第六章习题答案数值分析
《数值分析》第六章答案
习题61.求解初值问题y x y +=' )10(≤≤x 1)0(=y取步长2.0=h ,分别用Euler 公式与改进Euler 公式计算,并与准确解xe x y 21+-=相比较。
解: 1) 应用Euler 具体形式为 )(1i i i i y x h x y ++=+,其中i x i 2.0= 10=y 计算结果列于下表i i x i y )(i x y i i y x y -)( 1 0.2 1.200000 1.242806 0.042806 2 0.4 1.480000 1.583649 0.103649 3 0.6 1.856000 2.044238 0.188238 4 0.8 2.347200 2.651082 0.303882 5 1.0 2.976640 3.436564 0.4599242) 用改进的Euler 公式进行计算,具体形式如下: 10=y)()(1i i i D i y x h y y ++=+ )()(11)(1D i i i C i y x h y y +++++= )(21)(1)(11c i D i i y y y ++++= 4,3,2,1,0=i计算结果列表如下i i x i y )(1D i y + )(1c i y + i i y x y -)( 0 0.0 1.000000 1.200000 1.280000 0.000000 1 0.2 1.240000 1.528000 1.625600 0.002860 2 0.4 1.576800 1.972160 2.091232 0.006849 3 0.6 2.031696 2.558635 2.703303 0.012542 4 0.8 2.630669 3.316803 3.494030 0.020413 5 1.0 3.405417 0.0311473. 对初值问题1)0(=-='y y y)0(>x ,证明用梯形公式所求得的近似值为ii hh y ih y )22()(+-=≈ ),2,1,0( =i并证明当0→h 时,它收敛于准确解ix e y -=,其中ih x i =为固定点。
数值分析课后习题与解答
课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式()有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式()(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?〔1〕〔2〕解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
〔1〕〔2〕4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1与n=2的Lagrange插值或Newton插值,并应用误差估计〔5.8〕。
线性插值时,用0.5与0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式〔5.8〕,令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048与cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式〔5.17〕得其中计算时用Newton后插公式〔 5.18)误差估计由公式〔5.19〕得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析课后参考答案06
第六章习题解答1、设函数01(),(),,()n x x x φφφ 在[,]a b 上带权()x ρ正交,试证明{}()nj j x φ=是线性无关组。
证明:设0()nj jj l x φ==∑,两端与01()(,,,)kx k n φ= 作内积,由()jx φ的正交性可知,200(),()((),())((),())()()n n b k j j j k j k k k k k a j j x l x l x x l x x l x x dx φφφφφφρφ==⎛⎫==== ⎪⎝⎭∑∑⎰, 于是有001(,,,)k l k n == ,即{}()nj j x φ=是线性无关组。
2、试确定系数,a b 的值使22(()cos )ax b x dx π+-⎰达到最小。
解:定义02,[,]f g C π∈上的内积为20fgdx π⎰,取011(),()x x x ϕϕ==,()s x ax b =+,()cos f x x =,则法方程为0001010111(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中()2000112,dx ππϕϕ=⨯=⎰,()2201018,xdx ππϕϕ=⨯=⎰,()3211024,x xdx ππϕϕ=⨯=⎰,()2001,cos f xdx πϕ==⎰,()21012,cos f x xdx ππϕ==-⎰,于是方程组为22312812824a b πππππ⎛⎫⎛⎫ ⎪⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,解之得1158506644.,.a b ==-。
3、已知函数11()(,)f x x =∈-,试用二类Chebyshev 多项式()n U x 构造此函数的二次最佳平方逼近元。
解:法一、取20121(),(),(),x x x x x ϕϕϕ===()()()00112222235,,,,,ϕϕϕϕϕϕ===,()()()011202203,,,,ϕϕϕϕϕϕ===,同时由二类Chebyshev 多项式的性质知 ()()()11101211028,,,,,f f f x ππϕϕϕ---======⎰⎰⎰于是可得法方程为0122203220003220835c c c ππ⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭ ⎪⎝⎭,解之得0121.0308,0,0.7363c c c ===-, 于是()f x 的二次最佳逼近元是2001122() 1.03080.7363x c c c x ϕϕϕϕ=++=-法一、二类Chebyshev 多项式2012()1,()2,()41U x U x x U x x ===-,取内积权函数()()x f x ρ==,于是11200114(,)(1)3f U fU dx x dx ρ--==-=⎰⎰,1121111(,)2(1)0f U fU dx x x dx ρ--==-=⎰⎰,112222114(,)(41)(1)15f U fU dx x x dx ρ--==--=-⎰⎰ 由()n U x 正交性及(,)2n n U U π=可得0000(,)8(,)3f U c U U π==,1111(,)0(,)f U c U U ==,2222(,)8(,)15f U c U U π==-, 于是()f x 的二次最佳逼近元为001122()x c U c U c U ϕ=++=21632515x ππ- 4、设012{(),(),()}L x L x L x 是定义于[0,)+∞上关于权函数()xx eρ-=的首项系数为1的正交多项式组,若已知01()1,()1L x L x x ==-,试求出二次多项式2()L x 。
李庆扬-数值分析第五版第6章习题答案(20130819)
试考察解此方程组的雅可比迭代法及高斯-赛德尔迭代法的收敛性。 雅可比迭代的收敛条件是
( J ) ( D 1 ( L U )) 1
高斯赛德尔迭代法收敛条件是
(G ) (( D L) 1U ) 1
因此只需要求响应的谱半径即可。 本题仅解 a),b)的解法类似。 解:
3.设线性方程组
a11 x1 a12 x2 b1 a11 , a12 0 a21 x1 a22 x2 b2
证明解此方程的雅可比迭代法与高斯赛德尔迭代法同时收敛或发散, 并求两种方 法收敛速度之比。 解:
a A 11 a21
则
a12 a22
5. 何谓矩阵 A 严格对角占优?何谓 A 不可约? P190, 如果 A 的元素满足
aij aij ,i=1,2,3….
j 1 j i
n
称 A 为严格对角占优。 P190 设 A (aij )nn (n 2) ,如果存在置换矩阵 P 使得
A PT AP 11 0
x ( k 1) x ( k )
10 4 时迭代终止。
2 1 5 (a)由系数矩阵 1 4 2 为严格对角占优矩阵可知,使用雅可比、高斯 2 3 10
赛德尔迭代法求解此方程组均收敛。[精确解为 x1 4, x 2 3, x3 2 ] (b)使用雅可比迭代法:
2.给出迭代法 x ( k 1) Bx (k ) f 收敛的充分条件、误差估计及其收敛速度。 迭代矩阵收敛的条件是谱半径 ( B0 ) 1 。其误差估计为
1 k
(k) Bk (0)
R ( B) ln B k 迭代法的平均收敛速度为 k
数值分析习题(含答案)
第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析 第六章 习题
第六章 习 题1. 计算下列矩阵的1A ,2A ,A ∞三种范数。
(1)1101A −⎛⎞=⎜⎟⎝⎠,(2)312020116A ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠. 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组1231231238322041133631236x x x x x x x x x −+=⎧⎪+−=⎨⎪++=⎩ 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。
3. 用Gauss-Seidel 迭代求解1231231235163621122x x x x x x x x x −−=⎧⎪++=⎨⎪−+=−⎩ 以(0)(1,1,1)T x =−为初值,当(1)()310k k x x +−∞−<时,迭代终止。
4. 已知方程组121122,2,x x b tx x b +=⎧⎨+=⎩ (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。
(2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件.5. 设有系数矩阵122111221A −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠ , 211111112B −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛.(2)对于矩阵B ,.6. 讨论方程组112233302021212x b x b x b −⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.7. 对下列方程组进行调整,使之对Gauss-Seidel 迭代收敛,并取初始向量(0)(0,0,0)T x =,求解1213123879897x x x x x x x −+=⎧⎪−+=⎨⎪−−=⎩ 试将Jacobi 迭代前后的老值与新值加权平均,设计出一种基于Jacobi 迭代的松弛迭代格式.8.分别取松弛因子 1.03ω=,1ω=, 1.1ω=,用SOR 方法解下列方程组1212323414443x x x x x x x −=⎧⎪−+−=⎨⎪−+=−⎩要求()(1)610k k xx −−∞−≤时,迭代终止.。
数值分析第三版课本习题及答案
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
第六章习题答案数值分析
第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。
解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。
4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()b a P x dx Z =⎰现分析截断误差:令'()()()()()()-()222a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数2()()()()()2a b K t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()22b bb baaa af a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-Q 在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()224baa b b a f x dx Z R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯可解得:212.85n ≥即至少剖分213等分。
数值分析第二版(丁丽娟)答案
第二章答案
第三章答案
0 0.5 0.5 1 1 2.5000
5.0000 5.5000
第四章答案
2 10.5000 19.0000 19.5000
3 42.5000 91.0000 91.5000
4 170.5000 315.0000 315.5000
5 682.5000 1467.0000 1467.5000
第八章答案
练习: 第一章
答案
练习二 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反幂法中,为什么每步都要将迭代向量规范化?
1.32
1.68
2.08
2.52
3.00
解答下列问题 (1)试列出相应的差分表; (2)写出牛顿向前插值公式; (3)用二次牛顿前插公式计算 f(0.225);
例3已知当 x=-1,0,2,3时,对应的函数值为
,
,
,
,
,求 的四次 Newton 插值多项式。
例4 设 对 n=1,2,3时
,证明:
例5 设 (1)
第一章答案第二章答案第三章答案第四章答案050525000500005500010500019000019500021000000000000000380001950004250009100009150001700000000000000018199999999999999166363636363636371705000315000031550001623809523809523716578947368421051161794871794871796825000146700001467500016058823529411764161208791208791201603825136612021827305000505100005051500016014662756598241160349206349206351601109350237717910922500023483000023483500016003663003663004160074982958418521600238500851788743690500080827000080827500016000915583226515160021777865769151600069286350589则开根号得400011444626607140002722140595534000086607000640对应的特征向量为第五章答案第六章答案2727930204331053600038939418364475947673代入数据得132解
数值分析习题(含答案)
第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
第六章习题答案-数值分析
第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。
解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。
4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()b a P x dx Z =⎰现分析截断误差:令'()()()()()()-()222a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数2()()()()()2a b K t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()22bb b ba aa af a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()224baa b b a f x dx Z R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯ 可解得:212.85n ≥即至少剖分213等分。
数值分析第六章课后习题答案
第六章课后习题解答(1)()()123(1)()213(1)()()312(01.21125551154213351010(1,1,1),17( 4.0000186,2.99999k k k k k k k k k Tx x x x x x x x x x x+++ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-(17)解:(a )因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。
(b )雅可比法的迭代格式为取迭代到次达到精度要求(1)()()123(1)(1)()213(1)(1)(1)312(0)(8)15,2.0000012)21125551154213351010(1,1,1),8( 4.0000186,2.9999915,2.0000012)Tk k k k k k k k k TTx x x x x x x x x x++++++-ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-高斯塞德尔法的迭代格式为x 取迭代到次达到精度要求1212:00.40.4.0.400.80.40.80||(0.8)(0.80.32)()1.09282031,00.40.4()00.160.6400.0320.672DL U I BD L U l l l l--骣--÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--÷ç桫-=-+-=>-æ--çççç=-=-ççççèlJJJS解(a )雅可比法的迭代矩阵B()BB故雅可比迭代法不收敛高斯塞德尔法迭代矩阵131()||||0.81022101220||022023002SJBDL U I BD L Ul l¥--ö÷÷÷÷÷÷÷÷÷÷ç÷ø?<骣-÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--ç÷桫-=骣-÷ç÷ç÷ç÷ç÷=-=-ç÷ç÷÷ç÷ç÷ç桫llSJJ SB故高斯-塞德尔迭代法收敛。
数值分析智慧树知到课后章节答案2023年下湖南师范大学
数值分析智慧树知到课后章节答案2023年下湖南师范大学第一章测试1.在数值计算中因四舍五入产生的误差称为()A:观测误差 B:方法误差 C:舍入误差 D:模型误差答案:舍入误差2.当今科学活动的三大方法为()。
A:科学计算 B:实验C:数学建模 D:理论答案:科学计算;实验;理论3.计算过程中如果不注意误差分析,可能引起计算严重失真。
A:错 B:对答案:对4.算法设计时应注意算法的稳定性分析。
A:对 B:错答案:对5.在进行数值计算时,每一步计算所产生的误差都是可以准确追踪的。
A:错 B:对答案:错第二章测试1.A: B: C: D:答案:2.某函数过(0,1),(1,2)两点,则其关于这两点的一阶差商为A:3 B:0 C:2 D:1 答案:13.A: B: C: D:答案:4.下列说法不正确的是A:高次多项式插值不具有病态性质 B:分段线性插值逼近效果依赖于小区间的长度 C:分段线性插值的导数一般不连续D:分段线性插值的几何图形就是将插值点用折线段依次连接起来答案:分段线性插值的几何图形就是将插值点用折线段依次连接起来5.下列关于分段线性插值函数的说法,正确的是A:对于光滑性不好的函数优先用分段线性插值 B:对于光滑性较好的函数优先用分段线性插值 C:一次函数的分段线性插值函数是该一次函数本身 D:二次函数的分段线性插值函数是该二次函数本身答案:对于光滑性不好的函数优先用分段线性插值;一次函数的分段线性插值函数是该一次函数本身6.A: B: C:D:答案:;;7.同一个函数基于同一组插值节点的牛顿插值函数和拉格朗日插值函数等价。
A:错 B:对答案:对第三章测试1.A: B:C:D:答案:2.以下哪项是最佳平方逼近函数的平方误差A: B: C:D:答案:3.当区间为[-1,1],Legendre多项式族带权 ( ) 正交。
A: B: C: D:答案: 4.n次Chebyshev多项式在 (-1,1) 内互异实根的个数为A:n+1 B:n-1 C:nD:n+2 答案:n5.用正交函数族做最小二乘法有什么优点A:每当逼近次数增加1时,系数需要重新计算 B:得到的法方程非病态C:不用解线性方程组,系数可简单算出 D:每当逼近次数增加1时,之前得到的系数不需要重新计算答案:得到的法方程非病态;不用解线性方程组,系数可简单算出;每当逼近次数增加1时,之前得到的系数不需要重新计算6.用正交多项式作基求最佳平方逼近多项式,当n较大时,系数矩阵高度病态,舍入误差很大。
数值分析第六章 课后习题 常州大学
2
数值分析作业三 1、试给出下述方程的有根区间或初试近似根: 解: (1) 3 x 3 2 x 2 0 令 f x 3 x 3 2 x 2 ,
f ' x 9 x 2 2 令f ' x 0, 得:x 则,f x 在 2 或x 3 2 , 或 , 3 2 3 2 单调递增。 3
2 0 ,所以f x 有且仅有一个零点。 且f 3 且有f 2 0 ,f 1 0 所以,原方程的根在 - 2, - 1区间内。
2、利用二分法求上述方程的根,要求误差不超过 10-2。 解:function [c,err,yc,k]=bisect(f,a,b,epsilon) yb=f(b);ya=f(a);max1=1+round((log(b-a)-log( epsilon))/log(2)); flag=1;k=0; while flag==1 end end c=(a+b)/2; err=abs(b-a); yc=f(c); k=max1; return k=1:max1; c=(a+b)/2; yc=f(c); if yc==0 a=c; b=c; elseif yb*yc>0 b=c; yb=yc; else a=-2;b=-1; n=20;epsilon=1e-2; f=@(x)(3x^3-2*x+2); [c,err,yc,k]=bisect(f,a,b,epsilon) 输出结果: c= err = yc = k= -1.1211 0.0078 0.0150 8 end if b-a<epsilon break a=c; ya=yc;
x
3
2x
数值分析习题(含答案)
第一章 绪论XX 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?〔有效数字的计算〕 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?〔有效数字的计算〕 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取〔3.14109 , 3.14209〕之间的任意数,都具有4位有效数字。
3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?〔有效数字的计算〕解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?〔误差的计算〕 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析智慧树知到答案章节测试2023年西安科技大学
第一章测试1.=0.69314718…,精确到10-3的近似值是( )。
A:0.693B:0.700C:0.69D:0.6931答案:A2.在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为,则该数是( )A:0.01523B:0.001523C:0.15230D:1.52300答案:A3.设某数,对其进行四舍五入的近似值是( ),则它有3位有效数字,绝对误差限是。
A:0.315B:0.03150C:0.0315D:0.00315答案:C4.是按“四舍五入”原则得到的近似数,则它有( )位有效数字。
A:3B:2C:5D:4答案:D5.已知准确值x与其有t位有效数字的近似值x=0.0a1a2…an×10s(a10)的绝对误差x-x( ).A:0.5×10 s-1-tB:0.5×10 s-tC:0.5×10s+1-tD:0.5×10 s+t答案:A第二章测试1.用二分法求方程在区间内的根,已知误差限,确定二分的次数是使( )成立。
A:B:C:D:答案:C2.若迭代公式是p阶收敛,则( )。
A:p!B:C:0D:答案:B3.用二分法求解非线性方程的正根,在初始区间是[0,2]的情况下,若要求误差小于0.05,那么需要二分( )次即可满足要求。
A:5B:3C:6D:4答案:A4.若已知迭代过程是3阶收敛, C是不为零的常数,则下列式子中,正确的式子是( )。
A:B:C:D:答案:A5.对于迭代过程,如果迭代函数在所求的根的附近有连续的二阶导数,且,则迭代过程( )。
A:一阶收敛B:二阶收敛C:发散D:三阶收敛答案:A第三章测试1.设有迭代公式。
若||B|| > 1,则该迭代公式( )A:必收敛B:可能收敛也可能发散C:必发散D:这三种结果都不是答案:B2.设有迭代公式,则||B|| < 1 是该迭代公式收敛的( )。
A:必要条件B:充分条件C:这三种结果都不是D:充分必要条件答案:B3.若行列式=0,其中是n阶单位阵,A是n阶方阵,则A的范数满足( )。
数值分析引论习题与答案(易大义版)
數值分析引論課後習題與答案易大義版第一章緒論習題一1.設x>0,x*の相對誤差為δ,求f(x)=ln xの誤差限。
解:求lnxの誤差極限就是求f(x)=lnxの誤差限,由公式(1.2.4)有已知x*の相對誤差滿足,而,故即2.下列各數都是經過四捨五入得到の近似值,試指出它們有幾位有效數字,並給出其誤差限與相對誤差限。
解:直接根據定義和式(1.2.2)(1.2.3)則得有5位有效數字,其誤差限,相對誤差限有2位有效數字,有5位有效數字,3.下列公式如何才比較準確?(1)(2)解:要使計算較準確,主要是避免兩相近數相減,故應變換所給公式。
(1)(2)4.近似數x*=0.0310,是 3 位有數數字。
5.計算取,利用:式計算誤差最小。
四個選項:第二、三章插值與函數逼近習題二、三1. 給定の數值表用線性插值與二次插值計算ln0.54の近似值並估計誤差限.解:仍可使用n=1及n=2のLagrange插值或Newton插值,並應用誤差估計(5.8)。
線性插值時,用0.5及0.6兩點,用Newton插值誤差限,因,故二次插值時,用0.5,0.6,0.7三點,作二次Newton插值誤差限,故2. 在-4≤x≤4上給出の等距節點函數表,若用二次插值法求の近似值,要使誤差不超過,函數表の步長h應取多少?Fpg 解:用誤差估計式(5.8),令因得3. 若,求和.解:由均差與導數關係於是4. 若互異,求の值,這裏p≤n+1.解:,由均差對稱性可知當有而當P=n+1時於是得5. 求證.解:解:只要按差分定義直接展開得6. 已知の函數表求出三次Newton均差插值多項式,計算f(0.23)の近似值並用均差の餘項運算式估計誤差.解:根據給定函數表構造均差表由式(5.14)當n=3時得Newton均差插值多項式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23) N3(0.23)=0.23203由餘項運算式(5.15)可得由於7. 給定f(x)=cosxの函數表用Newton等距插值公式計算cos 0.048及cos 0.566の近似值並估計誤差解:先構造差分表計算,用n=4得Newton前插公式誤差估計由公式(5.17)得其中計算時用Newton後插公式(5.18)誤差估計由公式(5.19)得這裏仍為0.5658.求一個次數不高於四次の多項式p(x),使它滿足解:這種題目可以有很多方法去做,但應以簡單為宜。
数值分析习题六解答
数值分析习题六解答习题六解答1、在区间[0,1]上⽤欧拉法求解下列的初值问题,取步长h=0.1。
(1)210(1)(0)2y y y '?=--?=?(2)sin (0)0x y x e y -'?=+?=?解:(1)取h=0.1,本初值问题的欧拉公式具体形式为21(1)(0,1,2,)n n n y y y n +=--=由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2;x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-= 指出:可以看出,实际上求出的所有数值解都是1。
(2)取h=0.1,本初值问题的欧拉公式具体形式为21(sin )(0,1,2,)n x n n n y y h x e n -+=++=由初值y 0=y(0)=0出发计算,所得数值结果如下: x 0=0,y 0=0; x 1=0.1,021000(sin )00.1(sin 0)00.1(01)0.1x y y h x e e -=++=+?+=+?+=x 2=0.2,122110.1(sin )0.10.1(sin 0.1)0.10.1(0.10.9)0.2x y y h x e e --=++=+?+=+?+=指出:本⼩题的求解过程中,函数值计算需要⽤到计算器。
2、⽤欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。
22(00.5)(0)1y x y x y '?=-≤≤?=? 解:(1) 取h=0.1,本初值问题的欧拉公式具体形式为21(2)(0,1,2,)n n n n y y h x y n +=+-=由初值y 0=y(0)=1出发计算,所得数值结果如下:x 0=0,y 0=1;x 1=0.1,221000(2)10.1(021)0.8y y h x y =+-=+?-?= x 2=0.2,222111(2)0.80.1(0.120.8)0.641y y h x y =+-=+?-?= (2)由预测校正公式11(,)[(,)(,)]2n n n n n n n n y hf x y hy f x y f x y ++?=+?=++n+1n+1y y ,取h=0.1,本初值问题的预测-校正公式的具体形式为122210.1(2)0.05[(2)(2)]nn n n n n n n y x y y x y x y ++?=+?-??=+-+-??n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.1,2000220001120.1(2)0.8,0.05[(2)(2)]10.05[(02)(0.120.8]0.8205y x y y x y x y =+?-==+?-+-=+?-+-?=11y yx 2=0.2,211122211122220.1(2)0.82050.1(0.120.8205)0.65740.05[(2)(2)]0.82050.05[(0.120.8205)(0.220.0.6574]0.6752y x y y x y x y =+?-=+?-?==+?-+-=+?-?+-?=22y y3、试导出解⼀阶常微分⽅程初值问题000(,)()()y f x y x a x b y x y '==≤≤??=?的隐式欧拉格式111(,)(0,1,2,)n n n n y y hf x y n +++=+=并估计其局部截断误差。
数值分析课后习题及答案
数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。
[解]。
3、给出的数值表用线性插值及二次插值计算的近似值。
X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。
若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。
[解]由,可知,,余项为,故。
2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。
[解]由插值余项定理,有,从而。
5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。
[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。
第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。
19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。
又,,,故法方程为,解得。
均方误差为。
27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。
,。
又,,,故法方程为,解得。
故直线运动为。
补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。
[解]电流、电阻与电压之间满足如下关系:。
应用最小二乘原理,求R使得达到最小。
对求导得到:。
令,得到电阻R为。
2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。
[解]令,求x使得达到最小。
对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。
数学分析第六章习题答案
数学分析第六章习题答案数学分析第六章习题答案数学分析是一门重要的数学学科,它以函数、极限和连续性为基础,研究数学对象的性质和变化规律。
第六章是数学分析课程中的重要章节,主要涉及级数和函数项级数的理论与应用。
本文将为读者提供第六章习题的详细解答,希望对大家的学习有所帮助。
1. 习题1:证明级数∑(n=1 to ∞) (1/n^2) 收敛。
解答:根据级数的判别法,我们可以使用比较判别法来证明该级数的收敛性。
比较判别法的核心思想是将给定级数与一个已知的收敛级数进行比较。
考虑级数∑(n=1 to ∞) (1/n^2) 和级数∑(n=1 to ∞) (1/n(n+1)),显然,对于任意n,都有1/n^2 ≤ 1/n(n+1)。
由于级数∑(n=1 to ∞) (1/n(n+1)) 是一个已知的收敛级数(可以使用比较判别法证明),所以根据比较判别法,原级数∑(n=1 to ∞) (1/n^2) 也是收敛的。
2. 习题2:证明函数项级数∑(n=1 to ∞) (x^n/n^2) 在区间(-1,1)上一致收敛。
解答:为证明函数项级数在区间(-1,1)上一致收敛,我们可以使用Weierstrass判别法。
该判别法要求级数的每一项函数都满足一致收敛的条件。
考虑函数项级数∑(n=1 to ∞) (x^n/n^2),对于任意x∈(-1,1),我们有|x^n/n^2| ≤ |x^n|,而级数∑(n=1 to ∞) (x^n) 是一个已知的收敛幂级数(当|x| < 1时),所以根据Weierstrass判别法,原函数项级数在区间(-1,1)上一致收敛。
3. 习题3:证明函数项级数∑(n=1 to ∞) (x^n/n) 在区间(-1,1)上不一致收敛。
解答:为证明函数项级数在区间(-1,1)上不一致收敛,我们可以使用Cauchy收敛准则。
该准则要求级数的部分和函数满足一致收敛的条件。
考虑函数项级数∑(n=1 to ∞) (x^n/n),对于任意x∈(-1,1),我们有|x^n/n| ≤ |x^n|,而级数∑(n=1 to ∞) (x^n) 是一个已知的发散幂级数(当|x| ≥ 1时),所以根据Cauchy收敛准则,原函数项级数在区间(-1,1)上不一致收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。
解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。
4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'''',()(),()02222a b a b a b a b P f P f P x ++++⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()()b a P x dx I f =⎰现分析截断误差:令'()()()()()()()222a b a b a b r x f x P x f x f x f +++=-=--+ 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数()()()()()2a bK t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()()22b bb baaa af a b R f f x dx I f f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()()224baa b b a f x dx I f R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯可解得:212.85n ≥即至少剖分213等分。
②由复化梯形公式的误差限4(4)5411()()10288028802S b a R f h f e n η--=-≤≤⨯ 可解得: 3.707n ≥即至少剖分4等分。
7、以0,1,2为求积节点,建立求积分3()I f x dx =⎰的一个插值型求积公式,并推导此求积公式的截断误差。
解:在0,1,2节点构造lagrange 插值多项式,则有2012()()(0)()(1)()(2)P x l x f l x f l x f =++(1)(2)(2)(1)(0)(1)(2)(01)(02)(10)(12)(20)(21)x x x x x x f f f ----=++------则(3)233()()()()()(1)(2)3!f f x P x x x x x x ξωω=+=--对上式在[0,3]上求积分,则有(3)333230()()()()3!f f x dx P x dx x dx ξω=+⎰⎰⎰其中33332222000032332333000(0)(2)()(32)((1))(2)()22(0)131(2)11[2](1)[][]2323232(0)3(2)9222239(0)(2)44f f P x dx x x dx f x x dx x x dx f f x x x f x x x x f f f f =-++--+-=-+--+-=⨯-⨯=-⎰⎰⎰⎰再分析截断误差3(3)1()()(1)(2)3!R f f x x x dx ξ=--⎰ 此处分段处理即23(3)(3)120211()()(1)(2)()(1)(2)()()3!3!R f f x x x dx f x x x dx R f R f ξξ=--+--=+⎰⎰1)其中,对于2(3)101()()(1)(2)3!R f f x x x dx ξ=--⎰由于(1)(2)x x x --在[0,2]上不保持常号故考虑构造一个三次多项式()F x 满足下列插值条件:''''(0)(0)(1)(1)(2)(2)(1)(1)(2)(2)F f F f F f F f F f =====由Hermite 插值方法,有(4)21()()()(0)(1)(2)4!f x F x f x x x dx ξ-=--- 则22(4)21001()[()()]()(1)(2)4!R f f x F x dx f x x x dx ξ=-=--⎰⎰显然此时2(1)(2)x x x --在[0,2]上恒小于等于0.于是由第二积分中值定理2(4)21102(4)43210(4)54322(4)1011()()(1)(2)4!1()(452)4!1151()[]()4!5390R f f x x x dxf x x x x dx f x x x x f ηηηη=--=-+-=-+-=-⎰⎰2)其中3(3)221()()(1)(2)3!R f f x x x dx ξ=--⎰显然(1)(2)x x x --在[2,3]上恒正.于是由第二积分中值定理3(3)2223(3)32(3)2221()()(1)(2)3!13()(32)()3!8R f f x x x dxf x x x dx f ηηη=--=-+=⎰⎰综上,截断误差(3)(4)122131()()()()()890R f R f R f f f ηη=+=- 所以 3(3)(4)213931()(0)(2)()(()()())44890I f x dx f f R f R f f fηη==-+=-⎰8、(1)试确定下列求积公式中的待定系数,指出其所具有的代数精度。
)](')0('[)]()0([2)(20h f f h h f f hdx x f h-++≈⎰α解:分别将1)(=x f ,x 代入求积公式,易知求积公式精确成立。
代入2)(x x f =,令求积公式精确成立,于是有:33323,3h h h α-==右左 可解得:121=α 代入3)(x x f =,于是有442,44444h h h h =-==右左 左=右,求积公式成立。
代入4)(x x f =,于是有632,54455h h h h =-==右左 右左≠,求积公式不精确成立。
综上可知,该求积公式具有三次代数精度。
9、对积分dx x x f ⎰-12)1)((,求构造两点Gauss 求积公式,要求:(1)在[0,1]上构造带权21)(x x -=ρ的二次正交多项式; (2)用所构造的正交多项式导出求积公式。
解:(1)构造在[0,1]上构造带权函数21)(x x -=ρ的正交多项式)(0x Q 、)(1x Q 、)(2x Q ,取1)(0=x Q 、)()()(011x Q x x Q α-= ,其中83)1()1()](),([)](),([1210200001=--==⎰⎰dx x dx x x x Q x Q x Q x xQ α, 则83)(1-=x x Q 。
同理,95111916)(22+-=x x x Q ,求)(2x Q 的零点得: 17306907.00=x ,66903619.01=x求积系数:39523617.0)(100≈=⎰dx x l A ρ27143053.0)(111≈=⎰dx x l A ρ(2)求(1)可导出求积公式:)()()1)((110012x f A x f A dx x x f +≈-⎰)66903619.0(27143053.0)17306907.0(39523617.0f f +=11、试用三点Gauss-Legendre 公式计算dx x⎰311并与精确值比较。
解:设三点Gauss-Legendre 求积节点为:5150-=t ,01=t ,5152=t相应求积系数为:950=A ,981=A ,952=A ,1=a ,3=b , x x f 1)(=,令t a b b a x 22-++=则dt t a b b a f a b dx x ⎰⎰--++-=1131)22(21 09803922.1)22(220≈-++-≈∑=i i i t a b b a f A a b精确值为:ln3=1.09861229, 二者误差:R ≈5.7307×10-4。
13、对积分11()ln f x dx x⎰导出两点Gauss 求积公式 解:在[0,1]上构造带权1()ln x xρ=的正交多项式0()x ϕ、1()x ϕ、2()x ϕ0()x ϕ=1,1000110110001ln ((),())1()()()1((),())4ln x dxx x x x x x x x x dxx ϕϕϕαϕαϕϕ=-====⎰⎰11()4x x ϕ∴=-同理可得22517()7252x x x ϕ=-+求2()x ϕ的零点可得010.112008810.60227691x x ==以0x 、1x 作为高斯点两点高斯公式,1n =,应有3次代数精度,求积公式形如1001101()ln ()()f x dx A f x A f x x=+⎰将()1,f x x =代入上式两段,1010100111ln 1ln dx A A xx dx x A x Ax ⎧=+⎪⎪⎨⎪=+⎪⎩⎰⎰ 联立解出:010.71853932,0.28146068A A ≈≈ 所以所求两点Gauss 求积公式1001101()ln ()()0.71853932(0.11200881)0.28146068(0.60227691)f x dx A f x A f x f f x=+=+⎰15、利用三点Gauss-Laguerre 求积公式计算积分211dx x +∞+⎰解:原积分201()1xI dx e f x dx x +∞+∞-==+⎰⎰,其中2()1x e f x x =+ 由三点Gauss-Laguerre 求积节点:0130.4157745568, 2.2942803063, 6.2899150829x x x ===相应求积系数0120.7110930099,0.2785177336,0.010*******A A A === 则2() 1.49790652KK K I Af x ==≈∑16、设()f x 四阶连续可导,0,0,1,2i x x ih i =+=。