第5章 概率与概率分布习题 PPT

合集下载

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.
第5、6、7章
概率分布、抽样分布及参数估计
Probability Distributions & Sampling Distributions
& Parameter Estimation
Wednesday, January 16, 2019
Statistical Research Office
1
本部分主要研究的问题有:
● 遵循随机性原则 --- 体现在在每一层抽选中;
● 每一层内应包含足够多的个体;
● 在同等条件下,抽样误差要小于简单随机抽 样和系统抽样的抽样误差。
Wednesday, January 16, 2019 Statistical Research Office 12
Wednesday, January 16, 2019
Statistical Research Office
7

常用的随机抽样组织方式
► 简单随机抽样(Simple random sampling)
►分层随机抽样(Stratified sampling)
►系统随机抽样(Systematic sampling)
►整群随机抽样 (Cluster sampling) 常用的随机抽样方法: ►重复抽样 (Sampling with replacement) ►不重复抽样(Sampling without replacement)
8
Wednesday, January 16, 2019
Statistical Research Office
★ 简单随机抽样 -定义:从总体中,按照随机的原则,使得总体 中每个个体都有同等被选中的机会,而先后抽 出的n个个体作为一个容量为n的样本。

第五章概率与正态分布

第五章概率与正态分布

正态分布曲线的特点
• 钟形轴对称曲线,对称轴是随机变量的平均数

• 正态分布曲线的位置和形状分别由平均数
和标准差 决定。
• 平均数大小决定图形向左移或右移。 • 标准差大小决定图形的陡峭程度,即纵线的最大
值。
y
0 1
5 1
x
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
图5.3 平均数不等,标准差相等的正态分布示意图
标准正态分布表中各变量的含义
表 5.4 标准正态分布表中各变量的说明
Z 横轴坐标
原始变量(Xi)取值转换后的标准
分数(Zi)
Y 纵轴高度
某一点取值(Zi)所对应的概率密
度(相对频次,Yi)
P (0,Zi)两点间 取值界于区间(0,Zi)的概率
曲线下的面积
• 已知下列Z值,查表求P值。
– (1)Z=-1与Z=1之间的概率 – (2)Z=-2与Z=2之间的概率 – (3)Z=-3与Z=3之间的概率 – (4)Z=-1.96与Z=1.96之间的概率 – (5)Z=-2.58与Z=2.58之间的概率
• 经验概率 对多次重复相同或相似试验所得到的数据进行分 析,获得事件发生的相对频率,作为对此事件 发生概率的一个估计。
P(A) a,N NFra bibliotek事件的概率
• 先验概率 • 当试验满足:试验中各种可能结果(基本事件)是
有限的,并且每种结果发生的可能性是不变时, 则某事件发生的概率等于该事件包含的基本事件 数除以试验中可能发生的基本事件总件数之商。 • 设N代表可能发生的基本事件总数,K代表事件A 包含的基本事件数,则A事件发生的概率为:
– 例:某公共汽车停车点上乘客候车的时间记为 随机变量Y

第五章《概率论与数理统计教程》课件

第五章《概率论与数理统计教程》课件

试决定常数 3.
X ,Y
C
使得随机变量 cY 服从分布

2
分布。
相互独立,都与 N ( 0 , 9 ) 有相同分布, X 分别是来自总体
X ,Y
1
, X 2 , , X 9和
Y1 ,Y 2 , ,Y 9
的样本,

Z
9
X
i
i1
6 - 23
Y
i1
9
则Z 服从—— ,自由度为——。
2 i
4.
X1, X 2, X 3, X 4
是来自总体
X ~ N ( , )
2
的样本,则随机变
量 Y
X3 X4
服从——分布,其自由度为———。
2
(X i )
i1
2
5.

X 1 , X 2 , , X 10
是来自总体 X
~ N ( ,4 )
2
的样本, ( S 2 P
a ) 0 .1
一. 单个正态总体的统计量的分布
X 1 , X 2 , X n是来自正态总体 ~ N ( , 2 )的样本, X
X , S 分别是样本均值和样本 方差
2
定理1
X
n
1
n
X i ~ N ( ,

n
2
);
i1
定理2 U
1
X
/
~ N ( 0 ,1 );
n
定理3
6 - 18
定理7
当 1
2
2 2
2 2 时, 令 S w
( n1 1) S 1 ( n 2 1) S 2
2

第五章概率与概率分布

第五章概率与概率分布

P( A)
事件A发生的次数m 重复试验次数n

m n
英语字母出现频率
space 0.2 ; I 0.055 ; C 0.023 ; G 0.011 ; Q 0.001 ; E R U B Z 0.105 ; T 0.072 ; 0.054 ; S 0.052 ; 0.0225 ; M 0.021 ; 0.0105 ; V 0.008 ; 0.001 O H P K 0.0654 ; 0.047 ; 0.0175 ; 0.003 ; A D Y X 0.063 ; 0.035 ; 0.012 ; 0.002 ; N 0.059 L 0.029 W 0.012 J 0.001
一、概率(Probability)的定义
概率:0-1之间的数,衡量事件A发生可能 性(机会)的数值度量。记P(A) •Probability: A value between 0 and 1, inclusive, describing the relative possibility (chance or likelihood) an event will occur.
P ( A) A包 含 的 可 能 结 果 (偶 数 ) 全部可能结果 3 6
实际与理论分析不符时,实际中可能作弊。
如:河北银行人员为买奖券,盗2000万并没中大奖。
西安彩票中心人员中奖率极高,结果是作弊。
例:已知有148名学生统计表
专业
性别
男 女
金融学院 工商学院 经济学院 会计学院 15 15 22 14 30 12 25 15
摘自:概率论与数理统计简明教程1988》李贤平 卞国瑞 立鹏,高等教育出版社

大量统计的结果,用于破解密码
美国正常人血型分布

第五章 概率及概率分布

第五章 概率及概率分布

P A B P ( A) P ( B)
16
第一节 概率的一般概念
三、概率的加法和乘法 1、概率的加法 例如:抛掷一枚硬币,正面朝上和正面朝下的概率各为0.50, 问在实验中,硬币正面朝上或朝下的概率是多少? 答:硬币正面朝上或朝下的概率是1。 获得一、二、三等奖的概率分别为:0.002、0.005和0.993, 获奖的概率是多少? 答:获奖的概率为1。
17
第一节 概率的一般概念
三、概率的加法和乘法 2、概率的乘法 A事件出现的概率不影响B事件出现的概率,这两个事件为独 立事件。 两个独立事件积的概率,等于这两个事件概率的乘积。表示 两个事件同时出现的概率。 用公式可表示为:
P ( A B ) P ( A) P ( B)
18
第一节 概率的一般概念
npq 101/ 2 1/ 2 1.58
31
第二节 二项分布
四、二项分布的平均数和标准差 例如:有一份试卷,共有50道选择题,并且都为四选一,假 定一个学生一点都不会,只能凭猜测来回答。问凭猜测来回 答,平均能猜对几道题,猜对题目数的标准差为多少。 分析:因为完全不会做而只是靠猜测,因此属于二项分布的 运用条件。
8
第一节 概率的一般概念
一、概率的定义 (2)后验概率——
表5.1 抛掷硬币试验中正面朝上的频率 试验者 德摩根 蒲丰 皮尔逊 皮尔逊 抛硬币次数 2048 4040 12000 24000 正面朝上次数 1061 2048 6019 12012 正面朝上频率 0.5181 0.5069 0.5016 0.5005
职教学院 刘春雷 E-mail:lcl2156@
1
第五章
概率及概率分布
第一节 概率的一般概念 第二节 二项分布

第五章概率分布

第五章概率分布

32
T分数优点: 1.没有负数,若出现小数时可以四舍五入,误差不
会很大。 2.它的取值范围比较符合百分制的记分习惯,易于
被人们接受。 3.由于偶然因素导致原始分数偏态,运用T分数可转
化为正态。
2019/12/11
33
例:某研究中随机抽取了180名学生的某一能 力测验分数,由于这些分数不是正态,需 要正态化。已有研究表明学生的总体能力 分布为正态,所以可以用正态化原理和T分 数公式将其正态化。
2.当总体分布为非正态而其方差又未知时, 若满足n>30这一条件,样本平均数的分布 近似为t分布。
2019/12/11
40
2. 2 值都是正值。 3. 2 分布的和也是 2 分布。 4. 如果df> 2,这时 2 分布的平均数:
2 d,f方差 22= 2df
5. 2 是连续型分布,但有些离散型的分布也 近似 2分布。
2019/12/11
42
• 2 分布为在统计分析中应用于计数数据的
假设检验以及样本方差与总体方差差异是 否显著的检验等。
2019/12/11
43
四、F分布
• 来自两个正态总体的独立样本,其方差之 比的样本分布为:
F
s / 22源自n1 11 s / 2
2
n2 1
2
• 来自同一总体,12 22 ,F比率:
2019/12/11
36
样本平均数的分布
2.总体分布非正态,但方差已知,当n大于30 时,其样本平均数的分布为渐进正态分布。
2019/12/11
37
(一)t分布的特点
1.平均数为0。 2.以平均值0左右对称的分布,左侧t为负值,右侧
为正值。 3.变量取值在-∞~+∞之间。 4.当样本容量趋于∞时,t分布为正态分布,方差为1;

人大《统计学》第五章 概率和概率分布

人大《统计学》第五章 概率和概率分布

3.乘法的一般定理
• 更多的时候,事件并不是独立的,概率的计算是有条件的。一般
意义上,两个事件之积(同时发生)的概率,为: AB P A P B | A P • 上式也可以写作 P AB P B P A | B
§1.2 概率
• 求两个以上事件之积(同时发生)的概率与之相似。
当离散型随机变量X的只有两个可能的取值,并且其中一个赋值为1,另 一个赋值为0,则X服从0-1分布。 设取1的概率为 p ,则取0的概率 q 1 p 对于服从0-1分布的离散型随机变量X,有:
E X 1 p 0 1 p p
V X 1 p p 0 p 1 p p 1 p
P • 若 P Ai 0 i 1, 2,, n ,则对任意事件B,有: B P B | Ai P Ai
n i 1
§1.2 概率
【例5.1】 某厂生产甲、乙、丙三种产品,各种产品的次品率分别为4%
、6%、7%,各种产品的数量分别占总数量的30%、20%、50%,将三种产品
对连续变量,可计算某段(区间)取值的概率(或概率密度),相应地
便构成了连续变量的概率分布。
§2 离散变量的概率分布
首先看离散型随机变量的概率分布。 为得到离散型随机变量X的概率分布,通常需要列出X的所有可能取值, 以及X取这些值的概率。用下面的表格来表示:
§2 离散变量的概率分布
P X xi pi 称为离散型随机变量的概率函数。并有:
§1.2 概率
2.贝叶斯公式 • 贝叶斯公式与全概率公式要解决的问题正好相反。 • 它是在条件概率的基础上寻找事件发生的原因(或事件是在什么 条件下发生的)。 • 贝叶斯公式也称作逆概公式。

概率与概率分布PPT课件

概率与概率分布PPT课件

结束
2. 计算概率时 ,每一个正态分布都需要有自己的正态概率分布表,这种表格是无穷多的 3. 若能将一般的正态分布转化为标准正态分布,计算概率时只需要查一张表
标准正态分布函数
1. 任何一个一般的正态分布,可通过下面的线性变换转化为标准
正态分布
Z X m ~ N (0,1)
s
2. 标准正态分布的概率密度函数
x x1
1
t2
e 2 dt
2
(b) (a)
式中:a x1 np , b x2 np , q 1 p
npq
npq
为什么概率是近似的
P(x) .3
.2
.1
.0
0
2
二项概率:矩形的面积
正态曲线增加的概率
增加的部分与减少的部分 不一定相等
正态曲线减少的概率
4
6
8
正态概率:曲线下从3.5到 4.5的面积
正态分布
(例题分析)
【例5.22】设X~N(5,32),求以下概率
(1) P(X 10) ; (2) P(2<X <10)
解: (1) (2)
P( X 10) P X 5 10 5
3
3
P X 5 1.67 (1.67) 0.9525
3
P(2 X 10) P 2 5 X 5 10 5

比如,标准正态分布变量落在区间(0.51,1.57)中的概率,就是在标准正态密度曲线下面在0.51和1.57之间的面积。

很容易得到这个面积等于0.24682;也就是说,标准正态变量在区间(0.51,1.57)中的概率等于0.24682。如果密度
函数为f(x),那么这个面积为积分

概率论5分布函数连续型

概率论5分布函数连续型

2. 指数分布 Exp( )
f (x)
若r.v.X的p.d.f.为
f ( x)=e x , x 0
0
x
0, x 0
则称X服从参数为>0的指数分布. 其分布函数:
易F验(证x):f (Px{)X 0,
x}=f( x0)0xd,x
e
exdx 01
0
xdx, x 0
F ( x)=
0, x 1 e x , x
(2) p{X 3.5 | X 1.5} p{X 3.5, X 1.5}
{ X 1.5}
13.-5 3Fe(33 x.5d)x 11.-5 3Fe(13 x.5d)x
e e-3(63.51.5)
非负的连续型r.v.X服 从指数分布的充分必 要条件是:无记忆性
例6.某公路桥每天第一辆汽车过桥时刻为T,设
注3.当 Δx 很小时,
P{x X x x}=F(x x) F(x) f (x)x
★密度函数值f(a)并不反映X取a值的概率.但这个值 越大,X取a附近值的概率就越大.也可以说,在某点密 度曲线的高度,反映了概率集中在该点附近的程度.
1 证明f ( x) 1/ 2e x 为概率分布密度函数.
c
c ba ba
说明r.v.X落在(a,b)区间上任一点的可能性都相同.
注2 均匀分布的特征性质:
X服从均匀分布U(a, b)的充分必要条件是
(1) X 落在(a, b)概率为1, 落在区间外的概率为0;
(2) X 落在(a, b)子区间上概率与子区间长度成正比.
注3 均匀分布的分布函数:
当x≤a时,F(x)=
[0,t]时段内过桥的汽车数Xt服从参数为t的泊
松分布,求T的概率密度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E(x)=100*0.001+10*0.01+1*0.2+0*0.789=0.4
第 5 章 概率与概率分布
5.12 设随机变量X的概率密度是
f(x)3x2
3
0x
1)
已知
7 P(X 1)
,求的值
8
2) 求X 的期望与方差。
f (x)dx 1
3x2
3
dx
1
1
3x2 3
dx
1
13x32dx[x33]1
第 5 章 概率与概率分布
5.03 设A与B是两个随机事件,已知A与B至少有一个发生 的概率是1/3,A发生且B不发生的概率是1/9,求B发 生的概率。
A
B
A
B
第 5 章 概率与概率分布
5.04 设 A 与 B 是 两 个 随 机 事 件 , 已 知 P(A)=P(B)=1/3, P(A|B)=1/6,求 P ( A | B )
设甲发芽为事件A,乙发芽为事件B P(AB)=P(A)P(B)=0.56 P(A ∪ B)=P(A)+P(B)-P(AB)=0.94 P ( A B ) P ( A B ) P ( A ) P ( B ) P ( A ) P ( B ) 0 .3 8
第 5 章 概率与概率分布
5.06 某厂产品的合格率为96%,合格品中一级品率为 75%。从产品中任取 一件为一级品的概率是多少?
第 5 章 概率与概率分布
5.02 某市有50%的住户订日报,有65%的住户订晚报, 有85%的住户至少订两种报纸的一种,求同时订这两 种报的住户的百分比。
设订日报的住户集合为A,订晚报的住户为B,至少订一种 报的集合为 A∪B ,同时订两种报纸的住户的集合为
A∩B
P(A ∩ B)=P(A)+P(B)-P(A∪B)=0.5+0.65-0.85=0.3
解:设 A1表示“职工文化程度为小学”, A2表示“职工文 化程度为初中”, A3表示“职工文化程度为高中及以 上”, B表示“职工年龄为25岁以下”。根据全概公式有
P(B) P( A1B) P( A2B) P( A3B) P( A1)P(B | A1) P( A2 )P(B | A2 ) P( A3)P(B | A3)
设合格为事件A,合格中一级品率为事件B
P(AB)=P(A)P(B|A)=0.96*0.75=0.72
第 5 章 概率与概率分布
5.07 某种品牌的电视机用到5000小时未坏的概率为3/4,, 用到10000小时未坏的概率为1/2。现在有一台这种 品 牌 的 电 视 已 经用了 5000 小时未 坏 , 问 它 能 用 到 10000小时的概率是多少?
5.14 设 随 机 变 量 X 服 从 参 数 为 的 泊 松 分 布 , 且 已 知 P{X=1}=P{X=2},求P{X=4}。
P{Xk}ke
k!
P{X1}1e e
P(A | B) P(AB) P(B)
P(AB) P(A) P(B) P(A U B) P(A U B) P(AB) 1 P(AB) P(AB) P(B)P(A | B)
第 5 章 概率与概率分布
5.05 有甲、乙两批种子,发芽率分别是0.8和0.7。在两批 种子中各随机取一粒,求: 1) 两粒都发芽的概率; 2) 至少有一粒发芽的概率; 3) 恰有一粒发芽的概率。
第 5 章 概率与概率分布
5.13 一张考卷上5道题目,同时每道题列出4个选择答案, 其中有一个答案是正确的。某学生凭猜测能答对至少4 道题的概率是多少?
答对4道题包括两种情况:4对1错或5对
C 5 4 (1 /4 )4 (3 /4 ) C 5 5 (1 /4 )5 1 /6 4
第 5 章 概率与概率分布
设前5000个小时未坏为事件A,后5000个小时未坏为事件B
P(A)=3/4 P(AB)=1/2
P(B|A)=P(AB)/P(A)=2/3
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
第 5 章 概率与概率分布
5.08 某厂职工中,小学文化程度的有10%,初中文化程 度的有50%,高中及高中以上文化程度的有40%。25 岁以下青年在小学、初中、高中以上文化程度各组中 的比例分别为20%,50%,70%。从该厂随机抽取一 名职工,发现其年龄不到25岁,问他具有小学、初 中、高中以上文化程度的概率各为多少?
第 5 章 概率与概率分布
5.01 写出下列随机试验的样本空间: 1) 记录某班一次统计学测验的平均分数; 2) 某人骑自行车在公路上行驶,观察该骑车人在遇 到第一个红灯停下来以前已经遇到的绿灯次数; 3) 生产产品,直到有10件正品为止,记录生产产品 的总件数。
1) =[0,100] 2) =N
3) ={10,11,12,……}
3
P(Ai )P(B | Ai ) i 1
0.1 0.2 0.5 0.5 0.4 0.7 0.55
P( Ai
|
B)
P( AiB) P(B)
ห้องสมุดไป่ตู้
P(Ai )P(B | Ai )
3
P(Aj )P(B | Aj )
j 1
P( A1
|
B)
P( A1B) P(B)
P(A1)P(B | A1)
3
P(Aj )P(B | Aj
)
0.1 0.2 0.55
2
/
55
j 1
P(A2 | B) 5/11
P(A3 | B) 28/55
第 5 章 概率与概率分布
5.10 考虑掷两枚硬币的试验。令X表示观察到正面的个数,试 求X的概率分布。
第 5 章 概率与概率分布
5.11 某人花2元钱买彩票,他抽中100元奖的概率是0.1%,抽 中10元奖的概率是1%,抽中1元奖的概率是1/2,假设各 种奖不能同时抽中,求: 1) 此人收益的概率分布; 2) 此人收益的期望值。
1
13 1
2
E (X )0 2x f(x )d x0 23 8 x 3d x [3 3 2x4 ]0 2 3 /2
E (X 2 )0 2 x 2f(x )d x 0 23 8 x 4d x [4 3 0 x 5 ]0 2 1 2 /5
D (X)E {[XE (X)]2}
D (X ) E { X 2 2 X E (X ) [E (X ) ] 2 } D(X)E(X2)2E(X)E(X)[E(X)]2 E(X2)[E(X)]2 3/20
相关文档
最新文档