连接 FC ,则 AF =FC .∵AD ∥BC ,∴∠ FAO =∠BCO .FAO BCOOA OC在△FOA 与△ BOC 中, ,∴△ FOA ≌△BOC (ASA ),∴ A F =BC =3,AOF COB∴FC =AF =3,FD =AD - A F =4-3=1.在△ FDC 中,∵∠ D =90°,∴ CD2+D F 2=FC 2,∴C D 2+12=32,∴C D =2 2 .故选 A .2.【答案】 C【解析】由作法得 AG 平分∠ BAC ,∴G 点到 A C 的距离等于 BG 的长,即 G 点到 AC 的距离为 1,所以△ ACG 的面积 =1 2 ×4×1=2.故选 C .3.【答案】 D【解析】由作图知 C M =C D =D N ,∴∠ COM =∠COD ,故 A 选项正确;∵O M =ON =MN ,∴△ OMN 是等边三角形,∴∠ MO =N 60° ,∵C M =C D =D N ,∴∠MOA =∠AOB =∠BON = 1 3 ∠MO =N 20° ,故 B 选项正确;∵∠MO =A ∠AOB =∠BON =20° ,∴∠ OCD =∠OC =M 80° ,∴∠ MCD =160° ,1 2 又∠CMN =∠AON =20° ,∴∠ MCD +∠CMN =180° ,∴ MN ∥C D ,故C 选项正确;∵MC +C D +D N >MN ,且 C M =C D =D N ,∴3C D >MN ,故 D 选项错误,故选 D .4.【答案】 C【解析】由作法得 C G ⊥AB ,∵AC =BC ,∴CG 平分∠ ACB ,∠A =∠B ,∵∠ ACB =180° -40 ° -40° =100° , ∴∠BCG = 1 2∠ACB =50° .故选 C .5.【答案】 C【解析】由作法得 B D 平分∠ ABC ,所以 A 选项的结论正确;∵∠C =90° ,∠ A =30° ,∴∠ ABC =60° ,∴∠ ABD =30° =∠A ,∴AD =BD ,所以 B 选项的结论正确; ∵∠CBD = 1 2 ∠ABC =30° ,∴ BD =2C D ,所以D 选项的结论正确;∴AD =2C D ,∴S △ABD =2S △CBD ,所以 C 选项的结论错误.故选 C .6.【答案】 C【解析】∵四边形 ABCD 为矩形,∴ AE =C E ,而 OA =OC ,∴OE 为∠AOC 的平分线.故选 C .7.【答案】 C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到 C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选 C .8.【答案】 B【解析】在△ ABC 中,∵∠ B =30° ,∠ C =90° ,∴∠ BAC =180° - ∠B -∠C =60° ,由作图可知 MN 为 AB 的中垂线,∴D A=D B,∴∠DAB=∠B=30°,∴∠CAD=∠BAC- ∠DAB=30°,故选B.9.【答案】D【解析】由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选D.10.【解析】(1)如图,∠ADE为所作.(2)∵∠ADE=∠B,∴D E∥BC,∴A E ADEC DB=2.11.【答案】B【解析】∵ADC 2 B且ADC B BCD ,∴B BCD ,∴DB DC ,∴点D 是线段BC 中垂线与AB 的交点,故选B.12.【答案】D【解析】由作法得C E⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,C E= 32 22 5 .故选D.13.【答案】A【解析】作线段BC的垂直平分线可得线段BC 的中点.由此可知:选项 A 符合条件,故选A.14.【答案】C【解析】由作图步骤可得:OE 是AOB 的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,O M=O M,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴C M=DM,OM⊥C D,∴S 四边形OCED=S△CO+E S△DOE= 1 1 1OE CM OE DM CD OE ,2 2 2但不能得出OCD ECD ,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.15.【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC ,CG BG 2,FG BC ,∵ACB 90 ,∴FG∥AC ,∴BF CF ,∴CF 为斜边AB 上的中线,∵AB 32 42 5,∴1 5CF AB .故选A.2 216.【答案】1 2【解析】由作法得BD 平分ABC,∵∠C 90 ,A 30 ,∴ABC 60 ,∴ABD CBD 30 ,∴DA DB ,在Rt△BCD 中,BD 2CD ,∴AD 2CD ,∴S△BCDS△ABD12.故答案为:12.17.【解析】如图,△DEF 即为所求.18.【解析】(1)如图,点D为所作.(2)∵AB AC,∴1ABC C(18036)72,2∵DA DB,∴ABD A36,∴BDC A ABD363672,∴BDC C,∴△BCD是等腰三角形.19.【解析】(1)如图①所示,△ABM即为所求.(2)如图②所示,△CDN即为所求.(3)如图③所示,四边形EFGH即为所求.20.【解析】(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B.(2)以C为圆心,AC为半径作圆,格点即为点D.21.【解析】(1)如图,作∠AOB的角平分线与线段MN的垂直平分线交于P点,即点P到点M和点N的距离相等,且到AOB两边的距离也相等.(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等.22.【解析】(1)如图所示:(2)O E∥AC,1 OE AC.2理由如下:∵AD平分BAC,∴1 BAD BAC,2∵1 BAD BOD,2∴BOD BAC,∴OE∥AC,∵OA OB,∴OE为△ABC的中位线,∴OE∥AC,1 OE AC.223.【解析】(1)如图,CE为所作.(2)∵四边形ABCD为平行四边形,∴AD BC5,CD AB3,∵点E在线段AC的垂直平分线上,∴EA EC,∴△DCE的周长CE DE CD EA DE CD AD CD538.24.【解析】(1)∵线段A B的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B.(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.25.【解析】(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.26.【解析】(1)如图所示,线段AF即为所求.(2)如图所示,点G即为所求.(3)如图所示,线段EM即为所求.27.【解析】(1)如图1,EF为所作.(2)如图2,∠BCD为所作.。

尺规作图方法大全(正式)

尺规作图方法大全(正式)

尺规作图【知识回顾】1、 尺规作图的定义: 尺规作图是指用没有刻度的直尺和圆规作图。

最基本 一些复杂的尺规作图都是由基本作图组成的。

2、 五种基本作图: ,最常用的尺规作图,通常称基本作图。

(1)题目一:作一条线段等于已知线段。

已知 如图,线段 a .求作 线段 AB, 使 AB = a .作法(1)作射线AP(2) 在射线AP 上截取AB=a .则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知 如图,线段 MN.求作 点 0,使MO=N (即0是MN 的中点). 作法|MN(1: 分别以M N 为圆心,大于 5 1、作一条线段等于已知线段; 、作一个角等于已知角;、作已知线段的垂直平分线;、作已知角的角平分线; 、过一点作已知直线的垂线; (2) 则点(3) 已知: 求作: 作法: (1) 的相同线段为半径画弧, 两弧相交于P, Q 连接PQ 交MN 于0. 0就是所求作的MN 的中点。

题目三:作已知角的角平分线。

如图,/ AOB 射线0P,使/ AOP=Z BOP (即卩0P 平分/ NAOB 。

以0为圆心,任意长度为半径画弧, 分别交OA 0B 于 M, N; 分别以M N 为圆心,大于[的线 为半径画弧,两弧交/ AOB 内于P; (3)作射线0P 则射线0P 就是/ AOB 的角平分线。

(4) 题目四:作一个角等于已知角。

已知:如图,/ AOB 求作:/ A O B',使 A ' O B' =/AOB (2)作法: (1) 作射线O' A ;(2)以O 为圆心,任意长度为半径画弧,交 OA 于M 交OB 于N; (3) 以O 为圆心,以 OM 的长为半径画弧,交 O A '于M ; (4) 以M 为圆心,以MN 的长为半径画弧,交前弧于 N'; (5) 连接O N'并延长到B '。

则/ A O' B '就是所求作的角。

初中尺规作图总结

初中尺规作图总结

初中尺规作图总结尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

八上数学尺规作图归纳总结

八上数学尺规作图归纳总结

(已知) A ' B P (作线段等于已知线段)八上数学教师辅导讲义学员编号:年 级:新初二 课时数: 学员姓名: 辅导科目:数学 学科教师:赵老师 课 题尺规作图授课日期及时段 教学目的 教学内容-、知识梳理(一)尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

(二) 五种基本作图:1、作一条线段等于已知线段;已知:如图,线段 a .求作:线段AB ,使AB = a .作法:① 作射线AP ;② 在射线AP 上截取AB=a .则线段AB 就是所求作的图形。

2、作一个角等于已知角;3、作已知线段的垂直平分线;已知:如图,线段 MN.求作:点0,使M0=N0 (即0是MN 的中点)作法:①分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P, Q;②连接PQ交MN于0.则点0就是所求作的MN的中点。

(试问:PQ与MN有何关系?)4、作已知角的角平分线;已知:如图,/ AOB ,求作:射线0P,使/ AOP = Z BOP (即OP平分/ AOB )。

作法:①以O为圆心,任意长度为半径画弧,分别交OA , OB于M , N ;②分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧交/ AOB内于P;③作射线OP。

则射线OP就是/ AOB的角平分线。

5、过一点作已知直线的垂线;①以已知点为圆心,以任意长为半径作弧,交直线于A、B两点;②分别以A、B为圆心,以大于1/2AB长为半径分别作弧,两弧分别交于点M、点N;③连接MN,则直线MN为所求作的直线。

6、过直线外一点作直线的平行线M O N(作线段的中点)(作角平分线)(三)尺规作图拓展(1)已知三边作三角形。

已知:如图,线段a, b, c.求作:△ ABC,使AB = c , AC = b , BC = a.作法:------------ a ---- b(已知)G (已知三边作三角形)①作线段AB = c ;②以A为圆心b为半径作弧,以B为圆心a为半径作弧与前弧相交于C;③连接AC , BC。

2020年中考数学必考考点专题32尺规作图含解析

2020年中考数学必考考点专题32尺规作图含解析

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。

【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。

数学讲义-尺规作图

数学讲义-尺规作图

作法:如图,
①在直线 l 外取一点 A ,作射线 AP 与直线 l 交于点 B ,
②以 A 为圆心, AB 为半径画弧与直线 l 交于点 C ,连接 AC , ③以 A 为圆心, AP 为半径画弧与线段 AC 交于点 Q ,
则直线 PQ 即为所求.
根据小王设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
已知:如图 1,直线 l 及直线 l 上一点 P . 求作:直线 PQ ,使得 PQ l .
作法:如图 2 :
①以点 P 为圆心,任意长为半径作弧,交直线 l 于点 A , B ; ②分别以点 A , B 为圆心,以大于 1 AB 的同样长为半径作弧,两弧在直线 l 上方交于点 Q ;
2 ③作直线 PQ .
(3)以点 C 为圆心, CD 长为半径画弧,与第(2)步中所画的弧相交于点 D ;
(4)过点 D 画射线 OB ,则 AOB AOB .
小聪作法正确的理由是 ( ) A.由 SSS 可得△ OCD OCD ,进而可证 AOB AOB B.由 SAS 可得△ OCD OCD ,进而可证 AOB AOB C.由 ASA 可得△ OCD OCD ,进而可证 AOB AOB D.由“等边对等角”可得 AOB AOB
A.8
B.10
C.11
D.13
例 19.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:
已知: AOB .求作: AOB ,使 AOB AOB .
作法:(1)如图,以点 O 为圆心,任意长为半径画弧,分别交 OA , OB 于点 C , D ;
(2)画一条射线 OA ,以点 O 为圆心, OC 长为半径画弧,交 OA 于点 C ;
B.用量角器画一个 300 的角

尺规作图(精讲

尺规作图(精讲

2.4尺规作图1.定义:尺规作图是指用没有刻度的直尺和圆规作图.注意:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.直尺的功能(1)在两点间连接一条线段;(2)过平面上的两点画直线;(3)作射线或线段.圆规的功能(1)以任意一点为圆心,任意长为半径作圆或圆弧;(2)在直线上截取一条线段,使它等于已知线段.2.做已知角示例:题型1:识别尺规作图1.在下列各题中,属于尺规作图的是()A.利用三角板画45°的角B.用直尺和三角板画平行线C.用直尺画一工件边缘的垂线D.用圆规在已知直线上截取一条线段等于已知线段【变式1-1】下列作图属于尺规作图的是()A.用量角器画出∠AOB的平分线OCB.借助直尺和圆规作∠AOB,使∠AOB=2∠αC.画线段AB=3cmD.用三角尺过点P作AB的垂线【变式1-2】下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个300°的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段题型2:用尺规做一个角等于已知角2.如图,已知∠AOB,求作∠ECF,使∠ECF=∠AOB.(要求:尺规作图,保留作图痕迹,不写作法)【变式2-1】已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【变式2-2】如图,已知∠AOB,点P是OA边上的一点.(1)在OA的右侧作∠APC=∠AOB(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,判断直线PC与直线OB的位置关系,并说明理由.题型3:用尺规作已知角的和差3.如图,已知∠1,∠2,求作一个角,使它等于2∠1+∠2.(不写作法,保留作图痕迹)【变式3-1】如图,已知∠1,∠2,求作一个角,使它等于2∠1﹣∠2.(不写作法,保留作图痕迹)题型4:利用转化思想做已知直线的平行线4.如图,按要求作图:(1)过点P作直线CD平行于AB;(2)过点P作PE⊥AB,垂足为O.【变式4-1】如图,在△ABC中,点D为AB中点,请用尺规作图方法,在线段AC上找一点E,使得DE ∥BC.(请保留作图痕记,不写作法)题型5:利用尺规作长方形5.已知:如图,∠MAN=90°,线段a和线段b求作:矩形ABCD,使得矩形ABCD的两条边长分别等于线段a和线段b.下面是小东设计的尺规作图过程.作法:如图,①以点A为圆心,b为半径作弧,交AN于点B;②以点A为圆心,a为半径作弧,交AM于点D;③分别以点B、点D为圆心,a、b长为半径作弧,两弧交于∠MAN内部的点C;④分别连接BC,DC.所以四边形ABCD就是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=;AD=;∴四边形ABCD是平行四边形.∵∠MAN=90°;∴四边形ABCD是矩形(填依据).【变式5-1】已知∶线段a,b(a>b)和一个大小为90°的角,求作∶长方形 ABCD,使其长与宽分别等于a和b.。

(完整版)尺规作图方法大全

(完整版)尺规作图方法大全

O尺规作图【知识回顾】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段 ;2、作一个角等于已知角 ;3、作已知线段的垂直平分线 ;4、作已知角的角平分线 ;5、过一点作已知直线的垂线 ;(1)题目一:作一条线段等于已知线段。

已知:如图,线段 a .a求作:线段 AB ,使 AB = a . 作法:(1) 作射线 AP ; (2) 在射线 AP 上截取 AB=a . 则线段 AB 就是所求作的图形。

(2) 题目二:作已知线段的中点。

已知:如图,线段 MN.求作:点 O ,使 MO=NO (即 O 是 MN 的中点). 作法:(1)分别以 M 、N 为圆心,大于MN的相同线段为半径画弧, 两弧相交于 P ,Q ; (2)连接 PQ 交 MN 于 O .则点 O 就是所求作的MN的中点。

(3) 题目三:作已知角的角平分线。

已知:如图,∠AOB,求作:射线 OP, 使∠AOP=∠BOP(即 OP 平分∠AOB)。

作法:(1) 以 O 为圆心,任意长度为半径画弧,分别交 OA ,OB 于 M ,N ;(2) 分别以 M 、N为圆心,大于的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线 OP 。

则射线 OP 就是∠AOB 的角平分线。

(4) 题目四:作一个角等于已知角。

已知:如图,∠AOB。

求作:∠A’O’B’,使 A’O’B’=∠AOB作法:① (1) 作射线 O’A’; ① ①(2) 以 O 为圆心,任意长度为半径画弧,交 OA 于 M ,交 OB 于 N ; (3) 以 O’为圆心,以 OM 的长为半径画弧,交 O’A’于 M ’; (4) 以 M’为圆心,以 MN 的长为半径画弧,交前弧于 N ’; (5) 连接 O’N’并延长到 B ’。

则∠A ’O ’B ’就是所求作的角。

华师大版八年级上册1尺规作图课件

华师大版八年级上册1尺规作图课件

为半径画弧,交OA 于点E,交OB 于点F;
分别以点E 和点F 为圆心、大于
1
EF
的长为半径画
2
弧,两弧在∠ AOB 的内部交于点C;
画射线OC;
感悟新知
知4-练
同理,作∠ AOC 的平分线OM. 则∠ AOM 即为所求 作的角(如图13.4-6).
感悟新知
4-1. 已知:∠ AOB(如图). 求作:∠ AOB 的补角的平分线. 解:如图,射线OD即为所求.
2
过点P 和点Q 作直线PQ,则直线PQ 就是要求作
的垂线.
感悟新知
图示
知5-讲
感悟新知
知5-讲
2. 经过已知直线外一点作已知直线的垂线
步骤
已知:直线AB 和AB 外一点P.
求作:直线PQ,且PQ ⊥ AB.
作法:以点P 为圆心、适当长为半径画弧,交直
线AB 于点M、N;
1
分别以点M 和点N 为圆心、大于 径画弧,两弧交于点Q;
答案:B
感悟新知
知1-练
1-1. 在下列各项中,属于尺规作图的是( D ) A. 利用三角尺画45°角 B. 用直尺和三角尺画平行线 C. 用直尺画一工件边缘的垂线 D. 用圆规在已知直线上截取一条线段等于已知线段
感悟新知
知识点 2 作一条线段等于已知线段
知2-讲
已知:线段a. 求作:线段AB,使AB=a. 步骤 作法:作射线AP; 在射线AP 上截取AB=a,则线段AB 就是 要求作的线段.
解:如图13.4-2,线段AB 即为所求.
知2-练
感悟新知
知2-练
作法:作射线OP; 在射线OP 上顺次截取OM=MB=a; 在线段OB 上顺次截取ON=NA=b,则线段AB 就是所 求作的线段.

尺规作图方法大全含练习试题

尺规作图方法大全含练习试题

BPA aOQPNM O N MBPA 尺规作图【知识回顾】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点). 作法:(1)分别以M 、N 为圆心,大于的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB③②①a bP BB A P(1)作射线O ’A ’; (2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

初一数学尺规作图(可编辑修改word版)

初一数学尺规作图(可编辑修改word版)

POQ的线段长【知识回顾】七年级数学期末复习资料(七)尺规作图1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作 图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;(1)题目一:作一条线段等于已知线段。

已知:如图,线段 a .a求作:线段 AB ,使 AB = a . 作法:(1) 作射线 AP ;A(2) 在射线 AP 上截取 AB=a . 则线段 AB 就是所求作的图形。

(2) 题目二:作已知线段的中点。

已知:如图,线段 MN.求作:点 O ,使 MO=NO (即 O 是 MN 的中点). 作法:(1)分别以 M 、N 为圆心,大于MN的相同线段为半径画弧, 两弧相交于 P ,Q ; (2)连接 PQ 交 MN 于 O .则点 O 就是所求作的MN的中点。

(3) 题目三:作已知角的角平分线。

已知:如图,∠AOB,求作:射线 OP, 使∠AOP=∠BOP(即 OP 平分∠AOB)。

作法:(1) 以 O 为圆心,任意长度为半径画弧,分别交 OA ,OB 于 M ,N ;(2) 分别以 M 、N为圆心,大于为半径画弧,两弧交∠AOB 内于P; (3) 作射线 OP 。

则射线 OP 就是∠AOB 的角平分线。

BPA MPON B(4) 题目四:作一个角等于已知角。

已知:如图,∠AOB。

求作:∠A’O’B’,使 A’O’B’=∠AOB①①①作法: (1) 作射线 O’A’; (2) 以 O 为圆心,任意长度为半径画弧,交 OA 于 M ,交 OB 于 N ;(3) 以 O’为圆心,以 OM 的长为半径画弧,交 O’A’于 M ’; (4) 以 M’为圆心,以 MN 的长为半径画弧,交前弧于 N ’; (5) 连接 O’N’并延长到 B ’。

尺规作图.精选

尺规作图.精选

第9讲尺规作图1.尺规作图定义:只用没有刻度的直尺和圆规作图称为尺规作图2.五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线;过一点作一条直线与已知直线垂直。

3.五种基本作图步骤:(1)作一条线段等于已知线段求作:线段AB等于线段a作法:如图,①先画射线AC.②然后用圆规在射线AC上截取AB=a.线段AB就是所要作的线段.(2)作一个角等于已知角求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:如图,①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作已知角的平分线求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于12DE的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC。

OC就是所求的射线.(4)作线段的垂直平分线求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.(5)经过已知点作这条直线的垂线情况a:经过已知直线上的一点作这条直线的垂线,如图已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线情况b:经过已知直线外一点作这条直线的垂线.如图已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.★注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.4.三角形的外接圆、三角形的内切圆的作法。

尺规作图方法大全

尺规作图方法大全

BPAaOQPNMON MBPA 七年级数学期末复习资料(七)尺规作图【知识回顾】1、尺规作图的定义:尺规作图就是指用没有刻度的直尺与圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都就是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a 、求作:线段AB,使AB = a 、 作法:(1) 作射线AP;(2) 在射线AP 上截取AB=a 、 则线段AB 就就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN 、求作:点O,使MO=NO(即O 就是MN 的中点)、 作法:(1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P,Q; (2)连接PQ 交MN 于O.则点O 就就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB,求作:射线OP, 使∠AOP =∠BOP(即OP 平分∠AOB)。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA,OB 于M,N;(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就就是∠AOB 的角平分线。

③②①PBAP(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB作法:(1)作射线O ’A ’;(2)以O 为圆心,任意长度为半径画弧,交OA 于M,交OB 于N; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就就是所求作的角。

尺规作图

尺规作图

尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB,使AB = a .作法:①作射线AP;②在射线AP上截取AB=a .则线段AB就是所求作的图形。

题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:①分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P,Q;②连接PQ交MN于O.则点O就是所求作的MN的中点。

(试问:PQ与MN有何关系?)题目三:作已知角的角平分线。

已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。

作法:①以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;②分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧交∠AOB内于P;③作射线OP。

则射线OP就是∠AOB的角平分线。

题目四:作一个角等于已知角。

(请自己写出“已知”“求作”并作出图形,不写作法)题目五:已知三边作三角形。

已知:如图,线段a ,b ,c.求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:① 作线段AB = c ;② 以A 为圆心b 为半径作弧,以B 为圆心 a 为半径作弧与前弧相交于C ; ③ 连接AC ,BC 。

则△ABC 就是所求作的三角形。

题目六:已知两边及夹角作三角形。

已知:如图,线段m ,n, ∠α.求作:△ABC ,使∠A=∠α,AB=m ,AC=n. 作法:① 作∠A=∠α;② 在AB 上截取AB=m ,AC=n ; ③ 连接BC 。

则△ABC 就是所求作的三角形。

题目七:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .求作:△ABC ,使∠A=∠α,∠B=∠β,AB=m. 作法:① 作线段AB=m ;② 在AB 的同旁作∠A=∠α,作∠B=∠β, ∠A 与∠B 的另一边相交于C 。

中考数学必考考点专题32尺规作图含解析

中考数学必考考点专题32尺规作图含解析

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。

【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线;
题目一:作一条线段等于已知线段。

已知:如图,线段a .
求作:线段AB,使AB = a .
作法:
①作射线AP;
②在射线AP上截取AB=a .
则线段AB就是所求作的图形。

题目二:作已知线段的中点。

已知:如图,线段MN.
求作:点O,使MO=NO(即O是MN的中点).
作法:
①分别以M、N为圆心,大于1/2MN的相同
线段为半径画弧,两弧相交于P,Q;
②连接PQ交MN于O.
则点O就是所求作的MN的中点。

(试问:PQ与MN有何关系?)
题目三:作已知角的角平分线。

已知:如图,∠AOB,
求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。

作法:
①以O为圆心,任意长度为半径画弧,
分别交OA,OB于M,N;
②分别以M、N为圆心,大于1/2MN
的相同线段为半径画弧,两弧交∠AOB内于P;
③作射线OP。

则射线OP就是∠AOB的角平分线。

题目四:已知三边作三角形。

已知:如图,线段a,b,c.
求作:△ABC,使AB = c,AC = b,BC = a.
作法:
①作线段AB = c;
②以A为圆心b为半径作弧,以B为圆心
a为半径作弧与前弧相交于C;
③连接AC,BC。

则△ABC就是所求作的三角形。

题目五:已知两边及夹角作三角形。

已知:如图,线段m,n, ∠α.
求作:△ABC,使∠A=∠α,AB=m,AC=n.
作法:
①作∠A=∠α;
②在AB上截取AB=m ,AC=n;
③连接BC。

则△ABC就是所求作的三角形。

题目六:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.
作法:
①作线段AB=m;
②在AB的同旁作∠A=∠α,作∠B=∠β,
∠A与∠B的另一边相交于C。

则△ABC就是所求作的图形(三角形)。

相关文档
最新文档