利用公式法求二次曲线上一点处的切线方程
导数典型例题讲解
资料一 :导数.知识点1.导数的概念例1.已知曲线yP (0, 0),求过点P的切线方程·解析:如图,按切线的定义,当x →0时,割线PQ 的极限位置是y 轴(此时斜率不存在),因此过P 点的切线方程是x =0. 例2.求曲线y =x 2在点(2,4)处的切线方程·解析:∵ y =x 2, ∴ ∆y =(x 0+∆x )2-x 02=2x 0∆x +(∆x )2 =4∆x +(∆x )2∴ k =00limlim (4)4x x yx x ∆→∆→∆=+∆=∆. ∴ 曲线y =x 2在点(2,4)处切线方程为y -4=4(x -2)即4x -y -4=0. 例3.物体的运动方程是 S =1+t +t 2,其中 S 的单位是米,t 的单位是秒,求物体在t =5秒时的瞬时速度及物体在一段时间[5,5+∆t ]内相应的平均速度.解析:∵ S =1+t +t 2, ∴ ∆S =1+(t +∆t )+(t +∆t )2-(1+t +t 2)=2t ·∆t +∆t +(∆t )2,∴21St t t∆=++∆∆, 即()21v t t t =++∆, ∴ (5)11v t =∆+, 即在[5,5+∆t ]的一段时间内平均速度为(∆t +11)米/秒∴ v (t )=S ’=00limlim(21)21t t St t t t ∆→∆→∆=++∆=+∆ 即v (5)=2×5+1=11.∴ 物体在t =5秒时的瞬时速度是11米/秒. 例4.利用导数的定义求函数yx =1处的导数。
解析:∆y1=, ∴ y x ∆∆, ∴ 0limx y x ∆→∆∆=1lim 2x ∆→=-.例5.已知函数f (x )=21sin 00x x xx ⎧≠⎪⎨⎪=⎩, 求函数f (x )在点x =0处的导数解析:由已知f (x )=0,即f (x )在x =0处有定义,∆y =f (0+∆x )-f (0)=21()sin x x∆∆,y x∆∆=1sin x x ∆⋅∆, 0lim x yx ∆→∆∆=01lim sin x x x ∆→∆⋅∆=0, 即 f ’(0)=0.∴ 函数f (x )在x =0处导数为0.例6.已知函数f (x )=21(1)121(1)12x x x x ⎧+⎪⎪⎨⎪+>⎪⎩≤, 判断f (x )在x =1处是否可导?解析:f (1)=1, 20001[(1)1]112lim lim lim (1)12x x x x y x x x ---∆→∆→∆→+∆+-∆==+∆=∆∆,001(11)112lim lim 2x x x y x x ++∆→∆→+∆+-∆==∆∆, ∵00lim lim x x y y x x -+∆→∆→∆∆≠∆∆, ∴ 函数y =f (x )在x =1处不可导. 例7.已知函数 y =2x 3+3,求 y ’.解析:∵ y =2x 3+3, ∴ ∆y =2(x +∆x )3+3-(2x 3+3)=6x 2·∆x +6x ·(∆x )2+2(∆x )3,∴ y x∆∆=6x 2+6x ·∆x +2(∆x )2, ∴ y ’=0lim x y x ∆→∆∆=6x 2.例8.已知曲线y =2x 3+3上一点P ,P 点横坐标为x =1,求点P 处的切线方程和法线方程.解析:∵ x =1, ∴ y =5, P 点的坐标为(1, 5), 利用例7的结论知函数的导数为y ’=6x 2,∴ y ’1|x ==6, ∴ 曲线在P 点处的切线方程为y -5=6(x -1) 即6x -y -1=0, 又曲线在P 点处法线的斜率为-61, ∴ 曲线在P 点处法线方程为y -5=-61( x -1),即 6y +x -31=0. 例9.抛物线y =x 2在哪一点处切线平行于直线y =4x -5?解析:∵ y ’=0lim x yx ∆→∆∆=220()lim2x x x x x x∆→+∆-=∆, 令2x =4.∴ x =2, y =4, 即在点P (2,4)处切线平行于直线y =4x -5.例10.设mt ≠0,f (x )在x 0处可导,求下列极限值(1) 000()()lim x f x m x f x x ∆→-∆-∆; (2) 000()()lim x x f x f x t x∆→∆+-∆.解析:要将所求极限值转化为导数f ’(x 0)定义中的极限形式。
函数的导数与曲线的切线与法线
函数的导数与曲线的切线与法线函数的导数是微积分中的核心概念之一,它与曲线的切线和法线密切相关。
本文将介绍导数的定义、计算方法以及如何利用导数求曲线的切线和法线。
一、导数的定义与计算方法导数表示函数在某一点上的变化率,可以理解为函数曲线在该点处的斜率。
定义如下:设函数f(x)在点x处有定义,则f(x)在该点处的导数为:f'(x) = lim [f(x + h) - f(x)] / h ,其中 h -> 0导数的计算方法有很多种,常见的包括利用基本导数公式、几何意义和导数的性质等。
以下将介绍几种常见的计算方法:1. 基本导数公式:常数的导数为零,幂函数的导数为幂次减一乘以系数,指数函数的导数为自身乘以自然对数的底数等。
2. 和、差、积、商法则:利用导数的性质,将函数分解后进行求导。
3. 高阶导数:指函数的导数再求导,可以重复多次。
4. 链式法则:用于求复合函数的导数,将复合函数分解为一层一层的函数,再利用导数的性质进行计算。
二、曲线的切线与法线曲线的切线是指曲线上某一点处与曲线最为接近的直线,而法线则是与切线垂直的直线。
在图像上,切线与曲线之间只有一个交点,而法线与曲线只有一个公共点。
曲线的切线方程可以通过导数求得。
对于函数f(x),若点(x0, f(x0))处的导数存在,则切线的斜率为f'(x0),通过点斜式或斜截式可以求得切线的方程。
曲线的法线方程可以通过切线方程和导数求得。
由于法线与切线垂直,故切线的斜率与法线的斜率的乘积为-1。
因此,法线的斜率为-1/f'(x0),通过点斜式或斜截式可以求得法线的方程。
三、利用导数求曲线的切线与法线利用导数求曲线的切线与法线的过程一般如下:1. 给定函数f(x)和点(x0, f(x0))。
2. 求导数f'(x)。
3. 计算f'(x0)的值,得到切线的斜率。
4. 利用切线的斜率和给定点(x0, f(x0)),使用点斜式或斜截式得到切线方程。
曲线的切线和法面、密切面
§1.2 曲线的切向量、切线和法面、密切平面假设))(),(),(()(t z t y t x t r = 中的三个分量具有我们所需要的各阶导数。
一、 切向量的定义及求法对曲线进行研究,从曲线的割线及割线的极限入手。
(1)定义 如图给出曲线Γ上一点P , 点Q 是曲线Γ上邻近P 的一点,经过P 和Q 的直线称为曲线的一条割线。
当Q 点沿着曲线Γ趋近于P 点时,若割线PQ 趋近于一定的位置,则我们把这个割线PQ 的极限位置z z xy )(t t r ∆+ )(t r称为曲线在P 点处的切线。
而定点P 叫做切点。
直观上看,切线是通过P 点的所有直线当中最贴近曲线的直线。
设曲线Γ的参数方程是()r r t =,),(βα∈t 。
设)(t r 是该曲线上的一点,记为P ,),(βα∈t ,给t 一个增量t ∆, 考虑曲线上的另外一点)(t t r ∆+记 ()P r t =,()Q r t t =+∆ ;则有()()PQ r t t r t =+∆-,在割线PQ 上作向量PR ,使得()()r t t r t PR t+∆-=∆;当Q P →(即0t ∆→)时, 如果t r∆∆ 有着确定的极限, 则0()()lim lim Q P t r t t r t PR t →∆→+∆-=∆, 根据曲线的切线的定义,那么这个极限就是切线上的一向量,称它为曲线在点()P r t =处的切向量。
也就是说,定义t t r t t r t r t t ∆-∆+=∆∆→∆→∆)()(lim lim 00 为曲线的切向量,用)(t r ' 来表示。
(2)切向量的求法因为())()(),()(),()(1)()(t z t t z t y t t y t x t t x tt t r t t r -∆+-∆+-∆+∆=∆-∆+⎪⎭⎫ ⎝⎛∆-∆+∆-∆+∆-∆+=t t z t t z t t y t t y t t x t t x )()(,)()(,)()(, 令0→∆t 得()),(,)(),(),()(βα∈'''='t t z t y t x t r 。
求下列曲线在指定点处的切线方程和法平面方程
题目:求下列曲线在指定点处的切线方程和法平面方程【内容】1. 求曲线在指定点处的切线方程是解析几何中常见的问题,它涉及到对曲线的切线的性质和方程的推导。
2. 具体而言,当我们要求曲线在某一点处的切线方程时,首先需要求出该点的切线斜率,然后根据切线的一般方程或者斜截式方程来构建切线方程。
3. 不仅如此,对于曲面而言,我们也可以求出曲面在指定点处的法平面方程。
法平面是与曲面在某一点的法向量垂直,并通过该点的平面,求解法平面方程同样需要根据指定点的法向量和点法式方程来进行推导。
4. 将求切线方程和法平面方程的具体数学步骤和公式应用到解析几何的实际问题中,可以帮助我们更深入地理解曲线和曲面的性质,同时也为求解相关问题提供了可靠的数学工具。
5. 在解析几何学习中,我们经常会遇到各种曲线和曲面在指定点处的切线方程和法平面方程的求解问题,下面我们将结合具体的示例来演示求解的过程和技巧。
【结构】1. 概述:讨论求曲线在指定点处的切线方程和曲面法平面方程的重要性和意义。
2. 切线方程的推导:介绍求解曲线在指定点处的切线方程的一般步骤和方法。
3. 切线方程的应用实例:通过具体的例子演示求解切线方程的过程和技巧。
4. 法平面方程的推导:介绍求解曲面在指定点处的法平面方程的一般步骤和方法。
5. 法平面方程的应用实例:通过具体的例子演示求解法平面方程的过程和技巧。
6. 结论:总结本文涉及的内容,强调求解曲线和曲面方程的重要性和应用价值。
7. 参考文献:列出本文涉及的参考文献和相关资料来源。
【概述】求下列曲线在指定点处的切线方程和法平面方程是解析几何中的重要问题。
切线方程和法平面方程的求解不仅涉及基本的数学原理和公式,同时也需要灵活运用数学推理和几何思维。
下面将介绍切线方程和法平面方程的求解方法,并结合具体例子加以说明。
【切线方程的推导】1. 切线方程的一般形式:y = kx + b2. 求曲线在指定点处的切线斜率:k = f'(x0)3. 利用切线的一般方程或斜截式方程构建切线方程:y - y0 = k(x - x0) 或 y = k(x - x0) + y0【切线方程的应用实例】示例1:求曲线y = x^2在点(1,1)处的切线方程。
空间曲线的切线与法平面公式
空间曲线的切线与法平面公式空间曲线的切线与法平面公式在几何学中,空间曲线是指在三维坐标系中的曲线。
对于空间曲线上的一点,我们可以通过求取该点处的切线和法平面来描述曲线的性质和特征。
切线是指与曲线相切且方向与曲线在该点处相切的线段。
切线的存在使得我们能够研究曲线在该点处的切向性质。
对于空间曲线上的点 P(x_0, y_0, z_0),其切线可以通过求取曲线的导数来获得。
设曲线的参数方程为 x = f(t),y = g(t),z = h(t),其中 t是参数。
我们可以通过对 t 求导得到曲线在该点处的切向量 (dx/dt, dy/dt, dz/dt)。
切点 P 在曲线上的切线向量可以表示为 (dx/dt,dy/dt, dz/dt)|_(x=x_0, y=y_0, z=z_0)。
这个向量可以用来表示切线的方向和斜率。
根据切线向量的定义,我们可以计算出切线的一般方程。
设 M(x, y, z) 是曲线上的一点,并且切点 P(x_0, y_0, z_0) 在曲线上。
那么切线的一般方程可以表示为:(x - x_0) / (dx/dt) = (y - y_0) / (dy/dt) = (z - z_0) / (dz/dt)其中,dx/dt,dy/dt,dz/dt 分别表示曲线在 P 点处的方向导数。
这一表达式可以帮助我们找到曲线上任意一点处的切线。
除了切线,法平面是另一个重要的概念。
法平面是与切线垂直的平面,它与切线相交于曲线上的一点。
通过求取曲线的法向量,我们可以得到法平面的方程。
如果曲线是光滑且参数化的,我们可以通过求取切线向量的两个非零向量的叉乘来获得法向量。
设切线向量为 T,那么法向量可以表示为N = T × T',其中 T' 是关于参数 t 的导数向量。
这样,法平面的一般方程可以表示为:N · (r - r_0) = 0其中 N 是法向量,r 是平面上一点的位置向量,r_0 是曲线上一点的位置向量。
2020年新高考数学复习一条特殊的线--函数的切线专题解析
2020年新高考数学复习一条特殊的线--函数的切线专题解析基础知识回顾:(一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000ABf x x f x f x x f x k x x x x +∆-+∆-==+∆-∆当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000lim x f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x x∆→+∆-==∆。
空间曲线在某点的切线方程的多种解法
科技风 2021 年 4 月DOI : 10.19392/j. cnki. 1671-7341.202110020空间曲线在某点的切线方程的多种解法张雪飞宫雷王素云陆军装甲兵学院基础部北京100072摘要:本文探讨了空间曲线在某点的切线方程的计算方法和相关技巧,指出了六种常见的计算思路,如参数方程法,公式法,隐函数求导法,边隐函数求导边代入点的方法,利用切平面的法向量的向量积来求切向量。
除此之外,切线仍可看作两个相交曲面在该点的切平面的交线。
结合相关的题目用不同的方法作出解答。
关键词:切线方程;公式法;隐函数求导;切平面的法向量;向量积空间光滑曲线在点5处的切线为此点处割线的极限位 置,过点5与切线垂直的平面称为曲线在该点的法平面。
如果要求空间曲线在某点的切线和法平面,由于已知点,最关 键的是找到切线的切向量,也就是法平面的法向量。
要求切 线的切向量,根据空间曲线的给岀形式是参数方程的形式还是一般方程的形式,来找到相应的求解切向量(法平面的法 向量)的方法。
一、基本知识(一)曲线方程为参数方程的情况设空间曲线为(:6="(7 ,y=#(7 ,z=$(7,其中t 为参数。
设 t = 7 对应点 5(6,8,9),t = 7+% 对应点 5:6+%:,割线55,的方程为:匹==%^ =三9,在方程的分母同时%%%应的参数式方程为r=="6)19 #(6)o曲线上一点5(60 ,=0,9)处的切向量为科1,筹斜=卜埒第 M [,或. M M J者写成这种形式:,弓O ,曾竿1 }当 $(=,9 $(9,6) $(6,=). 5 5 m J作公式来记忆$则在点5(6 ,=0,9 )有切线方程:除以%,令%#0,得切线方程乞■=芳矢=-^7$此处要求"(=),#( = ),$:=)不全为0$如个别为0,则理解为分子为0$切线的方向向量T= (": = ),#( = ),$: = ))称为曲线 的切向量。
五种方法解二次曲线的切线问题,理解应用这些公式你离学霸不远了
五种方法解二次曲线的切线问题,理解应用这些公式你离学霸
不远了
学霸数学
专注中小学考试信息及题型分析总结
关注
题型:已知焦点在x轴上的椭圆与直线2x+3y-10=0相切,且离心率为√3/2,求此椭圆方程
这里给出五种方法求解,几乎每种都代表着不同的方法,这些方法中蕴含着丰富的知识,同学们好好研究一下,对你们的学习非常有帮助呢!
解法一:(判别式法)
初等数学中,二次曲线的切线问题源于判别式,且利用判别式还可得出有关切线的某些性质、公式或定理。
解法二:。
曲线的切线(详解)
曲线的切线一、 基础知识:1、 切线的定义:设P 是曲线上的一点,Q 是曲线上与P 邻近的一点。
当点Q 沿着曲线无限接近点P 时,如果割线PQ 有一个极限位置PT ,那么直线PT 就叫做曲线在点P 处的切线。
2、 函数y=f(x)在x=x 0处可导,则曲线y=f(x)在点P 处的切线方程是:))(()(000x x x f x f y -'=-3、 关于切线的几个问题:(1)曲线的切线和曲线可以有几个交点?(答:可以有无数个交点)(2)直线y=kx+b 在其上一点P 处有切线吗?(答:有,切线与直线重合) 二、 例题选讲:例1 下列曲线在点x=0处没有切线的是 ( ) (A )y=x 3+sinx (B )x x y cos +=(C )13+=x x y (D )y=|x|答:选D ,因为它在x=0处没有导数且不符合切线定义。
问1:(B )中函数在x=0处也没有导数,它有切线吗?答:有,切线为直线x=0。
小结:f(x)在x 0处可导⇒f(x)在x 0处有切线,反之不成立f(x)在x 0处不可导≠>f(x)在x 0处没有切线。
问2:既然不能从可导不可导来判定是否存在切线,那么怎么来判定呢?答:围绕定义。
小结:要深入体会运动变化思想:两个不同的公共点→两公共点无限接近→两公共点重合(切点),从而割线→切线。
例2 已知曲线34331+=x y 。
(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程。
解:(1)所求切线斜率k=4,故所求切线方程为y-4=4(x-2),即4x-y-4=0(2)设曲线与过点P 的切线相切于点A (x 0,343031+x ),则切线的斜率k=0|x x y ='=20x , ∴切线方程为)()(020343031x x x x y -=+-, ∵点P(2,4)在切线上,∴)2()(4020343031x x x -=+- 解得x 0=2或-1,故所求的切线方程为:4x-y-4=0或x-y+2=0。
高考数学专题《过曲线上一点的切线、切点弦》填选压轴题及答案
专题37 过曲线上一点的切线、切点弦【方法点拨】1.圆的切线方程常用结论(1)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.特别地,过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2外一点P (x 0,y 0) 作圆的两条切线,则两切点所在直线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2;特别地,过圆x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 说明:(1)上述公式的记忆方法均可用“抄一代一”,即把平方项其中一个照抄,另一个将变量用已知点的相应坐标代入,将原方程作如下方法替换求出,20x x x →,20y y y →,02x xx +→,02y yy +→). (2)椭圆、抛物线也有类似结论,如过椭圆2222:1x y C a b +=上一点P (x 0,y 0)且与椭圆相切的直线方程是:00221x x y ya b+=,等等,不再赘述.【典型题示例】例1 已知抛物线C :y 2=2x ,过直线上y =x+2上一点P 作抛物线C 的两条切线P A ,PB ,切点分别为A ,B ,则直线AB 恒过定点 . 【答案】(2,1)【解析】设P 点坐标为(x 0,x 0+2) 显然点P 不在抛物线C 上根据切点弦的公式,“抄一代一”得直线AB 的方程为:(x 0+2) y =x 0+x 即(x -2 y )+x 0(1-y ) =0 所以直线AB 恒过定点(2,1).例2 过抛物线C :x 2=2py 上点M 作抛物线D :y 2=4x 的两条切线l 1,l 2,切点分别为P ,Q ,若△MPQ 的重心为G(1,32),则p = .【答案】316【解析一】设11(,)P x y ,22(,)Q x y则l 1,l 2的方程分别是111()2y y x x =+,221()2y y x x =+由11221()21()2y y x x y y x x ⎧=+⎪⎪⎨⎪=+⎪⎩解得,121242y y x y y y ⎧=⎪⎪⎨+⎪=⎪⎩,即1212(,)42y y y y M + 又因为△MPQ 的重心为G(1,32)所以12121212211222413323244y y x x y y y y y x y x ⎧++⎪=⎪⎪+⎪⎪++⎨=⎪⎪⎪=⎪=⎪⎩,解之得121233y y y y =-⎧⎨+=⎩,故33(,)42M - 将33(,)42M -代入x 2=2py 得316p =.【解析二】设200(,)2x M x p则PQ 的方程为2002()2x y x x p=+ 由20022()24x y x x p y x ⎧=+⎪⎨⎪=⎩消x 得220040py x y px -+= 所以2012x y y p +=,1204y y x =(11(,)P x y ,22(,)Q x y )()422012120211844x x x y y x p ⎛⎫+=+=- ⎪⎝⎭又因为△MPQ 的重心为G(1,32)所以400022200184133232x x x p x x p p ⎧⎛⎫-+⎪ ⎪⎝⎭⎪=⎪⎨⎪+⎪=⎪⎩,解之得031634p x ⎧=⎪⎪⎨⎪=-⎪⎩,.例3 已知斜率为k 的直线l 过抛物线C :y 2=2px (p >0)的焦点,且与抛物线C 交于A ,B 两点,抛物线C 的准线上一点M (-1,-1)满足MA ·MB =0,则|AB |= ( ) A. B. C .5 D .6 【答案】C【分析】(一)本题的命题的原点是阿基米德三角形,即从圆锥曲线准线上一点向圆锥曲线引切线,则两个切点与该点所构成的三角形是以该点为直角顶点的直角三角形.(二)将MA ·MB =0直接代入坐标形式,列出关于A ,B 中点坐标的方程,再利用斜率布列一方程,得到关于A ,B 中点坐标的方程组即可.这里需要说明的是,MA ·MB =0转化的方法较多,如利用斜边中线等于斜边一半等,但均不如上法简单. 【解析一】易知p =2,y 2=4x 由阿基米德三角形得AB 为切点弦所以AB 方程是-y =2(x -1),即y =-2 x +2 代入y 2=4x 消y 得:x 2-3x +1=0 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3 ∴12025AB x x p x p =++=+=,答案选C. 【解析二】易知p =2设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,y 1y 2=-4,11(1,1)MA x y =++,22(1,1)MB x y =++ ∵MA ·MB =0∴1212(1)(1)(1)(1)0x x y y +++++=,化简得12121x x y y +++= 设A 、B 中点坐标为(x 0,y 0),则0012x y += ① 又由直线的斜率公式得12122212121204244AB y y y y k k y y x x y y y --=====-+-,001y k x =-∴00021y y x =-,即2002(1)y x =- ② 由①、②解得032x =∴12025AB x x p x p =++=+=,答案选C.例4 在平面直角坐标系 xoy 中, 已知圆C :(x - 2)2 + (y - 2)2 = 20 与x 轴交于 A 、B (点 A 在点 B 的左侧),圆C 的弦 MN 过点T (3,4),分别过 M 、N 作圆C 的切线,交点为 P ,则线段 AP 的最小值为 .【答案】285 5【分析】设出点P坐标,根据切点弦求出点P轨迹方程,再利用点线距以垂线段最小求解.【解析】设点P坐标为(a,b )则切点弦MN的方程为:(a - 2)(x - 2)+ (b - 2)(y - 2)=20又因为弦MN 过点T(3,4),故(a - 2)(3 - 2)+ (b - 2)(4- 2)=20,即a +2b - 26=0即点P的轨迹方程是x +2y - 26=0点A(-2,0)到该直线的距离为285 5,因为定点到直线上任意一点间的距离中垂线段最小所以点A(-2,0)到该直线的距离2855即为AP 的最小值.例 5 如图,在平面直角坐标系xoy中,直线l与椭圆22:14xC y+=、圆222(12)x y r r+=<<都相切,切点分别是点A、B,则当线段AB长度最大时,圆的半径r的值为.【答案】2【分析】先设出点B坐标,写出直线l的方程,再利用直线与圆相切,圆心到直线的距离等于r ,布列约束等式,最后,利用勾股定理列出AB 关于r 的目标函数,求出最值及取得最值时r 的值.【解析】设点B 坐标为(2cos ,sin )B αα(R α∈)则过点B 的椭圆的切线,即直线l 的方程为:2cos sin 14xy αα+=, 即cos 2sin 20x y αα+-=又因为直线l 与圆222x y r +=r =,且OA AB⊥在Rt OAB 中,222222244cos sin cos 4sin AB OB OA αααα=-=+-+2245[(13sin )]13sin αα=-+++而224(13sin )413sin αα++≥=+,当且仅当sin α=时,“=”成立,此时r ==AB 的最大值为1 所以当线段AB 长度最大时,圆的半径r 的.【巩固训练】1.过点作圆的两条切线,切点分别为,,则直线的方程为( ) A .B .C .D .2. 已知圆22:1C x y +=,直线:20l x y ++=,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点( ) A .11,22⎛⎫-- ⎪⎝⎭B .()1,1--C .11,22⎛⎫-⎪⎝⎭D .11,22⎛⎫-⎪⎝⎭3.在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP , AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为 .4.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是___ _ _ __.5. 已知P 为椭圆22:143x y C +=上的一个动点,1F 、2F 为椭圆的左、右焦点,O 为坐标原(3,1)22(1)1x y -+=A B AB 230x y +-=230x y --=430x y --=430x y +-=点,O 到椭圆C 在P 点处的切线为d ,若12247PF PF ⋅=,则d = .6. 已知点P 在直线4x y +=上,过点P 作圆22:4O x y +=的两条切线,切点分别为A ,B ,则点(3,2)M 到直线AB 距离的最大值为( ) ABC .2D7. 在平面直角坐标系xOy 中,已知圆C :22(2)4x y -+=,点A 是直线20x y -+=的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为 . 8. 在平面直角坐标系xOy 中,已知点A (-4,0),B (0,4),从直线AB 上一点圆P 向圆C :224x y +=引两条切线PC 、PD ,切点分别是C 、D ,设线段CD 的中点为M ,则线段AM 长的最大值为 .【答案或提示】1.【答案】A【解析】将(3,1)直接“一抄一代”得(31)(1)1x y --+=,即230x y +-=,选A. 2.【答案】A【解析】设P ()00,2x x --则直线AB 的方程是()0021x x x y -+=,即()()0210x x y y --+=令0210x y y -=⎧⎨+=⎩,解得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 所以直线AB 过定点11,22⎛⎫-- ⎪⎝⎭ . 3.【答案】[3【提示】设A ()0,0x则直线PQ 的方程是()0332x x y --=,即0370x x y -+= 所以直线PQ 过定点70,3⎛⎫ ⎪⎝⎭.则PQ 长的最小值是过70,3⎛⎫ ⎪⎝⎭且平行于x 轴的弦,易得此时PQ ,直径是其上界.4.【答案】x 25+y 24=1【提示】AB 的方程是2x +y -2=0,令x =0,y =2;令y =0,x =1.故c =2,b =1.5.【提示】P 1x y +=. 6.【答案】D【解析】设(,4)P a a -,则直线AB 的方程是(4)40ax a y +--=,即()440a x y y -+-=,当x y =且440y -=,即1x =,1y =时该方程恒成立, 所以直线AB 过定点N (1,1),点M 到直线AB 距离的最大值即为点M ,N 之间的距离,||MN =所以点M (3,2)到直线AB 故选:D7.【答案】)⎡⎣【解析】设点的坐标为00(,2)A x x + 则PQ 的方程为00(2)(2)(2)4x x x y --++=, 分参得0(2)(22)0x y x x y +-+-+=所以20220x y x y +-=⎧⎨-+=⎩,解之得11x y =⎧⎨=⎩,直线PQ 恒过点(1,1)易求得过点(1,1)最短的弦长为4(取不得)故线段PQ 长的取值范围为)⎡⎣. 说明:引圆外一点A 到圆心O 的距离为参数,建立PQ 与AO 的目标函数,再利用基本不等式解决也可以.8.【答案】【解析】设点的坐标为00(,4)P x x + 则CD 的方程为00(4)4x x x y ++=, 分参得0()(44)0x y x y ++-=所以0440x y y +=⎧⎨-=⎩,解之得11x y =-⎧⎨=⎩,直线CD 恒过点N (-1,1)又因为OM⊥CD,所以点M的轨迹是以ON为直径的圆(点O除外),故其方程是22111222 x y⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭所以2 AM==。
空间曲线在某点的切线方程的多种解法
两边对 ! 689h%
]求 导 曲 线 上 一 点
5 6% 8% 9%
处的
{ } 切向量为
#
;h
(6$ (9
(8 (8
注 )求解切线的过程中暗含了两种方法一种是建立求
解过程中的隐函数求导法把曲线看成关于 f 或 ]或 W 的参
数方程用参数式方程的结论曲线上一点 56% 8% 9% 处的切
!科技风 "#"$ 年 % 月
科教论坛 !"#$%&$'(') *+&,-./&$01$21(3$&)%)$$%%)%
空间曲线在某点的切线方程的多种解法
张雪飞4宫 雷4王素云
陆军装甲兵学院基础部!北京!'$$$+%
摘4要本文探讨了空间曲线在某点的切线方程的计算方法和相关技巧指出了六种常见的计算思路如参数方程法公 式法隐函数求导法边隐函数求导边代入点的方法利用切平面的法向量的向量积来求切向量 除此之外切线仍可看作两 个相交曲面在该点的切平面的交线 结合相关的题目用不同的方法作出解答
$ <!
$ <!
$ <!
当
$89 $96 $68
5
5
5
作公式来记忆
则在点 56% 8% 9% 有切线方程
6i6% h 8i8% h 9i9% $<! $<! $<! $89 5 $96 5 $68 5
在点 56% 8% 9% 有法平面方程
h%光滑曲线
(不能表示为
8h"6
9h#6
其中 f为参数 也就不能继续使用方程组两边对 f求导的
方法
此时若$ <! $ 96
切线法实验报告
一、实验目的1. 理解切线的概念及其几何意义。
2. 掌握切线法求曲线切线方程的方法。
3. 培养学生的实际操作能力和分析问题、解决问题的能力。
二、实验原理切线法求曲线切线方程的原理是:设曲线C上某点P的坐标为(x0,y0),过点P的切线斜率为k,则曲线C在点P处的切线方程可表示为:y - y0 = k(x - x0)其中,k是曲线C在点P处的导数,即:k = dy/dx |_{x=x0}三、实验仪器与材料1. 计算器2. 几何画板或计算机绘图软件3. 实验数据表格四、实验步骤1. 观察实验数据表格,选取一条曲线C。
2. 在曲线C上选取一点P,记录点P的坐标(x0,y0)。
3. 利用计算器或计算机绘图软件,计算曲线C在点P处的导数k。
4. 根据切线方程公式,求出曲线C在点P处的切线方程。
5. 利用几何画板或计算机绘图软件,绘制曲线C和切线,观察切线与曲线的交点。
6. 比较实际交点与理论计算结果,分析误差原因。
五、实验数据与结果1. 选择曲线C:y = x^22. 选取点P:P(2,4)3. 计算导数k:k = dy/dx = 2x |_{x=2} = 44. 求切线方程:y - y0 = k(x - x0)y - 4 = 4(x - 2)y = 4x - 45. 绘制曲线C和切线,观察交点。
6. 分析误差原因:通过实验,我们发现在点P(2,4)处,切线方程为y = 4x - 4。
从几何图形上看,切线与曲线C在点P处相切,实际交点与理论计算结果基本一致。
误差主要来源于实验数据的测量误差和计算器的精度。
六、实验总结1. 通过本次实验,我们掌握了切线法求曲线切线方程的方法,加深了对切线概念的理解。
2. 在实际操作过程中,我们培养了实际操作能力和分析问题、解决问题的能力。
3. 本次实验有助于提高我们对数学知识的运用能力,为以后的学习和工作奠定基础。
七、实验思考1. 切线法求切线方程在实际应用中具有广泛的意义,如何将切线法应用于实际问题,提高解决问题的能力?2. 在实验过程中,如何减小误差,提高实验结果的准确性?3. 切线法求切线方程在其他领域有何应用?如何进一步拓展切线法的应用范围?。
方法技巧专题-导数与切线方程问题
的图象上 总存在一点,使得在该点
21.曲线 y ln x ax 在 x 2 处的切线与直线 ax y 1 0 平行,则实数 a _______.
22.若函数 f (x) a1nx, (a R) 与函数 g(x) x ,在公共点处有共同的切线,则 实数 a 的值为______.
23.已知函数 f ( x) ax2 1的图像在点 A(1, f (1)) 处的切线与直线 x 8 y 0 垂直,若数列{ f 1(n)}的前 n 项和为 Sn ,
1.例题
【例 1】曲线 f x e4x x 2 在点 0, f 0 处的切线方程是( )
A. 3x y 1 0 B. 3x y 1 0 C. 3x y 1 0 D. 3x y 1 0
【例 2】函数 f (x) 2x ln x 的图象在 x 1 处的切线方程为( )
A. x y 1 0 B. x y 1 0 C. 2x y 1 0 D. 2x y 1 0
A. 30
B. 45
C. 60
D.135
4.已知定义在 R 上的奇函数 f(x),当 x 0 时, (f x) x3 2x m ,则曲线 y (f x)在点 P(2,f(2))处的切线斜率
为( )
A.10
B.-10
C.4
D.与 m 的取值有关
5.过抛物线 x2 2 py p 0 上两点 A, B 分别作抛物线的切线,若两切线垂直且交于点 P 1, 2 ,则直线 AB 的方程
A.0
B.1
C.2
2. 曲线 f x ln x x2 x 1在点 1,1 处的切线方程是(
D.3 )
A. 2x y 1 0 B. 2x y 1 0 C. 2x y 1 0 D. 2x y 1 0
求切线的方法
求切线的方法求切线的方法作为初等数学中的一个重要概念,切线在许多数学问题中都扮演着重要的角色。
本文将详细介绍如何求解函数曲线的切线,包括基本概念、求导法则、切线方程和实例应用等方面。
一、基本概念1.函数曲线在数学中,函数曲线是指由一个函数所确定的所有点所构成的图形。
例如,y = f(x)就是一个函数曲线。
2.斜率斜率是指一条直线在平面直角坐标系中与x轴正方向夹角的正切值。
斜率可以表示为k = tanθ,其中θ表示夹角。
3.导数导数是微积分中的一个重要概念,表示函数在某一点处的变化率。
导数可以理解为函数曲线在该点处所对应的切线斜率。
二、求导法则为了求解函数曲线上某一点处的切线方程,需要先计算出该点处的导数。
下面列举几种常见函数求导法则:1.常数法则:如果f(x) = C,则f'(x) = 0。
2.幂函数法则:如果f(x) = x^n,则f'(x) = nx^(n-1)。
3.和差法则:如果f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。
4.乘积法则:如果f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。
5.商积法则:如果f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x)-u(x)v'(x)]/v^2 (x)。
三、切线方程1.点斜式点斜式是一种表示直线的方法,其中包括直线上一点的坐标和该点处的斜率。
对于函数曲线y=f(x)上某一点P(a,b),其切线方程可以表示为y-b=f’(a)( x-a ),其中b=f(a)2.截距式截距式是另一种表示直线的方法,其中包括直线与y轴和x轴相交时所分别对应的坐标。
对于函数曲线y=f(x)上某一点P(a,b),其切线方程可以表示为y-f(a)=f’(a)( x-a )。
双曲线知识点总结及练习题
一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长<|F 1F 2|的点的轨迹21212F F a PF PF <=-a 为常数;这两个定点叫双曲线的焦点; 要注意两点:1距离之差的绝对值;22a <|F 1F 2|;当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在;2、第二定义:动点到一定点F 的距离与它到一条定直线l 准线2ca 的距离之比是常数ee >1时,这个动点的轨迹是双曲线;这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程222a c b -=,其中|1F 2F |=2c焦点在x 轴上:12222=-b y a x a >0,b >0焦点在y 轴上:12222=-bx a y a >0,b >01如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上; a 不一定大于b ;判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上2与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3双曲线方程也可设为:221(0)x y mn m n-=> 三、双曲线的性质四、双曲线的参数方程:sec tan x a y b θθ=⋅⎛ =⋅⎝ 椭圆为cos sin x a y b θθ=⋅⎛=⋅⎝ 五、 弦长公式2、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则弦长ab AB 22||=;3、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 六、焦半径公式双曲线12222=-by a x a >0,b >0上有一动点00(,)M x y左焦半径:r=│ex+a │ 右焦半径:r=│ex-a │当00(,)M x y 在左支上时10||MF ex a =--,20||MF ex=-+当00(,)M x y 在右支上时10||MF ex a =+,20||MF ex a =- 左支上绝对值加-号,右支上不用变化双曲线焦点半径公式也可用“长加短减”原则:与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号aex MF a ex MF -=+=0201 构成满足a MF MF 221=-注:焦半径公式是关于0x 的一次函数,具有单调性,当00(,)M x y 在左支端点时1||MF c a =-,2||MF c a =+,当00(,)M x y 在左支端点时1||MF c a =+,2||MF c a =-七、等轴双曲线12222=-b y a x a >0,b >0当a b =时称双曲线为等轴双曲线 1; a b =; 2;离心率2=e ;3;两渐近线互相垂直,分别为y=x ±; 4;等轴双曲线的方程λ=-22y x ,0λ≠; 八、共轭双曲线以已知的虚轴为,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线;λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x . 九、点与双曲线的位置关系,直线与双曲线的位置关系1、点与双曲线点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的内部2200221x y a b ⇔-> 代值验证,如221x y -=点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2、直线与双曲线 代数法:设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得10m =时,b bk a a -<<,直线与双曲线交于两点左支一个点右支一个点; b k a ≥,bk a≤-,或k 不存在时,直线与双曲线没有交点;20m ≠时,k 存在时,若0222=-k a b ,abk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;相交 若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a+=直线与双曲线有一个交点;相切 k 不存在,a m a -<<时,直线与双曲线没有交点;m a m a ><-或直线与双曲线相交于两点;十、双曲线与渐近线的关系1、若双曲线方程为22221(0,0)x y a b a b -=>>⇒渐近线方程:22220x y a b -=⇔x aby ±=2>0,b >0⇒渐近线方程:22220y x a b -= ay x b=±3、若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x , 0λ≠;4、若双曲线与12222=-by a x 有公共渐近线,则双曲线的方程可设为λ=-2222b y a x 0>λ,焦点在x 轴上,0<λ,焦点在y 轴上十一、双曲线与切线方程1、双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=;2、过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b -=;3、双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=;椭圆与双曲线共同点归纳十二、顶点连线斜率双曲线一点与两顶点连线的斜率之积为K 时得到不同的曲线; 椭圆参照选修2-1P41,双曲线参照选修2-1P55;1、A 、B 两点在X 轴上时2、A 、B 两点在Y 轴上时十三、面积公式双曲线上一点P 与双曲线的两个焦点 构成的三角形 称之为双曲线焦点三角解:在12PF F ∆中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得222121212cos 2PF PF F F PF PF α+-=⋅2221212(2)2r r c r r +-=⋅ ∴21212cos 2r r r r b α=-即21221cos b r r α=-,∴12212112sin sin 221cos PF F b S r r ααα∆==⨯⨯-2sin 1cos b αα=-=2cot 2b α.图3解:在12PF F ∆中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得222121212cos 2PF PF F F PF PF α+-=⋅2221212(2)2r r c r r +-=⋅ ∴21212cos 2r r b r r α=- 即21221cos br r α=+,∴12212112sin sin 221cos PF F b S r r ααα∆==⨯⨯+2sin 1cos b αα=+=2tan 2b α. 十四、双曲线中点弦的斜率公式:设00(,)M x y 为双曲线22221x y a b -=弦AB AB 不平行y 轴的中点,则有22AB OM b k k a⋅=证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得:22221212220x x y y a b ---=整理得:2221222212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a+-=+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy y y y k x x x x +===+,所以22AB OM b k k a⋅= 椭圆中线弦斜率公式22AB OMb k k a⋅=-图1双曲线基础题1.双曲线2x2-y2=8的实轴长是A.2 B.2错误!C.4 D.4错误!2.设集合P=错误!,Q={x,y|x-2y+1=0},记A=P∩Q,则集合A中元素的个数是A.3 B.1 C.2 D.43.双曲线错误!-错误!=1的焦点到渐近线的距离为A.2 B.3 C.4 D.54.双曲线错误!-错误!=1的共轭双曲线的离心率是________.5.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点4,-2,则它的离心率为6.设双曲线错误!-错误!=1a>0的渐近线方程为3x±2y=0,则a的值为A.4 B.3 C.2 D.17.从错误!-错误!=1其中m,n∈{-1,2,3}所表示的圆锥曲线椭圆、双曲线、抛物线方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为8.双曲线错误!-错误!=1的渐近线与圆x-32+y2=r2r>0相切,则r=B.3 C.4 D.6图K51-19.如图K51-1,在等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈错误!,以A、B为焦点且过点D的双曲线的离心率为e1,以C、D为焦点且过点A的椭圆的离心率为e2,则e1·e2=________.10.已知双曲线错误!-错误!=1a>0,b>0的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是________.11.已知双曲线错误!-错误!=1a>0,b>0的一条渐近线方程为y=错误!x,它的一个焦点为F6,0,则双曲线的方程为________.12.13分双曲线C与椭圆错误!+错误!=1有相同焦点,且经过点错误!,4.1求双曲线C的方程;2若F1,F2是双曲线C的两个焦点,点P在双曲线C上,且∠F1PF2=120°,求△F1PF2的面积.13.16分已知双曲线错误!-错误!=1和椭圆错误!+错误!=1a>0,m>b>0的离心率互为倒数,那么以a,b,m为边长的三角形是A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形26分已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,且∠F1PF2=60°,则|PF1|·|PF2|=A.2 B.4 C.6 D.8双曲线综合训练一、选择题本大题共7小题,每小题5分,满分35分1.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是A .双曲线B .双曲线的一支C .两条射线D .一条射线2.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于A .2B .3C .2D .33.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e等于A .12-B .2C .12+D .22+ 4.双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A .14-B .4-C .4D .145.双曲线)0,(12222>=-b a by a x 的左、右焦点分别为F 1,F 2,点P 为该双曲线在第一象限的点,△PF 1F 2面积为1,且,2tan ,21tan 1221-=∠=∠F PF F PF 则该双曲线的方程为 A .1351222=-y x B .1312522=-y x C .1512322=-y x D .1125322=-y x 6.若1F 、2F 为双曲线12222=-by a x 的左、右焦点,O 为坐标原点,点P 在双曲线的左支上,点M 在双曲线的右准线上,且满足)(,111OMOM OF OF OP PM O F +==λ)0(>λ,则该双曲线的离心率为A .2B .3C .2D .37.如果方程221x y p q+=-表示曲线,则下列椭圆中与该双曲线共焦点的是A .2212x y q p q +=+B . 2212x y q p p+=-+C .2212x y p q q+=+ D . 2212x y p q q+=-+二、填空题:本大题共3小题,每小题5分,满分15分8.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________;9.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 ; 10.若双曲线1422=-my x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 三、解答题:本大题共2小题,满分30分11. 本小题满分10分双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程;12.本小题满分20分已知三点P5,2、1F -6,0、2F 6,0; 1求以1F 、2F 为焦点且过点P 的椭圆的标准方程;2设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程.基础热身1.C解析双曲线方程可化为错误!-错误!=1,所以a2=4,得a=2,所以2a=4.故实轴长为4.2.B解析由于直线x-2y+1=0与双曲线错误!-y2=1的渐近线y=错误!x平行,所以直线与双曲线只有一个交点,所以集合A中只有一个元素.故选B.3.B解析双曲线错误!-错误!=1的一个焦点是5,0,一条渐近线是3x-4y=0,由点到直线的距离公式可得d=错误!=3.故选B.解析双曲线错误!-错误!=1的共轭双曲线是错误!-错误!=1,所以a=3,b=错误!,所以c=4,所以离心率e=错误!.能力提升5.D解析设双曲线的标准方程为错误!-错误!=1a>0,b>0,所以其渐近线方程为y=±错误!x,因为点4,-2在渐近线上,所以错误!=错误!.根据c2=a2+b2,可得错误!=错误!,解得e2=错误!,所以e=错误!,故选D.6.C解析根据双曲线错误!-错误!=1的渐近线方程得:y=±错误!x,即ay±3x=0.又已知双曲线的渐近线方程为3x±2y=0且a>0,所以有a=2,故选C.7.B解析若方程表示圆锥曲线,则数组m,n只有7种:2,-1,3,-1,-1,-1,2,2,3,3,2,3,3,2,其中后4种对应的方程表示焦点在x轴上的双曲线,所以概率为P=错误!.故选B.8.A解析双曲线的渐近线为y=±错误!x,圆心为3,0,所以半径r=错误!=错误!.故选A.9.1解析作DM⊥AB于M,连接BD,设AB=2,则DM=sinθ,在Rt△BMD中,由勾股定理得BD=错误!,所以e1=错误!=错误!,e2=错误!=错误!,所以e1·e2=1.10.2,+∞解析依题意,双曲线的渐近线中,倾斜角的范围是60°,90°,所以错误!≥tan60°=错误!,即b2≥3a2,c2≥4a2,所以e≥2.-错误!=1解析错误!=错误!,即b=错误!a,而c=6,所以b2=3a2=336-b2,得b2=27,a2=9,所以双曲线的方程为错误!-错误!=1.12.解答1椭圆的焦点为F10,-3,F20,3.设双曲线的方程为错误!-错误!=1,则a2+b2=32=9.①又双曲线经过点错误!,4,所以错误!-错误!=1,②解①②得a2=4,b2=5或a2=36,b2=-27舍去,所以所求双曲线C的方程为错误!-错误!=1.2由双曲线C的方程,知a=2,b=错误!,c=3.设|PF1|=m,|PF2|=n,则|m-n|=2a=4,平方得m2-2mn+n2=16.①在△F1PF2中,由余弦定理得2c2=m2+n2-2mn cos120°=m2+n2+mn=36.②由①②得mn=错误!,所以△F1PF2的面积为S=错误!mn sin120°=错误!.难点突破13.1B2B解析1依题意有错误!·错误!=1,化简整理得a2+b2=m2,故选B.2在△F1PF2中,由余弦定理得,cos60°=错误!,=错误!,=错误!+1=错误!+1.因为b=1,所以|PF1|·|PF2|=4.故选B.一、选择题1.D 2,2PM PN MN -==而,P ∴在线段MN 的延长线上2.C 2222222,2,2,2a c c c a e e c a===== 3.C Δ12PF F 是等腰直角三角形,21212,22PF F F c PF c === 4.A.5. A 思路分析:设),(00y x p ,则1,2,2100000==-=+cy cx yc x y ,命题分析:考察圆锥曲线的相关运算6. C 思路分析:由PM O F =1知四边形OMP F 1是平行四边形,又11(OF OF OP λ=)OMOM +知OP 平分OM F 1∠,即OMP F 1是菱形,设c OF =1,则c PF =1.又a PF PF 212=-,∴c a PF +=22,由双曲线的第二定义知:122+=+=ec c a e ,且1>e ,∴2=e ,故选C .命题分析:考查圆锥曲线的第一、二定义及与向量的综合应用,思维的灵活性.7.D .由题意知,0pq >.若0,0p q >>,则双曲线的焦点在y 轴上,而在选择支A,C 中,椭圆的焦点都在x轴上,而选择支B,D 不表示椭圆;若0,0p q <<,选择支A,C 不表示椭圆,双曲线的半焦距平方2c p q =--,双曲线的焦点在x 轴上,选择支D 的方程符合题意.二、填空题8.221205x y -=± 设双曲线的方程为224,(0)x y λλ-=≠,焦距2210,25c c == 当0λ>时,221,25,2044x y λλλλλ-=+==;当0λ<时,221,()25,2044y x λλλλλ-=-+-==--- 9.(,4)(1,)-∞-+∞ (4)(1)0,(4)(1)0,1,4k k k k k k +-<+->><-或.10. (7,0) 渐近线方程为my x =,得3,7m c ==且焦点在x 轴上.三、解答题11.解:由共同的焦点12(0,5),(0,5)F F -,可设椭圆方程为2222125y x a a +=-; 双曲线方程为2222125y x b b +=-,点(3,4)P 在椭圆上,2221691,4025a a a +==- 双曲线的过点(3,4)P 的渐近线为225b y x b =-,即2243,1625b b b =⨯=-所以椭圆方程为2214015y x +=;双曲线方程为221169y x += 12.1由题意,可设所求椭圆的标准方程为22a x +122=by )0(>>b a ,其半焦距6=c ;||||221PF PF a +=56212112222=+++=, ∴=a 53, 93645222=-=-=c a b ,故所求椭圆的标准方程为452x +192=y ; 2点P5,2、1F -6,0、2F 6,0关于直线y =x 的对称点分别为:)5,2(P '、'1F 0,-6、'2F 0,6设所求双曲线的标准方程为212a x -1212=b y )0,0(11>>b a ,由题意知半焦距61=c ,|''||''|2211F P F P a -=54212112222=+-+=, ∴=1a 52,162036212121=-=-=a c b ,故所求双曲线的标准方程为202y -1162=x .。
求切线方程
法一:定义法
法二:公式法
(1)利用公式求出导函数
f ( x )
(2)把 x0 代入求出
f ( x0 )
函数在点 x0 处的导数 f ( x0 )、导函数 f ( x) 、导数 之 间的区别与联系。 1)函数在一点 x0 处的导数 f ( x0 ) ,就是在该点的函 数的改变量与自变量的改变量之比的极限,它是 一个常数,不是变数。 2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 f ( x ) 3)函数在点 x0 处的导数 f ( x0 ) 就是导函数 f ( x) 在 x x0 处的函数值,这也是 求函数在点 x0 处的导数的方法之一。
题型:求曲线的切线方程
例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点, (1)求过点P的曲线y=x2的切线方程。 (2)求过点Q的曲线y=x2的切线方程。
(3)求与直线PQ平行的曲线y=x2的切线方程。 4 1 解(3): y ' 2 x 直线PQ的斜率k 1, 2 1 1 切线的斜率k y ' |xx0 2x0 1, x0 , 2 1 1 切点M ( , ) 2 4 1 1 与PQ平行的切线方程:y x , 即:x 4 y 1 0。 4 4 2
过P点的切线的斜率k1 y ' |x1 2, 过Q点的切线的斜率k2 y ' |x2 4, 过P点的切线方程:y 1 2( x 1),即:x y 1 0。 2 过Q点的切线方程:y 4 4( x 2),即:x y 4 0。 4
典例分析
f (1) 2.
故所求的斜率为-2.
典例分析
题型:求曲线的切线方程
例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点, (1)求过点P的曲线y=x2的切线方程。 (2)求过点Q的曲线y=x2的切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用公式法求二次曲线上一点处的切线方程
发表时间:2013-03-13T14:35:32.233Z 来源:《中学课程辅导·教学研究》2012年第24期供稿作者:费谏章[导读] 依据高等数学知识,本文谈论了利用公式法求二次曲线上一点处的切线方程的一般方法及具体操作要领。
费谏章
摘要:依据高等数学知识,本文谈论了利用公式法求二次曲线上一点处的切线方程的一般方法及具体操作要领。
关键词:猜想;证明;应用;算法在高中数学中,求二次曲线的切线方程是一类重要题型。
该题型分为两种:一种是求经过曲线上一点处的切线方程;另一种是求经过曲线外一点的切线方程。
下面,笔者将结合高等数学的相关知识探索出一个公式,并运用该公式求解第一种问题,同时给出解决该问题的一般算法步骤。
一、猜想公式
这就是所求的切线方程。
小结:相比教材上的常规解法,利用本文中的公式法,求经过二次曲线上一点处的切线方程,其方法简洁明快,而且还与切线的斜率是否存在丝毫无关。
这就是所求的切线方程。
小结:对于含有项的二次曲线,利用本文中的公式法,求经过二次曲线上一点处的切线方程,方法过程简便、快捷,与常规解题方法相比,更具优越性。
四、算法步骤
3.化简:对替换后的式子进行化简;
4.作答:明确地做出结论。
总而言之,通过对以上四种方法的归纳总结,我们可以很容易地看到解决此类数学问题时应掌握的方法技巧。
因此,笔者呼吁广大数学教师在自己的教学中应积极地探索一些巧妙的解题规律,从而培养自己多角度思维的能力。
作者简介:费谏章,陕西省高中数学特级教师。
有十余篇教育教学论文先后在省、市级教育专业刊物上公开发表。
作者单位:陕西省石泉中学
邮政编码:725200。