第3章 函数的基本性质 3.6 函数的基本性质(2)
高中数学第三章函数的概念与性质3-2函数的基本性质3-2-1函数的单调性与最值学生用书湘教必修第一册
3.2 函数的基本性质 3.2.1 函数的单调性与最值教材要点要点一 函数最大(小)值设D 是函数f (x )的定义域,I 是D 的一个非空的子集.(1)如果有a ∈D ,使得不等式f (x )≤f (a )对一切x ∈D 成立,就说f (x )在x =a 处取到最大值M =f (a ),称M 为f (x )的最大值,a 为f (x )的最大值点;(2)如果有a ∈D ,使得不等式f (x )≥f (a )对一切x ∈D 成立,就说f (x )在x =a 处取到最小值M =f (a ),称M 为f(x )的最小值,a 为f (x )的最小值点.状元随笔 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y =-x 2(x ∈R )的最大值是0,有f (0)=0.要点二 增函数与减函数的定义状元随笔 定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2; (3)属于同一个单调区间. 要点三 单调性与单调区间如果函数y =f (x )在区间I 上是增函数或减函数,那么就说函数y =f (x )在这一区间上具有(严格的)________,区间I 叫作y =f (x )的________.状元随笔 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接.如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y =1x 在(-∞,0)∪(0,+∞)上单调递减.基础自测1.思考辨析(正确的画“√”,错误的画“×”) (1)函数f (x )≤1恒成立,则f (x )的最大值是1.( )(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(4)如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,则函数y =f (x )在区间[a ,c ]上在x =b 处有最小值f (b ).( )2.函数y =-2x 2+3x 的单调递减区间是( ) A .[0,+∞) B .(-∞,0) C .(−∞,34]D .[34,+∞)3.(多选)如果函数f (x )在[a ,b ]上是增函数,对于任意x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中正确的是( )A .f (x 1)−f (x 2)x 1−x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )≤f (x 1)<f (x 2)≤f (b )D .f (x 1)>f (x 2)4.函数f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是________.题型1 利用图象求函数的单调区间例1 已知函数f(x)=x2-4|x|+3,x∈R.(1)将函数写成分段函数的形式;(2)画出函数的图象;(3)根据图象写出它的单调区间.方法归纳(1)求函数单调区间时,若所给函数是常见的一次函数、二次函数、反比例函数等,可根据其单调性写出函数的单调区间,若函数不是上述函数且函数图象容易作出,可作出其图象,根据图象写出其单调区间.(2)一个函数出现两个或两个以上的单调区间时,不能用“∪”连接两个单调区间,而要用“和”或“,”连接.跟踪训练1 (1)已知函数y=f(x)的图象如图所示,则该函数的减区间为( )A.(-3,1)∪(1,4)B.(-5,3)∪(−1,1)C.(-3,-1),(1,4)D.(-5,-3),(-1,1)(2)函数y=-x2+2|x|+3的单调递增区间是__________,递减区间是__________________.题型2 函数的单调性判断与证明例2 用定义证明函数f(x)=x+k(k>0)在(0,+∞)上的单调性.x方法归纳利用定义证明函数单调性的步骤注:作差变形是解题关键.跟踪训练2 已知函数f (x )=xx 2+4,判断并用定义证明f (x )在(0,+∞)上的单调性.题型3 函数单调性的应用 角度1 比较大小例3 已知函数y =f (x )在[0,+∞)上是减函数,则( ) A .f (34)>f (a 2-a +1) B .f (34)<f (a 2-a +1)C .f (34)≥f (a 2-a +1) D .f (34)≤f (a 2-a +1)状元随笔 利用单调性比较函数值或自变量的大小时,要注意将对应的自变量转化到同一个单调区间上.角度2 解不等式例4 f (x )是定义在(-2,2)上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是( )A .m >0B .0<m <32 C .-1<m <3D .-12<m <32状元随笔 利用单调性解不等式,就是根据单调性去掉函数的对应法则,构造不等式(不等式组)求解,注意函数的定义域,所有自变量都必须在函数的定义域内.角度3 利用函数的单调性求参数的取值范围例5 若f(x)=-x2+4mx与g(x)=2m在区间[2,4]上都是减函数,则m的取值范围x+1是( )A.(-∞,0)∪(0,1] B.(−1,0)∪(0,1]C.(0,+∞) D.(0,1]方法归纳“函数的单调区间为I”与“函数在区间I上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I,指的是函数递减的最大范围为区间I,而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.角度4 求函数的最值例6 已知函数f(x)=2(x∈[2,6]),求函数的最大值和最小值.x−1方法归纳1.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.跟踪训练3 (1)已知函数f (x )=x 2+bx +c 图象的对称轴为直线x =2,则下列关系式正确的是( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (1)<f (-1)D .f (1)<f (-1)<f (2)(2)函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3) B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)(3)已知函数f (x )=|2x -a |的单调递增区间是[3,+∞),则a 的值为________. (4)已知函数f (x )=32x−1,求函数f (x )在[1,5]上的最值.易错辨析 忽视函数的定义例7 已知函数f (x )={−x 2−ax −5(x ≤1),ax(x >1),是R 上的增函数,则a 的取值范围是( )A .-3≤a <0B .a ≤-2C .a <0D .-3≤a ≤-2解析:函数f (x )={−x 2−ax −5(x ≤1),ax (x >1),是R 上的增函数,则f (x )=-x 2-ax -5(x ≤1)单调递增,故它的对称轴-a 2≥1,即a ≤-2,此时f (x )=ax (x >1)也单调递增,所以a <0,要保证在R 上是增函数.还需在x =1处满足-12-a ×1-5≤a1,即a ≥-3.综上所述,-3≤a ≤-2.答案:D 易错警示课堂十分钟1.(多选)如图所示的是定义在区间[-5,5]上的函数y =f (x )的图象,则下列关于函数f (x )的说法正确的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性 2.函数y =1x−1的单调减区间是( )A .(-∞,1),(1,+∞)B .(-∞,1)∪(1,+∞) C{x ∈R |x ≠1}D .R3.函数y =2x+1在[2,3]上的最小值为( ) A .1B .13 C .23D .124.设关于x 的函数y =(k -2)x +1是R 上的增函数,则实数k 的取值范围是________. 5.已知f (x )是定义在[-1,1]上的增函数,且f (x -2)<f (1-x ),求x 的取值范围.3.2 函数的基本性质3.2.1 函数的单调性与最值新知初探·课前预习要点二f(x1)<f(x2) f(x1)>f(x2) 增函数减函数要点三单调性单调区间[基础自测]1.答案:(1)×(2)×(3)×(4)√,+∞).2.解析:借助图象得y=-2x2+3x的单调减区间是[34答案:D3.解析:由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B正确;对于C,D,因为x1,x2的大小关系无法判断,则f(x1)与f(x2)的大小关系也无法判断,故C、D不正确.故选AB.答案:AB4.解析:由图象知点(1,2)是最高点,点(-2,-1)是最低点,∴y max=2,y min=-1.答案:-1,2题型探究·课堂解透例1 解析:(1)f (x )=x 2-4|x |+3={x 2−4x +3,x ≥0,x 2+4x +3,x <0.(2)如图.(3)由图象可知单调递增区间为[-2,0),[2,+∞),单调递减区间为(-∞,-2),[0,2).跟踪训练1 解析:(1)在某个区间上,若函数y =f (x )的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).(2)y =-x 2+2|x |+3={−x 2+2x +3,x ≥0,−x 2−2x +3,x <0.画出函数图象如图,由图可知函数y =-x 2+2|x |+3的单调递增区间是:(-∞,-1],(0,1].递减区间是:[-1,0],[1,+∞).答案:(1)C (2)(-∞,-1],(0,1] [-1,0],[1,+∞) 例2 证明:设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(x 1+k x 1)−(x 2+k x 2)=(x 1-x 2)+(k x 1−k x 2)=(x 1-x 2)+k ·x 2−x1x 1x2=(x 1-x 2)-k ·x 1−x 2x 1x 2=(x 1-x 2)·x 1x 2−k x 1x 2,因为0<x 1<x 2,所以x 1-x 2<0,x 1x 2>0.当x 1,x 2∈(0,√k ]时,x 1x 2-k <0⇒f (x 1)-f (x 2)>0,此时函数f (x )为减函数; 当x 1,x 2∈(√k ,+∞)时,x 1x 2-k >0⇒f (x 1)-f (x 2)<0,此时函数f (x )为增函数. 综上,函数f (x )=x +kx (k >0)在区间(0,√k ]上为减函数,在区间(√k ,+∞)上为增函数.跟踪训练2 解析:f (x )在(0,2)上单调递增,在(2,+∞)上单调递减. 证明如下:∀x 1,x 2∈(0,+∞),且x 1<x 2,有f (x 1)-f (x 2)=x 1x +124-x2x +224=x 1(x +224)-x2(x +124)(x +124)(x +224)=(x 2−x 1)(x 1x 2−4)(x +124)(x +224),因为0<x 1<x 2,所以x 2−x 1>0,(x +124)(x 22+4)>0.当x >2时,x 1x 2−4>0,(x 2−x 1)(x 1x 2−4)(x +124)(x +224)>0,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时f (x )单调递减. 当0<x <2时,x 1x 2−4<0,(x 2−x 1)(x 1x 2−4)(x +124)(x +224)<0,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时f (x )单调递增.所以,f (x )在(0,2)上单调递增,在(2,+∞)上单调递减.例3 解析:∵a 2-a +1=(a −12)2+34≥34.又∵函数y =f (x )在[0,+∞)是减函数,∴f (a 2-a +1)≤f (34).故选C.答案:C例4 解析:由题意知{−2<m −1<2,−2<2m −1<2,m −1<2m −1,解得0<m <32.故选B.答案:B例5 解析:函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1,g (x )=2m x+1的图象由y =2m x 的图象向左平移一个单位长度得到的,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得m 的取值范围是(0,1].故选D.答案:D例6 解析:∀x 1,x 2∈[2,6],且x 1<x 2,则f (x 1)-f (x 2)=2x 1−1−2x 2−1=2[(x 2−1)−(x 1−1)](x 1−1)(x 2−1)=2(x 2−x 1)(x 1−1)(x 2−1). 由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以,函数f (x )=2x−1在区间[2,6]上单调递减.因此,函数f (x )=2x−1在区间[2,6]的两个端点处分别取得最大值与最小值.在x =2时取得最大值,最大值是2;在x =6时取得最小值,最小值是0.4.跟踪训练3 解析:(1)因为该二次函数的图象开口向上,对称轴为直线x =2,所以f (x )在(-∞,2]上单调递减,因为2>1>-1,所以f (2)<f (1)<f (-1).故选C.(2)因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.故选C.(3)f (x )=|2x -a |={2x −a ,x ≥a 2−2x +a ,x <a 2, 所以f (x )=|2x -a |的单调递减区间是(−∞,a 2),单调递增区间是[a 2,+∞), 若函数f (x )=|2x -a |的单调递增区间是[3,+∞),则a 2=3,解得a =6.(4)先证明函数f (x )=32x−1的单调性,设x 1,x 2是区间(12,+∞)上的任意两个实数,且x 2>x 1>12, f (x 1)-f (x 2)=32x1−1−32x 2−1=6(x 2−x 1)(2x 1−1)(2x 2−1). 由于x 2>x 1>12,所以x 2-x 1>0,且(2x 1-1)·(2x 2-1)>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )=32x−1在区间(12,+∞)上是单调递减的,所以函数f (x )在[1,5]上是单调递减的,因此,函数f (x )=32x−1在区间[1,5]的两个端点上分别取得最大值与最小值,即最大值为f (1)=3,最小值为f (5)=13.答案:(1)C (2)C (3)6 (4)见解析 [课堂十分钟]1.解析:若一个函数出现两个或两个以上的单调性相同的区间,不一定能用“∪”连接.故选ABD.答案:ABD2.解析:单调区间不能写成单调集合,也不能超出定义域,故C ,D 不对,B 表达不当.故选A.答案:A3.解析:∵函数y =2x+1在[2,3]上单调递减,∴当x =3时,y =2x+1有最小值12. 故选D.答案:D4.解析:f (x )为R 上的增函数,则k -2>0,k >2.答案:(2,+∞)5.解析:∵f (x )是定义在[-1,1]上的增函数,且f (x -2)<f (1-x ),∴{−1≤x −2≤1,−1≤1−x ≤1,x −2<1−x ,解得1≤x <32, 所以x 的取值范围为1≤x <32.。
函数的基本性质及常用结论
函数的基本性质及常用结论一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。
定义:(略)定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; []1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数. 定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。
3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)当()f x 和()g x 具有相同的增减性时,①1()()()F x f x g x =+的增减性与()f x 相同,②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么:①1()()()F x f x g x =+、②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠的增减性不能确定;③3()()()F x f x g x =-为增函数。
函数的基本性质(2)函数单调性
课题3.4 函数的基本性质(2)——函数单调性学 科:高中数学课程类型:基础型课式类型:新授课执教老师:田红兵授课班级:高一(2)班一、教学目标1.理解单调函数(增函数、减函数)、单调区间(增区间、减区间)的概念和图像特征,能根据函数的图象判断单调性、写出单调区间,能运用函数的单调性概念证明简单函数的单调性。
2.经历函数单调性概念抽象提炼的过程,体会数形结合的思想, 培养抽象概括、推理论证和语言表达的能力。
3.通过函数单调性概念的抽象过程,感受数学的严谨性,培养严谨的科学态度,养成良好的思维习惯。
二、教学重点及难点重点:函数单调性的概念难点:领悟函数单调性的本质, 掌握函数单调性的判断和证明三、教学用具准备:多媒体课件四、教学过程设计 策略与方法(一)情景引入1. 观察关于上海市园林绿地面积的图形,(见ppt )问题:从1990年到2000年上海市园林绿地面积变化 由生活情境引入新课,趋势如何? 激发兴趣,了解新概念预案:随年份的增加而增加。
在生活的原型,认识研问题:还能举出生活中其他的数据变化情况吗? 究单调性的必要性。
预案:长江水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的增加,函数值是增大还是减小,对于自变量增大时,函数值是增大还是减小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们继续研究这个问题。
(二).归纳探索,形成概念1.借助图象,直观感知问题1:观察函数x y 3=,22+-=x y ,x x y 22+-=,x y 1=的图象,自变量增大时,函数值有什么变化规律? 策略与方法预案:(1)函数x y 3=在整个定义域内 y 随x 的增大而增大; 从初中学过的四类(2)函数22+-=x y 在整个定义域内 y 随x 的增大而减小. 函数入手,通过观察图(3)函数x x y 22+-=在[)+∞,1上 y 随x 的增大而减小, 像直观感知函数单调性。
§3.4.2 函数的基本性质(2) 函数奇偶性的定义及运用
§3.4.2函数的基本性质——函数的奇偶性的定义及运用1.熟悉掌握函数奇偶性的定义及运算;2.掌握处理有关函数奇偶性的常用方法; 3.知道有关奇偶性的一些运算性质.问1 试总结判断函数奇偶性的方法.问2 试总结关于奇偶函数的重要结论.(龙门P148)例1 证明:(1)一次函数(0)y kx b k =+≠是奇函数的充要条件是0b =;(2)二次函数2(0)y ax bx c a =++≠是偶函数的充要条件是0b =; (3)函数()y f x =既是奇函数又是偶函数的充要条件是()0f x =.[举一反三] 判断函数()f x ax b =+的奇偶性例2 已知5()4f x ax bx =++,其中a ,b 为常数,(2)3f =,求(2)f -的大小.[举一反三](1)已知函数()f x 与()g x 满足()2()1f x g x =+,且()g x 为R 上的奇函数,(1)8f -=,求(1)f .(2)已知函数2()3f x ax bx a b =+++为偶函数,定义域为[1,2]a a -,则______a =,______b =例3 分别根据下列条件,求实数a 的值:(1)设0a >,()x x e af x a e=+是R 上的偶函数; (2)函数1()21x f x a =++是定义域上的奇函数.(若改成“1()21x f x a =+-”呢?)[举一反三] (1)判断函数11()()312x f x x =+-的奇偶性;(2)已知2()(1)f x mx m x m =+++是R 上的偶函数,求实数m 的值.例4 已知函数()f x 是奇函数,函数()g x 是偶函数,且1()()1f xg x x +=+, 求函数()f x 、()g x 的表达式.[练习] 设()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,(1)判断2()[()]3()F x f x g x =-的奇偶性;(2)若23()3()623f x g x x x +=-+,求()f x ,()g x 的解析式.[抽象函数的奇偶性]*例5 已知函数()f x 的定义域为R ,且不恒为0,对任意,x y R ∈,都有()()()f x y f x f y +=+,求证:()f x 为奇函数.*例6 已知函数()f x 不恒为零,并且对一切,x y R ∈,都有()()()1x yf x f y f xy++=+, 求证:()f x 为奇函数.1. 若函数()()()F x f x f x =--,则函数()F x 的奇偶性是________________.2. 已知函数),,(,6)(35为常数c b a cx bx ax x f -++=,若8)8(=-f ,则)8(f = _____ . 3. 已知()f x 是奇函数,()g x 是偶函数,且2()()23f x g x x x -=++,则()()__________f x gx +=.4. 已知函数121)(+-=x a x f ,若)(x f 为奇函数,则a = 5. 以下四个函数① ()21f x x =-;② 1()1x f x x -=+;③ 221()1x f x x -=+;④ 53()f x x x =+,既不是奇函数又不是偶函数的是_______________. 6. 已知2()(1)()21x F x f x =+-(0x ≠)是奇函数,且()f x 不恒为零,则()f x 的奇偶性为________. 7. 已知函数()y f x =是偶函数,其图像与x 轴有8个交点,则方程()0f x =的所有实数根之和为_____________.8. 已知定义域为R 的任意奇函数)(x f ,都有( )A.0)()(>--x f x f ;B. 0)()(≤--x f x f ;C. ()()0f x f x ⋅-≤;D. ()()0f x f x ⋅->.9. ()f x 、()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x 、()g x 均为偶函数”是“()h x 为偶函数”的( )A .充分非必要条件;B .必要非充分条件;C .充要条件;D .非充分非必要条件.10. 已知)(x f 是奇函数,)(x g 是偶函数,则下列函数中一定是奇函数的是( )A.[][]22)()(x g x f +; B. [])(x g f ; C. )()(x g x f -; D. )()(x g x f .11. 已知⎩⎨⎧<--->+-=0,10,1)(22x x x x x x x f ,则)(x f 为( )A.奇函数;B. 偶函数;C. 非奇非偶函数;D. 不能确定12. ()f x 是定义在A 上的奇函数,且()0f x ≠,而()()g x y f x =是定义在B 上的偶函数,则()g x 是( ) A .在A 上的奇函数; B .在A 上的偶函数;C .在B 上的奇函数;D .在B 上的偶函数;13. 已知函数()f x 的定义域为[,]a b ,函数()y f x =的图像如图所示,则函数(||)f x 的图像是( )14. 函数21()ax f x bx c+=+是奇函数,其中,,a b c Z ∈,若(1)2f =,(2)3f <,求,,a b c 的值.15. 已知二次函数()f x 是偶函数,且经过点(3,6),求它的一个解析式.16. 若0a >,1a ≠,()F x 为奇函数,11()()12x G x F x a ⎡⎤=+⎢⎥-⎣⎦,试判断()G x 的奇偶性.17. 已知.12)(x xx f +=(1)求)1()(xf x f +;(2)求1210012100(1)(2)(100)()()()()()()222100100100f f f f f f f f f ++⋯⋯++++⋯⋯++⋯⋯+++⋯⋯+的值.18. 定义在R 上的函数()f x 对任意x y R ∈、都有()()2()()f x y f x y f x f y ++-=⋅,且(0)0f ≠,判断()f x 的奇偶性并加以证明.(A ) (B ) (C ) (D )第13题图。
第三节函数的基本性质
第三节函数的基本性质1、判断函数的单调性【例1】试讨论函数()1log 1ax f x x +=-中的单调性(其中0a >且1a ≠)。
练习:判断函数2()1axf x x =- (a ≠0)在区间(-1,1)上的单调性。
点评:(1)证明函数单调性时,一定要严格按照定义来证明,主要步骤是:①设元;②作差(商);③变形;④判断符号;⑤定论。
变形要彻底,一般通过因式分解、配方等手段,直到符号的判定非常明显。
(2)判断函数单调性的常用方法:①定义法。
②两个增(减)函数的和为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)数当f(x)恒为正或恒为负时,)x (f 1y =与)x (f y =的单调性相反。
③奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性。
④如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数。
⑤如果)u (f y =和)x (g u =单调性相同,那么)]x (g [f y =是增函数;如果)u (f y =和)x (g u =单调性相反,那么)]x (g [f y =是减函数。
⑥如果f(x)在区间D 上可导且)x (f '在区间D 上恒大于(小于)零,则)x (f y =在区间D 上单调递增(减)。
2、求函数的单调区间【例2】求下列函数的单调区间:(1);2x 3x )x (f 2-+-= (2)|;x |3)x (f =(3);3|x |2x )x (f 2++-= (4)).0x (x 9x )x (f >+=分析:求给定函数的单调区间通常采用以下方法:①利用已知函数的单调性;②图象法;③定义法(利用单调性的定义探讨)。
点评:①函数的单调区间是函数定义域的子集或真子集,求函数的单调区间必须首先确定函数的定义域,求函数的单调区间的运算应该在函数的定义域内进行.②可以熟记一些基本函数的单调性,化一些复杂的函数为基本函数组合形式后利用已知结论判断.③函数的单调区间可以是开的,也可以是闭的,也可以是半开半闭的,对于闭区间上的连续函数来说,只要在开区间上单调,它在闭区间上也单调.因此,只要单调区间端点使f(x)有意义,都可以使单调区间包括端点.3.判断函数的奇偶性【例3】 判断下列函数的奇偶性,并说明理由。
第三章 函数的概念与性质(课堂笔记)
第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.概念的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合f x x ∈A }叫做函数的值域.2.函数三要素:定义域、对应关系、值域。
3.区间若a ,b ∈R ,且a <b ,则(1)x |a ≤x ≤b =a ,b 闭区间(2)x |a <x <b =a ,b 开区间(3)x |a ≤x <b =a ,b ) 半开半闭区间x |a <x ≤b =(a ,b ]半开半闭区间∞表示无穷大,R =-∞,+∞(4)x |x <a =-∞,a x |x ≤a =-∞,a ] (5)x |x >a =(a ,+∞)x |x ≥a =[a ,+∞)4.常见求函数定义域方法(1)分式的分母不等于零;(2)偶次根号下被开方数大于等于零;(3)零的零次方无意义;a 0=1,a ≠0(4)对数式的真数大于零;(5)定义域多个取值范围同时满足,求交集。
例:函数f (x )=-x 2+4x +12+1x -4的定义域是.解:要使函数有意义,需满足-x 2+4x +12≥0x -4≠0,即-2≤x ≤6x ≠4 .即-2≤x <4或4<x ≤6,故函数的定义域为[-2,4)⋃4,6 .5.判断函数为同一函数如果两个函数的定义域相同,并且对应关系也完全一致,那么这两个函数是同一个函数。
3.1.2函数的表示方法1.函数的表示方法:表格法、图像法、解析式法2.分段函数如果一个函数,在其定义域内,对于自变量x 的不同取值区间,有不同的对应关系,则称其为分段函数。
第3章函数的概念与性质3.2函数的基本性质3.2.2第2课时奇偶性的应用
课堂 小结 提素 养
1.记牢 2 个知识点 (1)利用奇偶性,求函数的解析式. (2)利用奇偶性和单调性比较大小、解不等式. 2.理解 2 个特点 具有奇偶性的函数的单调性的特点 (1)奇函数在[a,b]和[-b,-a]上具有相同的单调性. (2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.
[跟进训练] 1.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函 数,则f(-2),f(π),f(-3)的大小关系是( ) A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3) C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)
A [由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增 函数,则x∈(-∞,0)时,f(x)是减函数,故其图象的几何特征是自 变量的绝对值越小,则其函数值越小,∵|-2|<|-3|<π,∴f(π)> f(-3)>f(-2),故选A.]
即f(x)-g(x)=x+1 1.
②
联立①②得
f(x)=x2-x 1,g(x)=x2-1 1.
利用函数奇偶性求解析式的方法 1“求谁设谁”,既在哪个区间上求解析式,x就应在哪个区 间上设. 2要利用已知区间的解析式进行代入. 3利用fx的奇偶性写出-fx或f-x,从而解出fx. 提醒:若函数fx的定义域内含0且为奇函数,则必有f0=0, 但若为偶函数,未必有f0=0.
(2) fx+gx=x-1 1 ―用―-―x代――式―中→x
得f-x+g-x=-x1-1 ―奇―偶―性→
1 得fx-gx=-x+1
―解―方―程―组→
[解] (1)设 x<0,则-x>0, ∴f(-x)=-(-x)+1=x+1, 又∵函数 f(x)是定义域为 R 的奇函数, ∴f(-x)=-f(x)=x+1, ∴当 x<0 时,f(x)=-x-1. 又 x=0 时,f(0)=0,
函数的基本性质(课时2 函数的最大(小)值)高一数学课件(人教A版2019必修第一册)
[答案] 求解二次函数最值问题的方法:
(1)确定对称轴与抛物线的开口方向并作图.
(2)在图象上标出定义域的位置.
(3)观察函数图象,通过函数的单调性写出最值.
新知生成
二次函数 具有对称性、增减性、最值等性质,即对于 ,①其图象是抛物线,关于直线 成轴对称图形;②若 ,则函数在区间 上单调递减,在区间 上单调递增;③若 ,则函数在区间 上单调递增,在区间 上单调递减;④若 ,则当 时, 有最小值,为 ,若 ,则当 时, 有最大值,为 .
A. , B. , C. , D. ,
C
[解析] 由图可得,函数 在 处取得最小值,最小值为 ,在 处取得最大值,最大值为2,故选C.
3.函数 在区间 上的最大值、最小值分别是( ).A. , B. , C. , D.以上都不对
B
[解析] 因为 ,且 ,所以当 时, ;当 时, .故选B.
(2) 求函数 的最大值.
[解析] 当 时, , ;当 时, , ;当 时, , .综上所述, .
1.函数 在 上的图象如图所示,则此函数在 上的最大值、最小值分别为( ).
A. , B. , C. ,无最小值 D. ,
C
[解析] 观察图象可知,图象的最高点坐标是 ,故其最大值是3;无最低点,即该函数不存在最小值.故选C.
×
(2) 若函数有最值,则最值一定是其值域中的一个元素.( )
√
(3) 若函数的值域是确定的,则它一定有最值.( )
×
(4) 函数调递减,则函数 在区间 上的最大值为 .( )
√
自学检测
2.函数 在 上的图象如图所示,则此函数的最小值、最大值分别是( ).
3.2函数的基本性质(单调性、最值、奇偶性)(新课改2019新版人教A版高中数学必修第一册)
6
3.2函数的基本性质
• 2.单调性
• (3)判断单调性:借助图形;定义.
• (4)证明单调性:定义法.
(5)步骤:
若 若① ② ③fff计(((xxxx算1111,)))xf2(xfff1((()Dxxx,222
且)f与(xx012比),较x2将;:其分解为若干可以直接确定符号的式子; ) 0,则f (x)在D上单调递增; ) 0,则f (x)在D上单调递减.
当k 0时, f ( 所以函数y
x1 ) kx
bf在(xR2 )上单0即调f递(x1增) ,f即(x函2 ).数y
kx
b是增函数.
当k 0时, f ( 所以函数y
x1 ) kx
bf在(xR2 )上单0即调f递(x1减) ,f即(x函2 ).数y
kx
b是减函数.
9
3.2函数的基本性质
• 2.单调性
11
3.2函数的基本性质
函数的最值与单调性密切相联.
• 3.最值
• (1)定义 一般地,设函数y f (x)的定义域为I,
若存在实数M 满足: 则①称xM是I,y 都 有f (fx)(的x)最 M大;值②. x0 I,使得f (x) M .
y
y=x²
O
x
若存在实数M 满足:
y
①x I,都有f (x) M;②x0 I,使得f (x) M . 则称M 是y f (x)的最小值. 函数y f (x)在闭区间[a,b]上单调递增或递减,
x
2取1 得最大值,在x
6处取得最小值.
O
由f (2) 2 2, f (6) 2 0.4. 所以该函2数1的最大值为26,最1 小值为0.4.
x
函数的基本性质知识点总结
函数的基本性质知识点总结函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;②设()g x的定义域分别是12,D D,那么在它们f x,()的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。
(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
2函数的基本性质(单调性、奇偶性、周期性)(含答案)
函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)一些单调性的判断规则:①若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。
②复合函数的单调性规则是“同增异减”。
2.函数的奇偶性的定义:(1)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,则称)(x f 为 . 奇函数的图象关于 对称。
(2)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,则称)(x f 为 . 偶函数的图象关于 对称。
(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
3.奇偶函数图象的对称性(1)若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x =对称;(2)若)(x b f y +=是偶函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;4.若函数满足()()x f a x f =+,则函数的周期为T=a 。
二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( ) A .||2x y = B .3y x = C .12+-=x y D .y =cosx 【答案】C 【解析】试题分析:偶函数需满足()()f x f x -=,由此验证可知A,C,D 都是偶函数,但要满足在区间(0,+∞)上单调递减,验证可知只有C 符合. 考点:偶函数的判断,函数的单调性.2.2()24f x x x =-+的单调减区间是 .【答案】(,1)-∞ 【解析】试题分析:将函数进行配方得22()24(1)3f x x x x =-+=-+,又称轴为1x =,函数图象开口向上,所以函数的单调减区间为(,1)-∞. 考点:二次函数的单调性.3.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 【答案】A 【解析】试题分析:由2230x x +->,得3x <-或1x >,∴()f x 的定义域为(,3)(1,)-∞-+∞.22log (23)y x x =+-可看作由2log y u =和223u x x =+-复合而成的,223u x x =+-=2(1)4x +-在(,3)-∞-上递减,在(1,)+∞上递增,又2log y u =在定义域内单调递增,∴22log (23)y x x =+-在(,3)-∞-上递减,在(1,)+∞上递增,所以22log (23)y x x =+-的单调递减区间是(,3)-∞-,故选A .考点:复合函数的单调性.4.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a 【答案】B 【解析】试题分析:函数5)2(22+-+=x a x y 的图像是开口向上以2x a =-为对称轴的抛物线,因为函数在区间(4,)+∞上是增函数,所以24a -≤,解得2a ≥-,故A 正确。
高中数学第三章函数的概念与性质3.2函数的基本性质3.2.2奇偶性课件
A.26
B.18
C.10
D.-26
答案:D
解析:方法一:
由f(x)=x5+ax3+bx-8,得f(x)+8=x5+ax3+bx. 令G(x)=x5+ax3+bx=f(x)+8,∵G(-x)=(-x)5+a(-x)3+b(-x)=-(x5+ax3 +bx)=-G(x),∴G(x)是奇函数,∴G(-3)=-G(3),即f(-3)+8=-f(3)-8.又 f(-3)=10,∴f(3)=-f(-3)-16=-10-16=-26.
−x2 − x,x>0, 所以f(x)=൞ 0,x = 0,
x2 − x参数的2种方法
2.利用函数奇偶性求函数解析式的一般步骤
巩固训练2
() A.1 C.3
(1)已知函数f(x)=x2-(2-m)x+3为偶函数,则m的值是
B.2 D.4
答案:B
解析:方法一: f(-x)=(-x)2-(2-m)(-x)+3=x2+(2-m)x+3,由函数y=f(x)为偶函数,知 f(-x)=f(x),即x2+(2-m)x+3=x2-(2-m)x+3,∴2-m=-(2-m),∴m=2. 方法二: 由f(-1)=f(1)得4+(2-m)=4-(2-m) ,解得m=2.
助学批注 批注❶ 奇函数与偶函数的定义域都关于原点对称;若一个函数的 定义域不关于原点对称,则这个函数不具有奇偶性.
基础自测 1.思考辨析(正确的画“√”,错误的画“×”) (1)f(x) 是 定 义 在 R 上 的 函 数 , 若 f( - 1) = f(1) , 则 f(x) 一 定 是 偶 函 数.( × ) (2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定 是奇函数.( × ) (3)不存在既是奇函数,又是偶函数的函数.( × ) (4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函 数.( × )
《函数的基本性质》函数的概念与性质PPT(第2课时函数的最大值、最小值)
A.-1,0 C.-1,2 答案:C
B.0,2 D.12,2
栏目 导引
第三章 函数的概念与性质
函数 f(x)=1x在[1,+∞)上( ) A.有最大值无最小值 B.有最小值无最大值 C.有最大值也有最小值 D.无最大值也无最小值
栏目 导引
第三章 函数的概念与性质
解析:选 A.结合函数 f(x)=1x在[1,+∞)上的图象可知函数有 最大值无最小值.
栏目 导引
第三章 函数的概念与性质
图象法求最值的一般步骤
栏目 导引
ቤተ መጻሕፍቲ ባይዱ
第三章 函数的概念与性质
1.函数 f(x)在区间[-2,5]上的图象如图所示,则此函数的最 小值、最大值分别是( )
A.-2,f(2)
B.2,f(2)
C.-2,f(5)
D.2,f(5)
解析:选 C.由函数的图象知,当 x=-2 时,有最小值-2;当
x=5 时,有最大值 f(5).
栏目 导引
第三章 函数的概念与性质
x2-x(0≤x≤2),
2.已知函数 f(x)=x-2 1(x>2),
求函数 f(x)的最大值和
最小值.
解:作出 f(x)的图象如图.由图象可知,当 x=2 时,f(x)取最 大值为 2; 当 x=12时,f(x)取最小值为-14. 所以 f(x)的最大值为 2,最小值为-14.
栏目 导引
第三章 函数的概念与性质
利用函数的单调性求最值 已知函数 f(x)=xx-+12,x∈[3,5]. (1)判断函数 f(x)的单调性,并证明; (2)求函数 f(x)的最大值和最小值. 【解】 (1)f(x)是增函数.证明如下: ∀x1,x2∈[3,5]且 x1<x2, f(x1)-f(x2)=xx11+-21-xx22+-21=(x13+(2x)1-(xx22)+2),
中职数学同步教学(劳保版第七版)《函数的基本性质(2)》课件
判断与之对应的函数值f(x1)和 f(x2)之间的大小关系. 作差
=2x1-2x2
=2(x1-x2)
同向为增
因为x1<x2,即x1-x2<0,所以f(x1)-f(x2)<0,即
f(x1)<f(x2).
所以函数f(x)=2x+1在R上是增函数.
函数的的单调性(二)
例1 讨论函数f(x)=2x+1在R上的单调性.
二次函数y=f(x)在[0,&域为D,区间I⊆D.
定
如果对于区间I上的任意两点x1和x2,当x1<x2时,都有
义
f(x1)<f(x2),那么称函数y=f(x)在区间I上是增函数,区
间I称为函数y=f(x)的增区间.
函数的的单调性(二)
减函数
y y=f(x)
f(x1) f(x2)
O x1 x2 x
减函数的图像是呈下降趋势,随 着自变量增大,函数值越来越小.
如果在图上任取两个自变量x1<x2, 它们所对应的函数值 f(x1)>f(x2).
设函数y=f(x)的定义域为D,区间I⊆D.
定
如果对于区间I上的任意两点x1和x2,当x1<x2时,都有
义
f(x1)><f(x2),那么称函数y=f(x)在区间I上是减增函数,区
定号结论
函数的的单调性(二)
“用定义判断函数单调性"的步骤
(1)取值排序:在定义域内任取两个自变量x1、x2, 满足x1<x2;
(2)作差化简:将两个函数值f(x1)和f(x2)作差,然
归
后把式子f(x1)−f(x2)朝着含x1−x2的方向进行化简
纳
变形,直到可以判断它的正负; (3)定号结论:判断整个式子f(x1)−f(x2)的符号,
第三章 函数的概念和性质
A 、 第三章 函数的概念和性质Ⅰ 教学要求(1)了解映射的概念.(2)理解函数的概念,了解函数的三种表示法,理解分段函数的定义及表示法.(3)理解函数的单调性和奇偶性.(4)了解反函数的概念,掌握简单函数的反函数的求法,了解函数)(x f y =的图像与它的反函数)(1x f y -=的图像之间的关系.(5)掌握一元二次函数的性质及其图像,掌握解一元二次不等式与一元二次函数之间的关系.(6)会用待定系数法求一次函数和二次函数的解析式.(7)了解函数的实际应用.Ⅱ 教材分析、教学建议和练习题解答现实世界中许多量之间有依赖关系,一个量变化时另一个量随着起变化,函数是研究各个量之间确定性依赖关系的数学模型,在工业革命时代,函数是数学中最基本的概念之一. 现在的世界已进入信息时代,计算机和互联网迅速普及,计算机科学和信息科学蓬勃发展. 由此促使了离散数学的地位日益上升,于是映射成了数学中最基本的概念之一.映射也是日常生活中许多现象的抽象.中学生学习映射的概念,至少有三方面的好处:作为现代社会的居民,能看懂信息时代的书报、电视;在日常生活中把事情做好;能更好理解函数的概念,反函数的概念.函数的图像是数形结合的基础,要让学生理解函数的图像的意义.本教材从函数的图像引出奇函数与偶函数的概念,既直观,同时又揭示了其本质. 本教材运用映射的观点阐述反函数的概念,给出反函数的求法,这与传统的方法不同.我们有创新,使得反函数概念的本质容易理解,使得反函数的求法严谨且易于掌握. 本章第三单元讲一元二次函数,这是在初中讲一元二次函数的基础上进一步讲清楚道理,运用第二单元函数的单调性和奇偶性的一般理论来具体地研究一元二次函数的性质和图像,既让学生学习如何运用理论研究具体函数的性质和图像,又使画函数图像的方法严谨、科学.待定系数法是数学中的一种重要方法,本章用一节介绍如何用待定系数法求一次函数和二次函数的解析式.总之,本章首先介绍映射和函数的概念,然后讨论函数的一般性质,最后运用函数的单调性和奇偶性的一般理论研究一元二次函数,并且介绍了一元二次不等式的解法. 本章的重点是:映射的概念,函数的概念,函数的图像,函数的单调性、奇偶性;一元二次函数的性质和图像,一元二次函数的最大值或最小值;解一元二次不等式的图像法;待定系数法.本章的难点是:映射的概念,点M在函数的图像上的充分必要条件,反函数的概念,函数的实际应用.学好本章的关键是:了解映射的概念,理解函数的图像的意义.本章教学时间约需15课时,具体分配如下:3.1 映射1课时3.2 函数的定义及记号1课时3.3 函数的三种表示法1课时3.4 分段函数1课时3.5 函数的单调性1课时3.6 函数的奇偶性2课时3.7 函数的图像2课时3.8 反函数1课时3.9 一元二次函数的性质及其图像1课时3.10 用待定系数法求函数的解析式1课时3.11 函数的实际应用1课时本章小结2课时3.1 映射1. 集合的概念与映射的概念是现代数学中最基本的两个概念. 在信息时代,映射的概念比函数的概念更基本. 理解了映射的概念,就能更深刻地理解函数的概念.2. 在讲映射的定义时,要着重指出:有两个集合和一个对应法则,并且这个对应法则使第一个集合的每一个元素,都有第二个集合中唯一确定的元素与它对应.3. 设f是集合A到集合B的一个映射,则把A叫做定义域,把B叫做值域.许多教材没有给第二个集合起名字,有的教材把第二集合叫做陪域.4. 一个映射f:BA→由定义域、值域和对应法则组成,它们称为映射的三要素,因此两个映射相等的定义应当是:定义域相等,值域相等,对应法则相同.3.1的练习答案1.(1)不是;(2)是.2.(1)是;(2)是;(3)不是;(4)不是;(5)不是.3.(1)不是;(2)是;(3)是;(4)不是;(5)不是.4. 是3.2 函数的定义及记号1. 在现实世界中有不少变量之间有确定性的依赖关系,函数就是研究这种关系的有力工具. 研究各种各样的函数的性质是数学的重要内容之一.2. 函数的概念包含三个要素:定义域,值域和对应法则. 从而两个函数相等当且仅当它们的定义域相等,并且对应法则相同.3. 例1(1)求函数值,例如求3xx=xf在处的函数值,实质上就是求-x,253)(=-=3,2=-=x x 处的函数值,实质上就是求3,2=-=x x 时,代数式35-x 的值,因此12335)3(,133)2(5)2(=-⨯=-=--⨯=-f f .由于在初中一年级已经学过代数式求值,因此给学生讲:求函数值实质上就是求代数式的值,学生便容易学会.在上述例子中,不要给学生说:“35)(-=x x f 的对应法则是‘乘5减3’,因此求处的函数值就是在2)(-x f -2乘5减3,即133)2(5)2(-=--⨯=-f .”这种讲法会使学生感到求函数值难学,因为要把一个函数的对应法则用语言叙述是很啰嗦的,再由对应法则来求函数值,显然是增加了难度.3.2的练习答案1.(1)是;(2)是;(3)不是;(4)不是.2. 是,定义域为{,,,,d c b a …,y ,z },值域为{0,1,2,…,24,25}.3. f (1)=-37, f (2)=-34. 4. (1)31)2(;13-=+=b a a b . 5.(1)是;(2)是.6. (1) f (1)=1,g (1)=-1;(2) 1)]1([,3)]1([-==f g g f ; (3) 5496)]([,1639)13(22--=--=-x x x g f x x x f . 3.3 函数的三种表示法1. 函数的概念包含三个要素:定义域、值域和对应法则.目前中职阶段,值域通常取为实数集,因此表示一个函数就要指明它的定义域和对应法则.当函数f 的定义域A 是有限集时,可以用一张表格来表示函数,第一行写出A 的各个元素,第二行写出相应的函数值,这种表示函数的方法叫做列表法.2. 当f 的定义域A 是无限集或有限集时,通常要寻找一个或几个式子来表示对应法则,即用一个或几个等式来表示函数,这种方法叫做公式法. 这一个或几个等式叫做这个函数的解析表达式,简称为解析式.教材中公式法下的第(2)个例子,设}1,0{B },6,5,4,3,2,1,0{A ==.考虑A 到B 的一个对应法则f :⎪⎩⎪⎨⎧∉∈=A,,0A,,1)(x x x f 当当 这是A 到B 的一个映射,从而是定义域为A 、值域为B 的一个函数这个例子来自组合设计与现代通信和密码的关系.本教材有意识地举一些信息时代的例子,目的是使中职数学不要囿于传统的教材中,而能透出信息时代的一些气息.在上面这个例子中,集合A 到集合B 的一个对应法则f 用了两个等式来表示;当A∈x时,0)(,A ;1)(=∉=x f x x f 时当.习惯上把这样的函数叫做分段函数. 其实不必用这个术语,因为不管用几个等式表示函数,都无非是给出了定义域到值域的一个对应法则,多一个术语,会使学生多一份负担,所以我们在教材中没有出现“分段函数”这个术语,希望教师不要补充这个术语.3. 在用公式法表示定义域为数集的函数时,如果没有标明定义域,那么我们约定:函数)(x f 的定义域是指所有使解析式有意义(即,在解析式给出的对应法则下有象)的实数x 组成的集合,不再每次声明. 此外要注意,在实际问题中,还必须结合问题的实际意义来确定自变量x 的取值范围.在上面一段话里,我们阐明了什么叫做“使解析式有意义”,即“在解析式给出的对应法则下有象”. 例如,求函数31)(-=x x f 的定义域,解法如下: 03)(≠-⇔x x f 的解析式有意义3≠⇔x .因此函数),3()3,()(+∞-∞ 的定义域是x f .在上面这个例子中,“)(x f 的解析式有意义”指的是“在解析式给出的对应法则下有象”. 由于x 在)(x f 的解析式给出的对应法则下没有象当且仅当03=-x ,因此)(x f 的解析式有意义当且仅当)3(03≠≠-x x 即. 这样讲是确切的,因为表达式31-x 是一个分式,它当然是有意义的;只是分式函数31)(-=x x f 当3=x 时没有象,此时称分式函数31)(-=x x f 的解析式当3=x 时没有象,此时称为分式函数31)(-=x x f 的解析式当3=x 时没有意义.在这里我们区分了“分式”与“分式函数”这两个不同的概念:分式..指的是表达式...),,),(),(()()(等等或y x g y x f x g x f 其中)()(x g x f 与是一元多项式,且)(x g 不是零多项式(或),(),(y x g y x f 与是二元多项式,且),(y x g 不是零多项式,等等),而分式函数....指的是由分式给出的映射..,这一段话是为教师写的,不要给学生讲. 在求函数的定义域时,我们采用等价术语来叙述,既严谨又简捷.4. 用平面直角坐标系里的圆形表示函数的方法称为图像法.用图像法表示函数的最大优点是直观,因为函数的图像是数形结合的基础. 为此首先要把什么是函数的图像搞清楚. 教材中给函数的图像下了一个定义:设)(x f 是定义域为A 的一个函数,任取A ∈a ,在平面直角坐标系Oxy 里,描出坐标为M a f a 的点))(,(.当a 取遍A 的所有元素时,坐标为))(,(a f a 的点组成的集合,称为函数)(x f 的图像.从这个定义应即得出:点)(A,)(),(a f b a x f b a M =∈⇔且的图像上在.即,点)(),(x f b a M 在的图像上当且仅当它的横坐标a 属于定义域,纵坐标b 等于a 处的函数值.这个结论十分重要,它是利用函数的图像研究函数性质的基础.3.3的练习答案1.(1)f (x )的解析式有意义⇔53035≠⇔≠-x x ,因此)(x f 定义域为),53()53,(+∞-∞ ; (2)f (x )的解析式有意义⇔x 37-≥0⇔x ≤37,因此)(x f 定义域为]37,(-∞; (3)f (x )的解析式有意义⇔162-x ≥0⇔x ≤-4或x ≥4, 因此)(x f 定义域为);,4[]4,(+∞--∞(4)f (x )的解析式有意义⇔216x -≥0⇔-4≤x =4,因此)(x f 定义域为]4,4[-;(5)f (x )的解析式有意义⇔1523-+x x ≥0⇔-32≤x <51,因此)(x f 定义域为)51,32[-; (6)f (x )的解析式有意义⇔x x 5123-+≥0⇔x ≤-32或x >51,因此)(x f 定义域为),51(]32,(+∞--∞ . 2.(1)532)2(;)1(4122+-+x x a . 3.图略4.点M 、Q 都不在函数)(x f 的图像上.5.(1)(a , f (a ));(2) (-a , f (-a )).6.(1));,31()31,0)[4(];3,2)[3(];23,0)[2();,21()21,0[+∞-+∞ (5)(-∞,-5) ]7,6)(6(]; 7,5-(.7. 图像略8. 证明:)0()(≠+=k b kx x f 的图像经过原点 ⇔ f (0)=0 ⇔ k ·0+b =0⇔ b =03.4 分段函数1. 自变量在不同变化范围中,对应法则用不同式子表示的函数,称为分段函数.2. 教材给出了分段函数f (x )=⎪⎩⎪⎨⎧+∞∈+∈),1(.1]1,0[,2x x x x .要求作出此函数的图像.3.4的练习答案1.1)0()}5({-==f f f .2.(1).8101)]3([,7)]5([,161)]3([-=--==f f f f f f (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧∈-<-=-R ,132·3.313,2.313 ≥,529)]([133x x x x x f f x x 3.(1))0 ≥()]([4x x x g f =;(2))0(1)]([>-=x xx f g . 4.图略 二、函数的性质3.5 函数的单调性1. 判断函数f (x )在区间上是增函数还是减函数,如果我们在画函数f (x )的图像时没有默让函数的单调性,那么用图像法判断f (x )的单调性,它具有直观易懂的优点,但是要注意:我们不能默认函数f (x )的单调性,去用一条光滑的曲线联结描出的各点,然后又让学生从这样画出的图像去判断f (x )的单调性,在画基本初等函数时在某个区间上的图像时,往往是要先用定义证明函数的单调性,然后才能用一条光滑曲线联结描出的各点,得到该函数在某个区间上的图像,之后利用对称性等画出该函数在另一个区间上的图像,这样对于该函数在另一个区间上的单调性就可以从图像来判断了.2. 对于任意的一次函数)0(≠+=k b kx y 的单调性,自然应当用定义法去判断. 教材的例1写出了求解过程,先统一写出)()(21x f x f -的表达式,然后分k >0和k <0两种情形判断)()(21x f x f -的正负.例2是讨论二次函数[)+∞--+=,13)1(21)(2在x x f 上的单调性. 必须先用定义法判断),1[3)1(21)(2+∞--+=在x x f 上是增函数,才能用一条光滑曲线联结描出的各点,得到),1[3)1(21)(2+∞--+=在x x f 上的一段图像.利用对称性.就能判定函数在]1,(--∞上是减函数,在),1[+∞-上是增函数.还有一种方法判定函数单调性,我们将在第三册中讲到. 定理:设函数f (x )在闭区间),(,],[b a b a 在开区间上连续内可导.(1)如果在内),(b a )('x f >0,那么],[)(b a x f 在上是增函数;(2)如果在内),(b a )('x f <0,那么],[)(b a x f 在上是减函数;(3)如果在内),(b a )('x f =0,那么],[)(b a x f 在上是常数.3.5的练习答案1. 任取121),,(,x x x 且+∞-∞∈<2x ,有-3x 1>-3x 2⇒-3x 1-2>-3x 2-2⇒)(1x f >)(2x f因此),(23)(+∞-∞--=在x x f 上是减函数.2. 任取),,0[,21+∞∈x x 且x 1<x 2,有212x <222x⇒212x +5<222x +5⇒)(1x f <)(2x f因此上在),0[52)(2+∞+=x x f 是增函数.3. 任取),0(,21+∞∈x x ,且x 1<x 2,有21122121)(555)()(x x x x x x x f x f -=-=-, 由于,x 2>x 1,x 1x 2>0,因此)(1x f -)(2x f >0从而 )(1x f >)(2x f 这表明()+∞=,05)(在xx f 上是减函数. 4. 任取),3[,21+∞x x ,且1x <2x ,有2x >1x ≥3⇒2x -3>1x -3≥0⇒(2x -3)2>(1x -3) 2≥0⇒-5)3(3122+-x <-5)3(3121+-x ⇒)(2x f <)(1x f所以),3[5)3(31)(2+∞+--=在x x f 上是减函数. 3.6 函数的奇偶性1. 本教材在阐述奇函数和偶函数的定义和性质上有创新.我们抓住了讨论函数奇偶性的实质是研究函数图像的对称性. 因此我们先复习图形关于直线对称的概念, 然后探索定义域为A 的函数)(x f 的图像在什么条件下关于原点对称?运用点P (a , b )在)(x f 的图像上的充分必要条件,我们推导出定义域为A 的函数)(x f 的图像E 关于原点对称 ⇔ E 上每一点))(,(a f a P 关于原点的对称点))(,(a f a M --仍在E 上⇔ A ),()(A,∈-=-∈-a a f a f a 对一切且.由此引出了奇函数的定义,并且上述推理也就证明了奇函数的图像关于原点对称,起了一箭双雕的作用.对于奇函数也是先复习圆形关于原点O 对称的概念,然后探索函数)(x f 的图像关于原点O 对称的充分必要条件:由此引出奇函数的定义,并且证明了奇函数的图像关于原点对称.我们这种讲法阐明了为什么要引进奇函数和偶函数的概念,而且简捷地证明了奇函数和偶函数的图像的对称性.2. 我们在教材中结合图形推导出“点),(b a P 关于y 轴的对称点Q 的坐标是),(b a -.关于原点的对称点M 的坐标是(b a --,)”这两个结论. 它们在探索)(x f 的图像的对称性时有用.3. 我们在例1中给出了判断一个函数)(x f 是不是奇函数的方法:求出)(x f 的定义域A.如果对于任意的)()(A,A,x f x f x x -=-∈-∈并且有都有,那么)(x f 是奇函数. 如果能找到一个)()(A,c f c f c -≠-∈使得,那么)(x f 不是奇函数.例2中给出了判断一个函数)(x f 是不是偶函数的方法:求出)(x f 的定义域A ,如果对于任意的A ∈x ,都有-A ∈x ,并且有)()(x f x f =-,那么)(x f 是偶函数.如果能找一个A ∈d ,使得)()(d f d f ≠-,那么)(x f 不是偶函数.例1和例2给出的方法是教学的基本要求,应让学生学会.3.6的练习答案1.(1)是;(2)是;(3)是;(4)不是.2.(1)是;(2)是;(3)不是;(4)不是.3. 证明:由于)(x f 、)(x g 都是定义域相同的偶函数,因此对于任意A ∈x ,有A ∈-x ,并且)F()()()()()F(x x g x f x g x f x =+=-+-=-.因此)(x F 是偶函数.4. )5(-f =-3.5.)3(f >)1(f .6. 证明:由于)(x f 、)(x g 都是定义域为A 的奇函数.因此对于任意A A,∈-∈x x 有,并且[])()()()()()()()(x h x g x f x g x f x g x f x h -=+-=--=-+-=-,)()()()]()][([)()()(x P x g x f x g x f x g x f x P ==--=--=-, 因此)(x h 是奇函数,)(x P 是偶函数.3.7 函数的图像1. 如果已经判断出)(x f 是奇函数,那么在画)(x f 的图像时,可以先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分. 这里的基本作图是,会作出点P 关于原点的对称点N ,这只要联结PO ,且延长至N ,使线段ON 的长度等于线段PO 的长度,则点N 就是点P 关于原点的对称点.2. 如果已经判断出)(x f 是偶函数,那么在画)(x f 的图像时,只要先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分,这里的基本作图法是,会作出点P 关于y 轴的对称轴Q ,这只要过点P 作y 轴垂线,设垂足为M ,把这垂线往左延长至点Q ,使线段MQ 的长度等于线段PM 的长度,则点Q 就是点P 关于y 轴的对称点.3.7的练习答案1. (1) (2)是偶函数,(3) (4) (5) (6)不是偶函数.2. (1)是;(2)是;(3)不是;(4)不是.3. 图略4.(1)2123)2(;3432--=+-=x x y x y . 5 ~7. 图略.3.8 反函数1. 我们在反函数的概念和求法上与传统的讲法不同,我们有创新. 传统的讲法大致是:给了函数的解析式,例如x y 3=.反解出y x 31=. 于是对于y 在R 中的任何一个值,通过式子y x 31=,x 在R 中都有唯一确定的值和它对应.因此也可以把y 作为自变量(∈y R ),x 作为y 的函数,我们一般用x 表示自变量,用y 表示函数,为此我们对调函数式y x 31=中的字母x 、y ,把它与成x y 31=.传统的讲法没有清晰地揭示反函数概念的本质,通过对调字母x 与y ,学生很难看清楚反函数与原来函数的关系.传统的讲法在反解出)(y g x =时,由于没有写出反解过程. 因此导致一些误会和差错. 传统的讲法对于用列表法表示的函数(不知道函数的解析式),没有给出反函数的概念. 而当今信息时代,由于计算机科学和信息科学的迅速发展,离散数学的地位加强,遇到的函数不一定能用公式表示,因此传统的讲法已不适应时代的要求.基本上述原因,我们对于反函数的概念和求法采取了新的讲法.2. 对于反函数的概念,我们给出这样的定义:如果函数)(x f y =有反函数,那么我们的讲法可以立即得出,严格单调函数一定有反函数. 3. 关于反函数的求法,我们给出了函数)(x f 的解析式,求它的反函数(仍用函数式表示). 对于用公式法表示的函数,我们给出的求反函数的方法是科学的. 以教材中例1的(3)为例:解b a x x y 对应到把2213-≠+-= )2(213-≠+-=⇔a a a b )2(13)2(-≠-=+⇔a a a b)3,2(12)3(≠-≠+=-⇔b a b a b)3,2(312≠-≠-+=⇔b a bb a a b xx y 对应到把3312≠-+=⇔ 因此函数213+-=x x y 的反函数是 ∈-+=x xx y (,313R 且3≠x ). 求213+-=x x y 的反函数,就是要寻找一个函数使得,对于原来函数的值域中的每一个b ,当原来的函数把a 对应到b 时,所求的函数把b 对应到a . 上述求解过程满足这一要求. 从反函数的定义知道,我们首先要知道原来的函数)(x f y =的值域;才能判断出所求出的函数是不是反函数(因为反函数必须是对于)(x f y =的值域中每一个元素b ,都有)(x f y =的定义域中唯一的一个元素a 与它对应).我们求反函数的方法是在求解过程中先求出了原来函数的值域,然后才求出了反函数. 这是符合反函数定义的要求的.我们是怎样求出原来函数的值域的呢?上述例子中,在第二步等价于b (a +2)=3a -1(a ≠-2),3.3=≠b b 因为假如从此式看出,则上式左边=3(a +2)=3a +6,而上式右边=3a -1.由此推出6=1-,矛盾,所以3≠b .即原来函数的值域是{b ∈R|(b ≠3)}. 于是对于原来函数值域中的每一个元素b ,在(3-b )a =2b +1而边除以(3-b )(此时3-b ≠0,因此可以用它作除数)得,b b a -+=312.从而求出了反函数为)3(312≠-+=x x x y .4. 有的教材在讲求反函数时是像下述那样讲的: “由213+-=x x y ,可得y y x -+=312,所以函数213+-=x x y 的反函数是xx y -+=312(∈x R 且3≠x ).”这种讲法没有详细写出反解的过程,在得出y y x -+=312时,没有讨论3≠y . 就把y -3当除数用了,这是不严谨的. 这种讲法没有事先求出原来函数的值域,因此所求出的函数xx y -+=312是否为反函数无从判断. 这种讲法容易引起误会以至产生差错,不少复习资料由此引出求原来函数值域的方法:“先求反函数,再从反函数的解析式求出定义域,它就是原来函数的值域.”这种方法是错误的,以213+-=x x y 为例,在反解时,如果不讨论3≠y ,就用)3(y -去除两边,得出y y x -+=312,然后又说从3312≠-+=x xx y 看出,因此得出反函数的定义域为{x ∈R |x ≠3},于是原来函数的值域为{y ∈R |y ≠3}. 这是先默认3≠y ,用(3-y )去除两边得到y y x -+=312,然后又说从x =yy -+312看出3≠y ,这在逻辑上是混乱的,这种思维方式是错误的. 由此看出,教数学不能只是教计算,而不管计算过程是否合理;教数学不能只是看答案对不对,而不管其思维方式是否正确. 这些都是直接关系到我们培养的学生的素质啊!定理1 如果函数)(x f y =有反函数,那么)(x f y =的图像与它的反函数)(1x f y -=的图像关于直线y =x 对称.学习数学一定要掌握基本理论,有了理论的指导,解题就会有思路,就能通过逻辑推理深入揭示事物之间的内在联系以及它们的本质.三、一元二次函数及其应用3.9 一元二次函数的性质及其图像1. 一元二次函数的图像在初中时已讲过,但是一些道理没有讲. 鉴于一元二次函数是非常重要的一类函数,有必要在中学阶段打下扎实的基础,因此我们在教材中用一节来讲一元二次函数的性质和图像, 这是在初中的基础上的提高.2. 我们在教材一开始就让学生动脑筋:如何正确..、简便..地画一元二次函数25212-+=x x y 的图像?然后分析:先把函数的表达式配方得,()31212-+=x y . 利用3.7节例3的结论,()31212-+=x y 的图像有对称轴1-=x . 因此只要先画出图像在直线1-=x 的右边的一半. 从而列表时只需要列出1-=x ,0,1,2,3,…时相应的函数值. 接着在平面直角坐标系Oxy 中描点. 描完点后,不是马上连线,而是先利用3.4节例3的结论:3)1(212-+=x y 在区间),1[+∞-上是增函数,这时才知道可以用一条光滑曲线把描出的各点联结起来. 最后利用对称性,画出图像在直线1-=x 的左边的部分.这样画函数的图像既简便又科学.传统的画函数图像的方法是:列表,描点,连线.前两步虽然正确,但是较麻烦(如果先讨论对称性,则可减少一半的工作量).第三步连线是不科学的. 在还没有讨论函数的单调性时,怎么知道如何联结描出的有限几个点?更不应该的是,事先不讨论单调性,但是却默认函数有单调性,“用一条光滑曲线联结各点”,然后又让学生从图像上看出函数是增函数或减函数. 这在逻辑上是混乱的,这种思维方式是不正确的.也许有人会说,让中学生讨论函数的单调性要求太高了,那么让我们来看一看,)(x f =),1[3)1(212+∞--+在x 上是单调性的讨论: 任取1x ,2x ),1[+∞-∈,且1x <2x ,有2x >1x ≥-1⇒12+x >11+x ≥0⇒(12+x )2>(11+x )2 ⇒()312122-+x >()312121-+x ⇒()2x f >()1x f , 因此),1[3)1(21)(2+∞--+=在区间x x f 上是增函数. 从上述讨论过程看到,用的都是不等式的性质,并不困难,而且正好是复习巩固不等式的性质. 我们又注意了分散难点,把这个讨论放在3.4节的例3,到3.8节时只是引用这个结论. 因此中学生是能够接受先讨论函数的单调性,再连线的.3. 在讲完()31212-+=x y 的图像后,我们给出顶点的概念,并且让学生观察顶点坐标)3,1(--与表达式有什么联系?观察顶点坐标与函数的最小值有什么联系?从函数的图像(我们已正确地画出了函数的图像)看出函数在顶点横坐标往左的区间上的单调性,以及图像的开口方向. 在观察的基础上,我们抽象出一般的一元二次函数()02≠++=a c bx ax y 的性质和图像. 由于其论证与()31212-+=x y 的性质和图像的论证类似,因此我们在教材中就不写出了.4. 在让学生画一个具体的一元二次函数的图像时,先配方,然后求出对称轴,接着先画图像在对称轴右边的一半(列表,描点,连线. 由于已经讲了一般的一元二次函数的单调性,因此在连线之前不用再讨论单调性了),最后利用对称性画出图像在对称轴左边的部分.5. 本节的练习除了画二次函数的图像以外,还有写出顶点坐标,求函数的最大值或最小值,求一元二次函数的最大(小)值的基本方法是将表达式配方. 这应让学生掌握. 这是因为配方在数学中是常用的一种技巧.至于直接利用顶点坐标来求最大 (小)值的方法,对于课时较充裕的学校也可以介绍. 我们在教材中把它作为思考题,让学生思考.3.9的练习答案1.(1)对称轴为5=x ,顶点坐标为)223,5(-,图略; (2)对称轴为41=x ,顶点坐标为)87,41(-,图略. 2.(1)当1-=x 时,y 达到最小值2;(2)当2-=x 时,y 达到最大值5;(3)当23=x 时,y 达到最小值41-; (4)当2=x 时,y 达到最大值1. 3.(1)顶点坐标)421,3(-,对称轴为x =3; (2)841)25(-=f ; (3))415()41(f f >-. 4.(1)对称轴为45=x ,顶点坐标为)825,45(-,函数最小值为825-,]45,(-∞为单调递减区间,),45[+∞为单调递增区间,函数图像开口向上; (2)对称轴为3=x ,顶点坐标为)27,3(,函数最大值为27,]3,(-∞为单调递增区间,),3[+∞为单调递减区间,函数图像开口向下.5.(1)顶点坐标为(3,-2).),63()63,(+∞+--∞∈ x 时,y >0;()63,63+-∈x 时,y <0.]3,(-∞∈x 时,函数为单调递减函数; ),3[+∞∈x 时,函数为单调递增函数. (2)顶点坐标为(-1,3). )261,261(+---∈x 时,y >0;),261()261,(+∞+----∞∈ x 时,y <0.]1,(--∞∈x 时,函数为单调递增函数;),,1[+∞-∈x 时,函数为单调递减函数.3.10 用待定系数法求函数的解析式1. 在许多数学问题或实际问题中,建立了函数的模型后,需要求其中的未知的系数,这可以通过列方程组并且解这个方程组求出,从而求出函数的解析式,这种方法叫做待定系数法.它是数学中重要的一种方法.本节主要是介绍如何用待定系数法求一元一次函数和一元二次函数的解析式,并且介绍了它们在实际问题中的应用.2. 一次函数的解析式)0(≠+=k b kx y 有2个系数k ,b ,因此需要列出两个彼此独立的方程来求未知系数k ,b ,于是需要已知两个条件来列两个方程.3. 一元二次函数)0(2≠++=a c bx ax y 的解析式有3个系数,因此用待定系数法求这3个系数时,需要列出3个彼此独立的方程,于是通常要给出这个函数当自变量取3个不同数时相应的函数值.4. 如果知道一元二次函数g (x )的图像的顶点坐标为(e , d ),则可以假设g (x )的解析式为d e x a x g +-=2)()(.这时只要再知道图像所经过的一个点的坐标,就可以求出系数a .5. 如果知道一元二次函数)(x g 的图像的对称轴是直线e x =,则可以假设)(x g 的解析式为d e x a x g +-=2)()(.这时只要再知道图像上两个点的坐标,就可以列出两个方程,从而求出待定系a 、d.6. 为了让学生了解待定系数法在日常生活中的应用,教材的例3求出了扔铅球时铅球在空中飞行轨道(抛物线的一段)的解析表达式.3.10的练习答案1. 设这个一次函数的解析式为b kx y +=,其中k ,b 待定.由于P (2,-5),Q (-1,7)在这个函数的图像上,因此有⎩⎨⎧=+--=+.7,52b k b k 解得 3,4=-=b k因此所求一次函数的解析式为34+-=x y .2. 设这个正比例函数的解析式为kx y =,其中k 待定,由于点(2,8)在这个函数的图像上,因此有8=2k ,解得 k =4.。
函数的基本性质(教案)
函数的基本性质教学目标:1. 了解函数的定义和基本概念。
2. 掌握函数的域和值域的概念。
3. 理解函数的单调性、连续性和可导性的概念。
4. 学会运用函数的基本性质解决实际问题。
教学内容:第一章:函数的定义与域1.1 函数的定义1.2 函数的域第二章:值域2.1 值域的概念2.2 确定函数的值域第三章:函数的单调性3.1 单调性的定义3.2 单调性的判定第四章:函数的连续性4.1 连续性的定义4.2 连续性的判定第五章:函数的可导性5.1 可导性的定义5.2 可导性的判定教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的基本性质。
2. 使用多媒体辅助教学,通过动画和图形来直观展示函数的单调性、连续性和可导性。
3. 组织小组讨论和实践活动,培养学生的合作能力和解决问题的能力。
教学评估:1. 课堂讨论和提问,评估学生对函数基本性质的理解程度。
2. 布置课后习题和作业,巩固学生对函数基本性质的掌握。
3. 进行定期的测验和考试,检验学生对函数基本性质的掌握情况。
教学资源:1. 教科书和参考书籍,提供详细的知识点和实例。
2. 多媒体课件和教学软件,提供直观的图形和动画展示。
3. 在线学习平台和论坛,提供额外的学习资源和交流平台。
教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本章的教学,学生应该能够理解函数的定义和基本概念,掌握函数的域和值域的概念,理解函数的单调性、连续性和可导性的概念,并能够运用函数的基本性质解决实际问题。
函数的基本性质(续)教学内容:第六章:函数的极值与最值6.1 极值的概念6.2 函数的最值第七章:函数的周期性7.1 周期性的定义7.2 周期函数的性质第八章:函数的奇偶性8.1 奇偶性的定义8.2 奇偶函数的性质第九章:函数的图像9.1 图像的性质9.2 图像的变换第十章:函数的极限10.1 极限的概念10.2 极限的计算教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的极值、周期性、奇偶性、图像和极限的基本性质。
函数的基本性质(含答案)
x+ ≥2 = (当且仅当x= 即x= 时取“=”).
∴当底边长为 m时造价最低,最低造价为(160 a+ a)元.
答案:y=12a(x+ )+ a(0,+∞) 160 a+ a
【课堂小练】
1.已知 是定义 上的奇函数,且 在 上是减函数.下列关系式中正确的是 ( )
A. B.
∴- ≤x≤ .
∴不等式的解集为{x|- ≤x≤ }.
(3)由-1≤x-c≤1,得-1+c≤x≤1+c,
∴P={x|-1+c≤x≤1+c}.
由-1≤x-c2≤1,得-1+c2≤x≤1+c2,
∴Q={x|-1+c2≤x≤1+c2}.
∵P∩Q= ,
∴1+c<-1+c2或-1+c>1+c2,
解得c>2或c<-1.
教师辅导讲义
年 级: 高一辅导科目: 数学 课时数:3
课 题
函数的基本性质
教学目的
通过综合的练习与巩固,是学生掌握对一些基本函数的性质进行研究的方法
教学容
【知识梳理】
函数的基本性质:奇偶性、单调性、周期性、函数的最值、函数的零点(周期性后面讲)
【典型例题分析】
例1、函数f(x)的定义域为R,且对任意x、y∈R,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),∴f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),∴f(0)=0.从而有f(x)+f(-x)=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解答题
沪教版(上海) 高一第一学期 新高考辅导与训练 第3章 函数的基本性质 3.6 函数的基本性质(2)
1.
用定义证明函数,在区间为单调增函数.
2. 写出函数的单调区间.
3. 已知函数,其中a为常数.问当a 为何值时,在上单调递增.
4. 写出下列各函数的单调区间:
(1);
(2);
(3),其中k 是常数且;
(4).
5. 求证:函数在R上单调递增.
二、填空题6. 求证:在上单调递减.
7.
求函数的单调区间.
8.
已知函数在区间上单调递增,求实数k 的取值范围.
9. 已知
是定义在上的奇函数,且在上单调递减.若,试确定a 的取值范围.
10.
画出函数的大致图象,并根据图象写出这个函数的单调区间.
11. 已知函数,试写出函数的单调区间.
12. 函数的单调递减区间是__________.
13. 已知二次函数的图象为开口向上且对称轴是
的抛物线,则,
,的大小关系是________.
14. 已知定义在R 上的偶函数在上单调递增,则在上的单调性是________.
15. 已知下列各命题:①若在定义域内存在使得成立,则函数是增函数;②函数在其定义域内是减函数;
③函数在其定义域内是增函数.其中是真命题的是___________(填写序号).
16. 函数的单调递增区间是__________.
17. 函数的单调递减区间是__________.
18. 函数的单调递增区间是____________.
19. 若函数在区间上是增函数,则实数a的取值范围是__________.。