精品高中数学北师大版必修1习题:第二章函数2-1-2-2-1

合集下载

北师大版高中数学必修第一册 第二章 2-2《分段函数》课件PPT

北师大版高中数学必修第一册 第二章 2-2《分段函数》课件PPT

+ = 1,
= −1,
解得ቊ
= 2,
= 2.
∴左侧射线对应的函数解析式为y=-x+2(x≤1).
同理,当x≥3时,对应的函数解析式为y=x-2(x≥3).
再设抛物线对应的二次函数解析式为y=a(x-2)2+2(1<x<3,a<0).
∵点(1,1)在抛物线上,∴a+2=1,∴a=-1.
2.已知函数值求自变量的值的步骤
(1)先确定所求自变量的值可能存在的区间及其对应的函数解析式.
(2)再将函数值代入不同的解析式中.
(3)通过解方程求出自变量的值.
(4)检验所求的值是否在所讨论的区间内.
延伸探究
在本例已知条件下,若f(x)>0,求x的取值范围.
≥ 2,
0 ≤ < 2,
< 0,
可得到以下函数解析式y=
4,10 < ≤ 15,∈N+ ,
5,15 < ≤ 19,∈N+ .
根据这个函数解析式,可画出函数图象,如图所示.
典例剖析

分段函数的理解与应用
如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为2 2 cm,
当垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l
第二章
§2
函 数
2.2
函数的表示法
第2课时
分段函数
学习目标
1.了解分段函数的概念.
2.会求分段函数的函数值,能画出分段函数的图象.
3.能在实际问题中列出分段函数,并能解决有关问题.
核心素养:数学抽象、直观想象、数学建模

北师大版高中数学必修第一册 第二章 2-1《函数概念》课件PPT

北师大版高中数学必修第一册 第二章 2-1《函数概念》课件PPT
(2)求g(f(2)),求f(g(x));
1
=4,求x.
(())
(3)若
1
1
解:(1)f(2)=1+2 = 3,g(2)=22+2=6.
1
1
19
1
1+()
(2)g(f(2))=g 3 = 3 2+2= 9 , f(g(x))=
(3)
1
=x2+3=4,即x2=1,得x=±1.
(())
1
求复合函数或抽象函数的定义域应明确以下几点:
(1)函数f(x)的定义域是指x的取值范围所组成的集合.
(2)函数f(φ(x))的定义域是指x的取值范围,而不是φ(x)的取值范围.
(3) f(t),f(φ(x)),f(h(x))三个函数中的t,φ(x),h(x)在对应关系f下的范围相同.
(4)已知f(x)的定义域为A,求f(φ(x))的定义域,其实质是已知φ(x)的取值范围为A,求出x的取值范围.
都有意义的自变量的取值集合(即求各式子自变量取值集合的交集).
变式训练
求函数y= 2 + 3 −
1
2−
1
+ 的定义域.
2 + 3 ≥ 0,
3
解:要使函数有意义,需ቐ 2− > 0, 解得-2≤x<2,且x≠0,
≠ 0,
所以函数y= 2 + 3 −
1
2−
1
3
+ 的定义域为 ቚ− 2 ≤ < 2,且 ≠ 0 .
+ 2 ≠ 0,
≠ −2,
即ቊ
解得x<0,且x≠-2.
||− ≠ 0,
|| ≠ ,

新版高中数学北师大版必修1习题:第二章函数 2.1-2.2.1(1)

新版高中数学北师大版必修1习题:第二章函数 2.1-2.2.1(1)

02第二章函数§1生活中的变量关系§2对函数的进一步认识2.1函数概念课时过关·能力提升1已知函数f(x)=1的定义域为M,g(x)=√x+2的定义域为N,则M∩N=()√2-xA.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}答案:D2函数f(x)=1(x∈R)的值域是()x2+1A.(0,1)B.(0,1]C.[0,1)D.[0,1]≤1,解析:由x2+1≥1,得0<1x2+1故函数f(x)的值域为(0,1].答案:B3已知函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点有()A.0个B.1个C.2个D.0个或多个解析:函数y=f (x )的定义域为(-1,3),则在同一坐标系中,函数f (x )的图像与直线x=2的交点个数有1个,故选B .答案:B4已知等腰三角形ABC 的周长为10,且底边长y 关于腰长x 的函数关系为y=10-2x ,则此函数的定义域为( )A.RB.{x|x>0}C.{x|0<x<5}D.{x |52<x <5} 解析:∵等腰三角形的周长为10,∴{x >0,10-2x >0,2x >10-2x ,∴52<x<5. 答案:D5已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,则方程g (f (x ))=x 的解集为( )A.{1}B.{2}C.{3}D.⌀解析:当x=1时,g (f (1))=g (2)=2,不符合题意;当x=2时,g (f (2))=g (3)=1,不符合题意;当x=3时,g (f (3))=g (1)=3,符合题意.故选C .答案:C★6若函数f (x )=(a 2-2a-3)x 2+(a-3)x+1的定义域和值域都为R ,则a 的值是( )A.a=-1或a=3B.a=-1C.a=3D.a 不存在 解析:因为函数f (x )的定义域和值域都为R ,所以函数f (x )为一次函数,即{a 2-2a -3=0,a -3≠0,解得a=-1.故选B . 答案:B7函数y=√x +2的定义域是 .解析:要使该函数有意义,则x+2≥0,故x ≥-2.答案:{x|x ≥-2}8已知集合M={x|y=x 2+1},集合N={y|y=x 2+1},则M ∩N= . 解析:∵M=R ,N={y|y ≥1},∴M ∩N={y|y ≥1}.答案:{y|y ≥1}9函数f (x )=(√x -1-2)0+1√x -1的定义域是 . 答案:{x|x>1,且x ≠5}10已知函数f (x )=x+1x+2.(1)求f (2);(2)求函数f (x )的值域.解(1)f (2)=2+12+2=34.(2)f (x )=x+1x+2=x+2-1x+2=1-1x+2,又1x+2≠0,∴1-1x+2≠1,∴f (x )≠1,故函数f (x )的值域是(-∞,1)∪(1,+∞).11若f {f [f (x )]}=27x+26,求一次函数f (x )的解析式.解设f (x )=ax+b (a ≠0),则f [f (x )]=a 2x+ab+b ,f {f [f (x )]}=a (a 2x+ab+b )+b=a 3x+a 2b+ab+b ,所以{a 3=27,a 2b +ab +b =26,解得{a =3,b =2,则f (x )=3x+2. ★12已知函数f (x )=x 21+x 2. (1)求f (2)与f (12),f (3)与f (13).(2)由(1)中求得的结果,你能发现f (x )与f (1x )的关系吗?并证明你的发现.(3)求f (1)+f (2)+f (3)+…+f (2 016)+f (12)+f (13)+…+f (12 016). 解(1)∵f (x )=x 21+x 2,∴f (2)=221+22=45,f (12)=(12)21+(12)2=15,f (3)=321+32=910,f (13)=(13)21+(13)2=110. (2)由(1)中的结果发现f (x )+f (1x )=1.证明如下:f (x )+f (1x )=x 21+x 2+(1x )21+(1x )2=x 21+x 2+11+x 2=1. (3)f (1)=121+12=12.由(2)知f (2)+f (12)=1,f (3)+f (13)=1,…f (2 016)+f (12 016)=1, ∴原式=12+1+1+1+…+1⏟ 2 015个=2 015+12=4 0312.。

高中数学第二章函数 函数概念学案含解析北师大版必修1

高中数学第二章函数 函数概念学案含解析北师大版必修1

§2对函数的进一步认识2.1函数概念知识点一函数的有关概念[填一填]1.定义2.相关名称(1)自变量是x.(2)函数的定义域是集合A.(3)函数的值域是集合B.3.函数的记法集合A上的函数可记作:f:A→B或y=f(x),x∈A.[答一答]1.任何两个集合之间都可以建立函数关系吗?提示:不是.首先这两个集合必须为数集,其次满足对一个集合中的任意一个数x,在另一个集合中都有唯一确定的数与之对应.2.对于一个函数y=f(x),在定义域内任取一个x值,有几个函数值与其对应?提示:有唯一确定的一个函数值与其对应.3.f(x)与f(a)的区别与联系是什么?提示:当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f(a)是f(x)的一个特殊值.4.如何理解函数的对应法则?提示:对应法则指的是自变量与因变量之间的存在关系.知识点二区间及有关概念[填一填]1.区间的定义条件:a<b(a,b为实数).结论:区间闭区间开区间左闭右开区间左开右闭区间符号[a,b](a,b)[a,b)(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)5.数集都能用区间表示吗?提示:不能.连续不间断数集可以用区间表示.不连续数集不能用区间表示.6.“∞”是一个数吗?提示:“∞”不是一个数,它指的是“无穷大”.7.区间之间可以像集合之间那样进行“交、并、补”运算吗?若A=(1,+∞),B=(-∞,2],A∩B如何表示?提示:可以运算.A∩B=(1,2].1.对函数概念的三点说明(1)函数必须是建立在非空数集上的一个概念.若自变量的取值为空集,则这时函数是不存在的.(2)根据函数的概念,两个变量之间是否具有函数关系需要检验:定义域和对应法则是否给出;在对应法则之下每一个x是否只与唯一的y对应.(3)由于函数的值域被函数的定义域和对应法则完全确定,这样确定一个函数就只需要函数的定义域和对应法则,从而判定两个函数是否为同一个函数只需看其定义域和对应法则是否相同即可.2.对函数符号y=f(x)的理解在这个函数符号y=f(x)中,x是自变量,f表示的是对应法则,它可以看作是对x施行的某种运算法则,可以是一个代数式、也可以是一个表格,还可以是一个图像.3.f(x)与f(a)的区别与联系当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量.而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f (a )是f (x )的一个特殊值. 4.对区间的四点说明(1)区间表示的就是一个集合,只是一个特殊的集合——非空数集. (2)区间的左端点对应的值一定比右端点对应的值小.(3)区间的端点在区间内则写成闭的,如果不在区间内则写成开的.(4)在数轴上表示区间时,用实心的点表示闭区间的端点,用空心点表示开区间的端点.类型一 相同函数的判断【例1】 下列各组函数是否表示同一个函数? (1)f (x )=2x +1与g (x )=4x 2+4x +1; (2)f (x )=x 2-xx与g (x )=x -1;(3)f (x )=|x -1|与g (x )=⎩⎪⎨⎪⎧x -1 (x ≥1),1-x (x <1);(4)f (n )=2n -1与g (n )=2n +1(n ∈Z ); (5)f (x )=x 2-2x 与g (t )=t 2-2t .【思路探究】 根据解析式判断两个函数f (x )和g (x )是否是同一个函数的步骤是:①先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相同,如果定义域相同,再执行下一步;②化简函数的解析式,如果化简后的函数解析式相同,那么它们相同,否则它们不相同.【解】 (1)g (x )=|2x +1|,f (x )与g (x )的对应关系不同,因此是不同的函数. (2)f (x )=x -1(x ≠0),f (x )与g (x )的定义域不同,因此是不同的函数.(3)f (x )=⎩⎪⎨⎪⎧x -1 (x ≥1)1-x (x <1),f (x )与g (x )的定义域相同,对应关系相同,因此是相同的函数.(4)f (n )与g (n )的对应关系不同,因此是不同的函数.(5)f (x )与g (t )的定义域相同,对应关系相同,自变量用不同字母表示,仍为同一函数. 规律方法 函数概念含有三个要素,即定义域A ,值域C 和对应关系f ,其中核心是对应关系f ,它是函数关系的本质特征.只有当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一函数.换言之就是:(1)定义域不同,两个函数也就不同. (2)对应关系不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应关系.(1)下列每组函数是同一函数的是( B ) A .f (x )=x -1,g (x )=(x -1)2B .f (x )=|x -3|,g (x )=(x -3)2C .f (x )=x 2-4x -2,g (x )=x +2D .f (x )=(x -1)(x -3),g (x )=x -1·x -3 (2)下列每组中两个函数是同一函数的组数为3. ①f (x )=x 2+1和f (v )=v 2+1 ②y =1-x 2|x +2|和y =1-x 2x +2③y =x 和y =x 3+x x 2+1解析:①中对应法则相同,定义域相同,只是表示自变量的字母不同,所以是同一函数. ②中定义域相同,化简后对应法则相同,所以是同一函数. ③化简后对应法则相同,定义域也都是R ,所以是同一函数. 类型二 求函数的定义域 【例2】 求下列函数的定义域. (1)f (x )=4-xx +1; (2)y =-x2x 2-3x -2;(3)f (x )=2x +3-12-x +1x; (4)y =31-1-x.【思路探究】 若一个函数是由两个或两个以上的数学式子的和、差、积、商构成的,则定义域是使各部分有意义的自变量的取值集合的交集.【解】 (1)由已知得⎩⎪⎨⎪⎧4-x ≥0,x +1≠0,解得x ≤4且x ≠-1.所求定义域为{x |x ≤4且x ≠-1}.(2)由已知得⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12.所求定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0且x ≠-12. (3)由已知得⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2且x ≠0.所求定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2且x ≠0.(4)由已知得⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.规律方法 函数y =f (x )以解析式的形式给出时,函数的定义域就是使这个解析式有意义的自变量的取值范围,具体来说,常有以下几种情况:(1)f (x )为整式型函数时,定义域为R ;(2)f (x )为分式型函数时,定义域为使分母不为零的实数的集合; (3)f (x )为偶次根式型函数时,定义域为使被开方数非负的实数的集合; (4)函数y =x 0中的x 不为0;(5)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合,即列出不等式组求各不等式解集的交集.求下列函数的定义域: (1)f (x )=1x -2; (2)f (x )=2x +6; (3)f (x )=1-x +15+x ;(4)f (x )=4-x 22+x.解:(1)因为使式子1x -2有意义的实数的集合为{x |x ≠2},所以函数f (x )=1x -2的定义域为{x |x ≠2}.(2)因为使式子2x +6有意义的实数的集合为{x |x ≥-3},所以函数f (x )=2x +6的定义域为{x |x ≥-3}.(3)因为使式子1-x 有意义的实数的集合为{x |x ≤1},使式子15+x有意义的实数的集合为{x |x ≠-5},所以函数f (x )=1-x +15+x的定义域为{x |x ≤1,且x ≠-5}.(4)因为使式子4-x 22+x 有意义的实数的集合为{x |x ≠-2},所以函数f (x )=4-x 22+x 的定义域为{x |x ≠-2}.类型三 求函数的值域 【例3】 求下列函数的值域: (1)y =12x 2-1,x ∈{-1,0,1,2,3,4};(2)y =3+x 4-x ;(3)y =2x 2-4x +3; (4)y =1-x 21+x 2.【思路探究】 求函数的值域就是通过函数定义域中x 的取值,根据对应关系确定y 的取值.【解】 (1)(观察法)将x =-1,0,1,2,3,4分别代入y =12x 2-1,得y =-12,-1,-12,1,72,7.∴此函数的值域为⎩⎨⎧⎭⎬⎫-1,-12,1,72,7.(2)方法1(分离常数法):y =3+x 4-x =-(4-x )+74-x =-1+74-x. ∵74-x≠0,∴y ≠-1,∴此函数的值域为{y |y ≠-1}. 方法2(反解法):∵y =3+x4-x ,∴4y -xy =x +3,∴x =4y -3y +1,y ≠-1,∴此函数的值域为{y |y ≠-1}.(3)(配方法)∵2x 2-4x +3=2(x -1)2+1≥1, ∴y =2x 2-4x +3≥1=1, ∴此函数的值域为[1,+∞).(4)(分离常数法)∵y =1-x 21+x 2=-1+21+x 2,而该函数的定义域为R , ∴1+x 2≥1,∴0<21+x 2≤2,∴-1<-1+21+x 2≤1,∴此函数的值域为(-1,1].规律方法 求函数的值域时,一定要将最终的结果表示成集合或者区间的形式.在用列举法表示函数的值域时,如(1),要注意相同的元素归入一个集合时,只能算作一个.(1)如果f (x )=x 2-x -6,则f (5)=14. (2)函数y =8x 2(1≤x ≤2)的值域为[2,8].(3)函数y =2x 3x -4的值域是(-∞,23)∪(23,+∞).解析:(1)由f (x )=x 2-x -6得f (5)=25-5-6=14. (2)因为1≤x ≤2,所以1≤x 2≤4,14≤1x 2≤1,故2≤8x2≤8.(3)y =2x 3x -4=23(3x -4)+833x -4=23+83(3x -4),因为83(3x -4)恒不为零,而且可以取到其他的所有实数,所以y ≠23.——易错误区—— 忽视函数的定义域导致的错误【例4】 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )【错解】 选A 或选D.【正解】 B 选项A 中,在集合M 中,当x >0时的元素在N 中没有数与之对应①,不符合函数的定义; 选项C 中,一个变量x 可能对应着两个y 的值,也不符合函数的定义; 选项D 中,一个x 对应着一个y ,但N 为值域②,所以集合N 中的每一个数在M 中也必须有数与之对应,但是N 中存在数在M 中没有数与之对应.故选B.【错因分析】 1.忽视①处即函数定义域中的每一个元素都要有元素与之对应; 2.忽视题目给出的条件即②处N 是函数的值域,而导致错选D. 【防范措施】 1.深刻理解函数定义中的条件对于定义域中的每一个数在对应法则之下都要有唯一一个数与之对应,只要在定义域中存在一个数找不到与之对应的元素,或者是一个数对应着两个或以上的数时均不能称为函数.如本例中的A 项在x >0时,没有数与之对应,故不是函数y =f (x )的图像.2.认真审题解题时,除了掌握常规的知识外,还要认真审题,如本例中的集合N 为值域,故也要保证N 中的每个数在M 中也要有数与之对应.设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如图所示的四个图形,其中能表示从集合M 到集合N 的函数关系的有( B )A .0个B .1个C .2个D .3个解析:由函数的定义知,M 中任一元素在N 中都有唯一的元素与之对应,即在x 轴上的区间[0,2]内任取一点作y 轴的平行线,与图像只有一个交点即可.由函数定义知①不是,因为集合M 中1<x ≤2时,在N 中无元素与之对应;③中的x =2对应元素y =3∉N ,所以③不是;④中x =1时,在N 中有两个元素与之对应,所以④不是.一、选择题1.下列关于函数与区间的说法正确的是( D ) A .函数定义域必不是空集,但值域可以是空集 B .函数定义域和值域确定后,其对应法则也就确定了 C .数集都能用区间表示D .函数中一个函数值可以有多个自变量值与之对应解析:函数的定义域和值域都是非空的数值,故A 错;函数的定义域和对应法则确定后,函数的值域也就确定了,故B 错;数集不一定能用区间表示,故C 错,选D.2.符号y =f (x )表示( B ) A .y 等于f 与x 的积 B .y 是x 的函数C .对于同一个x ,y 的取值可能不同D .f (1)表示当x =1时,y =1解析:符号y =f (x )是一个整体符号,表示y 是x 的函数,则A 错,B 正确;由函数的定义知,对于同一个自变量x 的取值,变量y 有唯一确定的值,则C 错; f (1)表示x =1对应的函数值,则D 错.故选B.3.与y =x 是同一个函数的是( D ) A .y =|x | B .y =x 2 C .y =x 2xD .y =t解析:对于函数y =x 定义域和值域均为R ,而选项A 与B 的值域为[0,+∞),故A 与B 错;对选项C,定义域为{x |x ∈R 且x ≠0},只有D 正确.二、填空题4.函数y =x +1x的定义域为{x |x ≥-1,且x ≠0}. 解析:本题考查函数定义域,要使y =x +1x 有意义,则⎩⎪⎨⎪⎧x +1≥0x ≠0,所以解得x ≥-1且x ≠0,即函数定义域为{x |x ≥-1,且x ≠0},求函数定义域和值域的结果都应写成“解集”形式.本题结果还可表示为[-1,0)∪(0,+∞)等.5.下列函数是同一函数的序号为(3).(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0,-1 x <0;(2)f (x )=x 2与g (x )=3x 3; (3)f (x )=x 2-2x +1与g (t )=(t -1)2.解析:对于(1)来说,f (x )的定义域中不含有0,而g (x )的定义域为R ,定义域不同. 对于(2)来说,两个函数的定义域都为R ,但f (x )=|x |,而g (x )=x ,解析式不同. 故(1)(2)都不是同一函数.而对于(3)来说,尽管两个函数的自变量一个用x 表示,另一个用t 表示,但它们定义域相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者是同一函数.三、解答题6.已知函数f (x )=x 2+x -1,求 (1)f (2); (2)f (1x+1);(3)若f (x )=5,求x 的值. 解:(1)f (2)=4+2-1=5.(2)f (1x +1)=(1x +1)2+(1x +1)-1=1x 2+3x +1.(3)f (x )=5,即x 2+x -1=5. 由x 2+x -6=0得x =2或x =-3.。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-13.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<6.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞7.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 8.若函数()f x =的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3811.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.15.函数2()23||f x x x =-的单调递减区间是________.16.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .17.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 18.如图,是某个函数的图象,则该函数的解析式y =__________;19.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.20.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值;(3)求函数()22f x x x =-的所有的“和谐区间”.25.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值. 26.已知二次函数2()23=-+f x x x .(Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域;(Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭,若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭.【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =27x =. 3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.5.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解由函数单调性性质得:3y x =,21x y =+在R 上单调递增 所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.6.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b -≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.7.A解析:A 【分析】 由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x<的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;8.D解析:D 【分析】 令22(2)1t mx m x =+-+()0,t ∈+∞()22(2)0,1mx m x +-++∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】 令22(2)1t mxm x =+-+,则1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞,即()22(2)0,1mx m x +-+∈+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果.【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<.综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .15.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题16.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.17.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.18.【分析】根据分段函数图象用待定系数法求解即可【详解】当时设函数为当时解得;当时设函数为当时时解得所以故答案为:【点睛】本题考查利用函数图象求解析式考查待定系数法是基础题解析:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【分析】根据分段函数图象,用待定系数法求解即可.当01x ≤<时,设函数为y kx =,当1x =时2y =,解得2k =; 当13x ≤≤时,设函数为y ax b =+, 当1x =时3y =,3x =时0y =,解得32a =-,92b =. 所以2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩. 故答案为:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【点睛】本题考查利用函数图象求解析式,考查待定系数法,是基础题.19.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .20.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数, 则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

(北师大版)高中数学必修1检测第2章 函数2.2.1 Word版含解析

(北师大版)高中数学必修1检测第2章 函数2.2.1 Word版含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).下列对应:①=,=*,对应关系:“对集合中的元素,取绝对值与中的元素对应”;②={,-,-},={},对应关系:→=,∈,∈;③={三角形},={>},对应关系:“对中的三角形求面积与中元素对应”.是集合到集合上的函数的有( ).个.个.个.个解析:①中有的元素在中无对应元素.如中的元素;③中的元素不是实数,即不是数集;只有②满足函数的定义,故选.答案:.下列各组函数中,表示同一个函数的是( ).=-和=.=和=.()=和()=(+).()=和()=解析:中的函数定义域不同;中=的不能取;中两函数的对应关系不同,故选.答案:.函数=+的定义域为( ).{≥}.{≤}.{≤≤}.{≥或≤}解析:由题意可知(\\(-≥,≥,))解得≤≤.答案:.函数()=的定义域为( ).(,+∞).[)∪(,+∞).[,+∞).[) 解析:由题意知,要使函数有意义,需满足(\\(-≥,-≠))即≥且≠.答案:二、填空题(每小题分,共分).已知函数()=-,∈{∈≤≤},则函数()的值域为.解析:∵=.∴()=-=-.∴()的值域为{-}.答案:{-}.若={=},={=+},则∩=.解析:由={=},={=+},得=[-,+∞),=[,+∞),∴∩=[,+∞).答案:[,+∞)三、解答题(每小题分,共分).判断下列对应是否为集合到集合的函数.()=,={>},:→=;()=,=,:→=;()=,=,:→=;()={-≤≤},={},:→=.解析:()中的元素在中没有对应元素,故不是集合到集合的函数.()对于集合中的任意一个整数,按照对应关系:→=在集合中都有唯一一个确定的整数与其对应,故是集合到集合的函数.()集合中的负整数没有平方根,故在集合中没有对应的元素,故不是集合到集合的函数.()对于集合中任意一个实数,按照对应关系:→=在集合中都有唯一一个确定的数和它对应,故是集合到集合的函数..已知函数()=-.()求函数()的定义域;()求(-), ()的值.解析:()根据题意知-≠且+≥,∴≥-且≠,即函数()的定义域为[-)∪(,+∞).()(-)=-=--.()=-=-=-.☆☆☆.(分)已知函数()=+的定义域为集合,={<}.()求集合;()若⊆,求的取值范围;()若全集={≤},=-,求∁及∩(∁).解析:()使有意义的实数的集合是{≤},使有意义的实数的集合是{>-}.所以,这个函数的定义域是{≤}∩{>-}={-<≤}.即={-<≤}.()因为={-<≤},={<}且⊆,所以>.。

新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法

新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法

题型一 题型二 题型三
反思列表法、图像法和解析法分别从三个不同的角度刻画了自 变量与函数值的对应关系.采用列表法的前提是定义域内自变量的 个数较少;采用图像法的前提是函数的变化规律清晰;采用解析法 的前提是变量间的对应关系明确.
题型一 题型二 题型三
【变式训练1】 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个 笔记本需要y元,试用三种表示法表示函数y=f(x).
123456
解析:由题意知该学生离学校越来越近,故排除选项A;又由于开始 匀速,后来因交通堵塞停留一段时间,最后是加快速度行驶,故选C. 答案:C
123456
3若g(x+2)=2x+3,则g(3)的值是( ) A.9 B.7 C.5 D.3 答案:C
123456
4某航空公司规定,乘客所携带行李的质量(kg)与其运费(元)由图中 的函数图像确定,则乘客可免费携带行李的最大质量为( )
题型一 题型二 题型三
题型一 函数的表示方法 【例1】 某商场新进了10台彩电,每台售价3 000元,试分别用列 表法、图像法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与 收款总额y(元)之间的函数关系. 分析:明确函数的定义域 明确函数的值域 用三种表示 方法表示函数
2.2 函数的表示法
第1课时 函数的三种表示方法
1.掌握函数的三种表示方法——解析法、图像法、列表法. 2.会作简单函数的图像,掌握求函数解析式的一般方法.
1.函数的表示法
名师点拨函数的三种表示方法的优缺点比较.
【做一做1】 以下形式中,不能表示“y是x的函数”的是 ( )
A.
x
1
2
3
4

2019-2020学年高中数学北师大版必修1练习:2.2.1函数概念-附答案

2019-2020学年高中数学北师大版必修1练习:2.2.1函数概念-附答案

2.1函数概念课后篇巩固提升A组基础巩固1.对于函数y=f(x),下列命题正确的个数为()①y是x的函数;②对于不同的x值,y值也不同;③f(a)表示当x=a时函数f(x)的值,是一个常量;④f(x)一定可以用一个具体的式子表示.A.1B.2C.3D.4解析:①③正确.对于②,不同的x值可对应同一个y值,如y=x2;f(x)不一定是函数关系式,也可以用图像或表格等形式来体现.答案:B2.函数f(x)=--的定义域是()A.[2,3)B.(3,+∞)C.[2,3)∪(3,+∞)D.(2,3)∪(3,+∞)解析:由--解得x≥2,且x≠3.故函数f(x)的定义域为[2,3)∪(3,+∞).答案:C3.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=()2B.f(x)=--,g(x)=x+1C.f(x)=|x|,g(x)=D.f(x)=-,g(x)=-解析:对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数.对于B选项,f(x)的定义域为{x|x≠1},g(x)的定义域为R,∴不是同一函数.对于C选项,f(x)的定义域为R,g(x)的定义域为R,且两函数解析式化简后为同一解析式,∴是同一函数.对于D选项,f(x)的定义域为[1,+∞),g(x)的定义域为(-∞,-1]∪[1,+∞),∴不是同一函数.故选C.答案:C4.下列式子不能表示函数y=f(x)的是()A.x=y2+1B.y=2x2+1C.x-2y=6D.x=解析:B中,y=2x2+1是二次函数;C中,y=x-3;D中,y=x2,x≥0;A中,y=±-,y不是x的函数.答案:A5.已知f(x)=x2-3x,且f(a)=4,则实数a等于()A.4B.-1C.4或-1D.-4或1解析:由已知可得a2-3a=4,即a2-3a-4=0,解得a=4或a=-1.答案:C6.下表表示y是x解析:∵5<6≤10,∴6对应的函数值是3.答案:37.函数f(x)=x2-2x,x∈{-2,-1,0,1}的值域为.解析:因为f(-2)=(-2)2-(-2)=6,f(-1)=(-1)2-2×(-1)=3,f(0)=02-2×0=0,f(1)=12-2×1=-1,所以f(x)的值域为{6,3,0,-1}.答案:{6,3,0,-1}8.已知函数f(x)=.(1)求f(2);(2)若f(m)=2,求m的值.解:(1)f(2)=.(2)∵f(m)==2,∴m=-3.9.求下列函数的定义域:(1)f(x)=-;(2)f(x)=--+2;(3)f(x)=-.解:(1)当x-|x|≠0,即|x|≠x,也即x<0时,f(x)有意义,故函数f(x)的定义域为(-∞,0).(2)要使函数有意义,应满足--解得1≤x≤4.故函数f(x)的定义域为[1,4].(3)要使函数f(x)有意义,应满足-解得x≤1,且x≠-1.故函数f(x)的定义域为(-∞,-1)∪(-1,1].10.求下列函数的值域:(1)y=1-;(2)y=;(3)f(x)=3-2x,x∈[0,2].解:(1)∵函数的定义域为{x|x≥0},∴≥0.∴1-≤1.∴函数y=1-的值域为(-∞,1].(2)∵y==2-,且其定义域为{x|x≠-1},∴≠0,即y≠2.∴函数y=的值域为{y|y∈R,且y≠2}.(3)∵0≤x≤2,∴0≤2x≤4.∴-1≤3-2x≤3,即-1≤f(x)≤3,故函数f(x)的值域是[-1,3].B组能力提升1.如图所示,可表示函数y=f(x)的图像的是()解析:由函数定义可知D正确.答案:D2.已知g(x)=1-2x,f(g(x))=-(x≠0),则f等于()A.1B.3C.15D.30解析:由已知1-2x=,∴x=,∴f -=15,故选C.答案:C3.若函数y=f(x+2)的定义域为[0,1],则函数y=f(x)的定义域为()A.[2,3]B.[0,1]C.[-2,-1]D.[0,-1]解析:解决此类问题的关键要弄清函数定义域是指x的变化范围,而借助的理论依据是y=f(x)中对应关系f所施加的对象取值是一致的.对于本题函数y=f(x)的定义域其实为函数y=f(x+2)中“x+2”的整体范围,因此可得y=f(x)的定义域为[2,3].答案:A4.导学号85104026(信息题)若一系列函数的关系式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数关系式为y=2x2-1,值域为{1,7}的“孪生函数”共有()A.10个B.9个C.8个D.4个解析:由2x2-1=1,得x=±1;由2x2-1=7,得x=±2.因此当y=2x2-1的定义域为{-2,-1},{-1,2},{-2,1},{1,2},{-2,2,1},{-2,2,-1},{2,-1,1},{-2,-1,1},{-1,1,2,-2}时,函数值域均为{1,7}.答案:B5.函数f(x)=--的值域为.解析:由--解得x=2 018.所以函数的定义域为{2 018}.显然f(2 018)=0+0=0.所以函数的值域为{0}.答案:{0}6.有下列三个命题:①y=|x|,x∈{-2,-1,0,1,2,3},则它的值域是{0,1,4,9};②y=--,则它的值域为R;③y=-,则它的值域为{y|y≥0}.其中正确命题的序号是.解析:对于①,当x=-2,-1,0,1,2,3时,|x|=2,1,0,1,2,3.因此函数的值域为{0,1,2,3}.故①不正确.对于②,∵y=--=x+1(x≠1),∴x=y-1≠1,∴y≠2.即值域为(-∞,2)∪(2,+∞).故②不正确.对于③,∵y=-≥0,∴其值域为[0,+∞),故③正确.答案:③7.已知函数f(x)=x2+x-1.(1)求f(2),f;(2)若f(x)=5,求x的值.解:(1)f(2)=22+2-1=5,f-1=-.(2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2或x=-3.8.已知函数f(x)=.(1)求f(1),f(2)+f的值;(2)证明:f(x)+f等于定值;(3)求f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f的值.(1)解:f(1)=;f(2)=,f,所以f(2)+f=1.(2)证明:f,所以f(x)+f=1,为定值.(3)解:由(2)知,f(x)+f=1.所以f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f=f(1)+f(2)+f+f(3)+f+…+f(2 018)+f=….。

2-1、2-1函数概念

2-1、2-1函数概念

第二章 ·§1、§2 ·第1课时
成才之路 ·数学 ·北师大版 · 必修1
(3)依题意,f(1)=f(3)=3,f(3)=4,即 A 中的每一个元素 在对应关系 f 之下,在 B 中都有唯一元素与之对应,虽然 B 中有很多元素在 A 中无元素与之对应,但依函数的定义,仍 能构成函数.
第二章 ·§1、§2 ·第1课时
第二章 ·§1、§2 ·第1课时
成才之路 ·数学 ·北师大版 · 必修1
(4)f(n)=2n-1 与 g(n)=2n+1(n∈Z); (5)f(x)=x2-2x 与 g(t)=t2-2t. [分析] 对于根式、分式、绝对值式,要先化简再判断,
在化简时要注意等价变形,否则等号不成立.
第二章 ·§1、§2 ·第1课时
第二章 函数
成才之路 ·数学 ·北师大版 · 必修1
重点难点
重点:1.集合观点下的函数概念以及对函数概念的理解和 认识; 2.函数的单调性与最值,函数的奇偶性; 3.以一次、二次函数为载体,学习研究函数的方法. 难点:1.函数及其有关性质及应用; 2.函数的单调性的判定及应用; 3.二次函数的应用.
(1)x2+y2=2;(2) x-1+ y-1=1; (3)y= x-2+ 1-x. [分析] 依据函数的定义来判断.
第二章 ·§1、§2 ·第1课时
成才之路 ·数学 ·北师大版 · 必修1
[解析]
(1)由 x2+y2=2,得 y=± 2-x2,因此由它不能
确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个,即± 1. (2)由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 的值与 之对应,故由它可以确定 y 是 x 的函数.

北师大版高一必修1数学第二章 函数

北师大版高一必修1数学第二章  函数

第二章 函数知识点一 函数定义域例题1:求函数x x y 712--=的定义域。

例题2:(1)已知函数()x f y =的定义域为【-2,3】,求函数y =f (2x-3)的定义域;(2)已知函数()32-=x f y 的的定义域是[-2,3],求函数()2+=x f y 的定义域。

知识点二:函数值及其值域求函数值域,应根据各个式子的不同结构特点,选择不同的方法:(1)观察法∶通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出函数的值域;(2)配方法∶若函数是二次函数,即可化为c bx ax y ++=2(a ≠0)型的函数,则可通过配方并结合二次函数性质求值域,但要注意给定区间的二次函数最大(小)值的求法;(3)换元法∶通过对函数的解析式进行适当换元,可将复杂的函数化为几个简单的函数,从而利用基本函数自变量的取值范围求函数的值域;(4)分离常数法∶此方法主要是针对有理分式.即将有理分式转化为"反比例函数"的形式,便于求值域。

例题:求下列函数的值域∶(1) y=x+1,x ∈{1,2,3,4,5};(2) y=x 2-2x+3,∈[0,3); (3)312-+=x x y (4)12--=x x y变式练习:求下列函数的值域。

(1)f(x)=(x-1)2+1,x ∈{-1,0,1,2,3};(2)f(x)=x 2-2x+2; (3)145-+=x x y (4)1+-=x x y能力提升练习题:1、若函数()()()213222+++--=x a x a a x f 的定义域和值城都是R ,则a 的值为( )。

A.3 或-1B.3C.-1D.不确定2、已知定义在R 上的函数()x f 满足()()()xy y f x f y x f 4++=+,()11=f ,则()=-2f ()A 、-2B 、2C 、6D 、103、函数()()()613122+-+-=x a x a x f(1)若f(x)的定义城为【-2,1】,求实数a 的值;(2)若f(x)的定义域为R ,求实数a 的取值范围。

【高一】北师大版高一数学必修1第二章函数练习题(含答案)

【高一】北师大版高一数学必修1第二章函数练习题(含答案)

【高一】北师大版高一数学必修1第二章函数练习题(含答案)第二节对函数的进一步认识一、(每题5分,共20分)1.下列两个函数完全相同的是( )a、 Y=X2X和Y=XB Y=x2和Y=XC Y=(x)2和Y=XD Y=3x3和Y=x【解析】a中y=x2x的定义域为{xx≠0},而y=x的定义域为r;在C中,y=(x)2的域是[0,+∞), 而y=x的域是r,所以a和C是错误的;b中y=x2=x与y=x的对应关系不同,所以b错;在D中,y=3x3=x和y=x具有相同的域和对应关系,因此D是正确的【答案】d2.函数y=1x+1的定义字段为()a.[-1,+∞)b.[-1,0)c.(-1,+∞)d.(-1,0)【分析】要使函数公式有意义,必须满足x+1>0,∴x>-1,故定义域为(-1,+∞).[答:]C3.如图所示,可表示函数图象的是( )A.①B②③④C①③④d。

②【解析】因为在②图中,给定x的一个值,有两个y值与它对应,不满足函数的定义,而①、③、④均满足函数定义.[答:]C4.已知f(x)=x2+1,则f[f(-1)]的值等于( )a、 2b。

3c。

4d。

五【解析】f(-1)=2,∴f(f(-1))=f(2)=5.[答:]d二、题(每小题5分,共10分)5.以下几组数字用区间表示:(1){xx≥1}=.(2){x2<x≤4}=.(3){xx>-1且x≠2}=.[答](1)[1,+∞) (2) (2,4] (3) (- 1,2) ∪ (2, + ∞)6.函数y=-x2+2x+1的值域为.[分析]∵ y=-x2+2x+1=-(x-1)2+2≤ 2.∴函数的值域是(-∞,2].[答:]∞, 2)三、解答题(每小题10分,共20分)7.查找以下函数的域(1)f(x)=x+1x-1;(2) f(x)=11+1x。

【解析】(1)要使函数有意义,须x+1≥0x-1>0x≥-1x>1x>1∴f(x)的定义域为(1,+∞)(2)使函数有意义x≠01+1x≠0?x≠0且x≠-1F(x)的域是{XX∈ R和X≠ 0和X≠ - 1}8.已知函数f(x)=x2+x-1.(1)找到f(2);(2)找到f(1x+1);(3)如果f(x)=5,求x的值【解析】(1)f(2)=4+2-1=5.(2).(3)f(x)=5,即x2+x-1=5,也就是说,X2+X-6=0,解为X=2或X=-39.(10分)已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[分析]已知函数y=ax+1(a<0且a为常数),∵ax+1≥0,a<0,‡x≤ - 1A,也就是说,函数的定义域是∵函数在区间(-∞,1]上有意义,∴,∴-1a≥1,a<0,——-1≤ a<0,即a的取值范围是[-1,0).。

新教材高中数学第二章函数2函数 函数概念第1课时函数概念一课件北师大版必修第一册

新教材高中数学第二章函数2函数 函数概念第1课时函数概念一课件北师大版必修第一册

域为N,对于下列四个图象,不可作为函数y=f(x)的图象的是
()
C
[分析] (1)如何利用函数定义.对于集合A中的元素通过对应关系在 集合B中有唯一元素与之对应进行判断.
(2)当对应关系用图象表示时,怎样判断是否为函数关系.
[解析] (1)对于 A 项,x2+y2=1 可化为 y=± 1-x2,显然对任 x∈A, y 值不唯一,故不符合.对于 B 项,符合函数的定义.对于 C 项,2∈A, 但在集合 B 中找不到与之相对应的数,故不符合.对于 D 项,-1∈A, 但在集合 B 中找不到与之相对应的数,故不符合.
(2)记法:y= f(x),x∈A.
(3)定义域:x的取值范围A;值域:与x的值对应的y值叫作函数值,即 集合_____{_f_(_x_)|_x∈__A__}.
思考1:(1)对于函数f:A→B,值域一定是集合B吗?为什么? (2)对应关系f必须是一个解析式的形式吗?为什么? (3)f(x)的含义是什么? 提示:(1)不一定.值域是集合B的子集,即{f(x)|x∈A}⊆B. (2)不一定.可以是数表,也可以是图象. (3)集合A中的数x在对应关系f的作用下对应的数.
[解析] 要使函数 y= 7+6x-x2有意义,应满足 7+6x-x2≥0, ∴x2-6x-7≤0,∴(x-7)(x+1)≤0, ∴-1≤x≤7, ∴函数 y= 7+6x-x2的定义域是[-1,7].
4.已知f(x)=2-1 x,g(x)=-x2+2. (1)求 f(3),g(3)的值; (2)求 f[g(2)]的值; (3)求 f[g(x)]的解析式. [解析] (1)f(3)=2-1 3=-1,g(3)=-32+2=-7. (2)f[g(2)]=2-1g(2)=2-(-122+2)=41. (3)f[g(x)]=2-1g(x)=2+x12-2=x12.

高一数学必修1(北师大版)同步练习2-1、2-3

高一数学必修1(北师大版)同步练习2-1、2-3

2-1、2-3 映 射基 础 巩 固一、选择题1.下列从集合A 到集合B 的对应中为映射的是( )A .A =B =N +,对应法则f :x →y =|x -2|B .A =R ,B ={0,1},对应法则f :x →y =⎩⎨⎧1 (x ≥0)0 (x <0) C .A =B =R ,对应法则f :x →y =±xD .A =Z ,B =Q ,对应法则f :x →y =1x[答案] B[解析] A 中元素2无象,排除A ;C 中一个x 对应两个y ,与映射定义不符,排除C ;D 中元素0无像,排除D ,故只有B 正确.2.设f :A →B 是从集合A 到集合B 的映射,则下面的命题为真命题的是( )A .A 中的每一个元素在B 中必有像B .B 中的每一个元素在A 中必有原像C .B 中的每一个元素在A 中的原像唯一D .A 中的不同元素的像必定不同[答案] A[解析] 由映射的定义可知,集合A 中的每一个元素在B 中必有像,故选A.3.已知(x ,y )在映射下的像是(x +y ,x -y ),则像(1,2)在f 下的原像为( )A .(52,32)B .(-32,12)C .(-32,-12) D .(32,-12) [答案] D[解析] 根据题意得⎩⎪⎨⎪⎧ x +y =1x -y =2,∴⎩⎪⎨⎪⎧ x =32y =-12.4.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列能表示从集合A 到集合B 的映射的是()[答案] D[解析] 对于A ,当x =0,y =0∉{y |1≤y ≤2},不是从A 到B 的映射;对于B ,当x =2时y =0∉{y |1≤y ≤2},也不是从A 到B 的映射;对于C ,当x =0时,y =1且y =2,即集合A 中的一个元素0与集合B 中的两个元素1和2相对应,所以也不是从A 到B 的映射;对于D ,集合A 中的任何一个元素在集合B 中都有唯一的元素和它对应,所以是从A 到B 的映射.5.(2012·广州高一检测)下列说法正确的有( )①函数是从定义域到值域的映射;②f (x )=x -2+1-x 是函数;③函数y =2x (x ∈Z )的图像是一条直线.A .0个B .1个C .2个D .3个 [答案] B[解析] ①根据定义可知此命题是正确的;②要使f (x )有意义,必须满足⎩⎪⎨⎪⎧ x -2≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥2,x ≤1, 故x ∈∅,定义中明确指出,函数建立在两个非空数集上,故此命题是错误的;③因为函数y =2x 的定义域是Z ,故y =2x (x ∈Z )的图像是一些孤立的点,所以此命题是错误的.故应选B.6.下列各组中,集合P 与M 不能建立映射的是( )A .P ={0},M =∅B .P ={1,2,3,4,5},M ={2,4,6,8}C .P ={有理数},M ={数轴上的点}D .P ={平面上的点},M ={有序实数对}[答案] A[解析] 选项A 中,M =∅,故集合P 中的元素在集合M 中无元素与之对应,故不能建立映射.二、填空题7.已知集合A ={a ,b },B ={m ,n },则由A 到B 的一一映射的个数为________.[答案] 2[解析] 由题意可知如图:共有2个一一映射.8.a ,b 为实数,集合M ={b a,1},N ={a,0},f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 的值等于________.[答案] 1[解析] 因为f :x →x ,∴M =N ,∴b a=0,a =1,故a +b =1. 三、解答题9.已知映射f :A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(x +2y +2,4x +y ).(1)求A 中元素(5,5)的像;(2)求B 中元素(5,5)的原像;(3)A 中是否存在这样的元素(a ,b ),使它的像仍是自己?若存在,求出这个元素;若不存在,请说明理由.[解析] (1)∵x =5,y =5,∴(x +2y +2,4x +y )=(17,25).∴A 中元素(5,5)的像是(17,25).(2)设元素(5,5)的原像是(m ,n ),得⎩⎪⎨⎪⎧ m +2n +2=5,4m +n =5, ∴⎩⎪⎨⎪⎧m =1,n =1, ∴(5,5)的原像是(1,1).(3)假设A 中存在这样的元素(a ,b ),则由题意得⎩⎪⎨⎪⎧ a +2b +2=a ,4a +b =b ,∴⎩⎪⎨⎪⎧a =0,b =-1, ∴A 中存在元素(a ,b )使它的像仍是它自己,这个元素为(0,-1).能 力 提 升一、选择题1.已知A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列对应不表示从A 到B 的映射的是( )A .f :x →y =12x B .f :x →y =13x C .f :x →y =32x D .f :x →y =x[答案] C[解析] 对于A ,当0≤x ≤4时,0≤12x ≤2,f :x →y =12x 能构成A 到B 的映射;对于B,0≤13x ≤43,也能构成集合A 到集合B 的映射;对于C,0≤32x ≤6,而[0,6][0,2],所以不能构成从A 到B 的映射;对于选项D,0≤x ≤2,能构成从A 到B 的映射.2.(2012·东营高一检测)已知集合M ={a ,b ,c },N ={-1,0,1},若f 是M →N 的映射,且f (a )=0,则这样的映射共有( )A .4个B .6个C .9个D .27个 [分析] 通过本题考查映射的概念.同时又加深了像与原像的关系理解,是一道“源于课本,高于课本”的好题.[答案] C[解析]∵f(a)=0.本题就转化为M={b,c}到N={-1,0,1}的映射个数问题.当f(b)=-1时f(c)可以等于-1,0,1三种情况.同理当f(b)=0或1时,f(c)也各有三种情况.∴共构成9个映射,故选C.二、填空题3.下列对应是集合A到集合B的一一映射的是________(填正确序号).(1)A=N,B={-1,1},x∈A,y∈B,f:x→y=(-1)x;(2)A={x|0≤x≤3},B={y|0≤y≤1},f:x→y=13x;(3)A={x|0≤x≤1},B={y|y≥1},f:x→y=1 x;(4)A={三角形},B=R,f:三角形与它面积的对应.[答案](2)[解析](1)(2)(4)为映射,(3)不是映射(因为(3)中集合A中的元素0没有像),只有(2)是一一映射.4.已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下A→B的像,且对任意的a ∈A,在B中和它对应的元素是|a|,则集合B中的元素个数是________.[答案] 4[解析]∵|-3|=3,|-2|=2,|-1|=1,∴-3,3→3,-2,2→2,-1,1→1,4→4,B中元素有4个.三、解答题5.下列对应是不是从A 到B 的函数?是不是从A 到B 的映射?(1)A =B =N ,f :x →|x -3|;(2)A ={x |x 是三角形},B ={x |x 是圆},f :三角形的内切圆;(3)A =R ,B ={1},f :x →y =1;(4)A =[-1,1],B =[-1,1],f :x →y =1x. [解析] (1)当x ∈N 时,则|x -3|∈N ,即A 中的元素在B 中都有像,所以(1)是映射,也是函数.(2)由于A ,B 不是数集,所以(2)不是函数,但每个三角形都有唯一的内切圆,所以(2)是A 到B 的映射.(3)A 中的每一个数都与B 中的数1对应,因此,(3)是A 到B 的函数,它是A 到B 的映射.(4)取x =0,y =10没有意义,即A 中元素0在B 中没有像,所以(4)不是函数,也不是映射.规律技巧总结:(1)函数是一种特殊的映射,是非空数集间的一种映射.(2)有的同学问:关系式y =1是y 关于x 的函数,那么关系式x =1是y 关于x 的函数吗?对于关系式x =1,显然有x ∈{1},y ∈R ,则1与全体实数建立对应关系,不符合函数的定义,因此,“x =1”不是y 关于x 的函数.6.从集合A 到B 的映射是f :x ―→y =x 2x +1,从集合B 到C 的映射是f :y ―→z =y 2-4y ,则A 中元素1在C 中的像是什么?C 中的元素0对应A 中的原像是什么?[解析] A 中元素1在B 中对应的元素为12×1+1=13,B 中元素13在C 中对应的元素是(13)2-4×13=-119,故A 中元素1在C 中的像是-119. C 中的元素0在B 中的原像是0或4.B 中的元素0在A 中的原像是0;B 中的元素4在A 中的原像是-47,所以C 中的元素0在A 中的原像是0或-47. 7.设集合A =B ={(x ,y )|x ∈R ,y ∈R },f 是A 到B 的一个映射,并满足f :(x ,y )→(-xy ,x -y ).(1)求B 中元素(3,-4)在A 中的原像;(2)试探索B 中元素满足什么条件时在A 中存在原像?[解析] (1)由题意知⎩⎪⎨⎪⎧ -xy =3,x -y =-4,解得⎩⎪⎨⎪⎧ x =-1,y =3,或⎩⎪⎨⎪⎧x =-3,y =1. 所以B 中元素(3,-4)在A 中的原像为(-1,3)和(-3,1).(2)设任意(a ,b )∈B ,则它在A 中的原像(x ,y )应满足⎩⎪⎨⎪⎧-xy =a ①x -y =b ②,由②得y =x -b 代入①式并化简,得x 2-bx +a =0③当且仅当Δ=b 2-4a ≥0时,方程③有实根,所以,只有当B 中元素(a ,b )满足b 2-4a ≥0时,在A 中才有原像.。

新教材高中数学第二章函数2函数 函数概念第2课时函数概念二课件北师大版必修第一册

新教材高中数学第二章函数2函数 函数概念第2课时函数概念二课件北师大版必修第一册

[解析] (1)要使函数有意义,自变量 x 的取值必须满足x|x+|-2x≠≠00,,即 x|x≠|≠-x,2,解得 x<0,且 x≠-2.
故原函数的定义域为(-∞,-2)∪(-2,0). (2)要使函数有意义,自变量 x 的取值必须满足4x--1x≥ ≠00, ,即xx≤≠41,. 故原函数的定义域为(-∞,1)∪(1,4].
【对点练习】❶ (2021·合肥高一检测)函数 f(x)=2x2-3-9x+x 4的定义
域是
(C)
A.(-∞,3]
B.-∞,12∪12,3
C.-∞,12∪21,3
D.(3,4)∪(4,+∞)
[解析] 要使函数有意义,则32-x2-x≥9x0+,4≠0,
x≤3, 得x≠4且x≠12,得
x≤3

x≠21,
[归纳提升] 二次函数y=ax2+bx+c(a>0)的值域 (1)对称轴在限定区间的左边,则函数在限定区间左端点取最小值,右 端点取最大值. (2)对称轴在限定区间的右边,则函数在限定区间左端点取最大值,右 端点取最小值. (3)对称轴在限定区间内,则函数在对称轴处取最小值,限定区间中距 离对称轴较远的端点取最大值.
[分析] (1)f(x)的定义域为(-1,2),即x的取值范围为(-1,2).f(2x+1) 中x的取值范围(定义域)可由2x+1∈(-1,2)求得.
(2)f(2x+1)的定义域为(-1,2),即x的取值范围为(-1,2),由此求得2x+ 1的取值范围即为f(x)的定义域.
2.函数 f(x)=x+2 1+ 3-x的定义域为
A.(-∞,-1)∪(-1,3] B.(-∞,3]
C.(-1,3]
D.(-∞,-1)
(A)
[解析] 函数 f(x)=x+2 1+ 3-x,令x3+-1x≠ ≥00, ,解得 x≤3 且 x≠-1. 所以函数 f(x)的定义域为(-∞,-1)∪(-1,3].

新教材高中数学第二章函数2函数 函数的表示法第1课时函数的表示法课件北师大版必修第一册

新教材高中数学第二章函数2函数 函数的表示法第1课时函数的表示法课件北师大版必修第一册

列表法
量对应的函数值
对应的函数值
基础自测
1.已知 f(x)=π(x∈R),则 f(π2)等于
A.π2
B.π
C. π
D.不确定
[解析] 因为π2∈R,所以f(π2)=π.
( B)
2.已知函数y=f(x)的图象如图,则f(x)的定
义域是
( C)
A.(-∞,1)∪(1,+∞)
B.R
C.(-∞,0)∪(0,+∞)
关键能力•攻重难
题型探究
题型一
列表法表示函数
例 1某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收 款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.
[ 分 析 ] 函 数 的 定 义 域 是 {1 , 2 , 3 , … , 10} , 值 域 是 {3 000 , 6 000 , 9 000,…,30 000},可直接列表、画图表示.分析题意得到表达y与x关系的解 析式,注意定义域.
[解析] (1)列表法:
x(台) 1 2 3 4 5 6 7 8 9 10 12 15 18 21 24 27 30
y(元) 3 000 6 000 9 000 000 000 000 000 000 000 000
(2)图象法:如图所示: (3)解析法:y=3 000x,x∈{1,2,3,…,10}.
第1课时 函数的表示法
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点 表示函数的三种方法
解析法 列表法 图象法
用__数__学__表__达__式____表示两个变量之间的对应关系 列出__表__格____来表示两个变量之间的对应关系 用__图__象____表示两个变量之间的关系

北师大版高中数学必修第一册第二章函数第2节函数 函数的奇偶性与简单的幂函数 第1课时函数的奇偶性

北师大版高中数学必修第一册第二章函数第2节函数 函数的奇偶性与简单的幂函数 第1课时函数的奇偶性
提示:(1)不一定,必须对于定义域内的任意一个x都成立. (2)奇、偶函数的定义域关于原点对称.
返回导航
第二章 函 数
基础自测 1.下列图象表示的函数具有奇偶性的是
数学(必修·第一册 BSD)
(B)
返回导航
第二章 函 数
数学(必修·第一册 BSD)
2.下列函数是偶函数的是
(A)
A.y=2x2-3
B.y=x3
C.y=x2,x∈[0,1]
D.y=x
[解析] 对于A:f(-x)=2(-x)2-3=2x2-3=f(x),所以f(x)是偶函
数,B,D都为奇函数,C中定义域不关于原点对称,函数不具备奇偶
性.
返回导航
第二章 函 数
数学(必修·第一册 BSD)
3.(2020·南阳市高一期中测试)已知 f(x)=ax2+bx 是定义在[a-1,2a]
f(-x)=____-__f(_x_) ____ 关于__原__点____对称
返回导航
第二章 函 数
数学(必修·第一册 BSD)
思考:(1)如果定义域内存在x0,满足f(-x0)=f(x0),函数f(x)是偶函 数吗?
(2)函数的奇偶性定义中,对于定义域内任意的x,满足f(-x)=f(x)或 f(-x)=-f(x),那么奇、偶函数的定义域有什么特征?
返回导航
第二章 函 数
数学(必修·第一册 BSD)
[解析] (1)∵点(2,1)在函数 f(x)的图象上, ∴1=2-a2,∴a=2. (2)由(1)知 f(x)=x-2x,定义域为(-∞,0)∪(0,+∞)关于原点对称. f(-x)=-x--2x=-x+2x=-(x-2x)=-f(x), ∴函数 f(x)为奇函数.
返回导航

高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题

高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题

第二章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,在(-∞,0)上为递增的是( ) A .f (x )=-2x +1 B .g (x )=|x -1| C .y =1xD .y =-1x[答案] D[解析] 熟悉简单函数的图像,并结合图像判断函数单调性,易知选D. 2.下列四个图像中,表示的不是函数图像的是( )[答案] B[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.3.函数f (x )=x -2+1x -3的定义域是( ) A .[2,3)B .(3,+∞)C .[2,3)∪(3,+∞)D .(2,3)∪(3,+∞)[答案] C[解析] 要使函数有意义,x 需满足⎩⎪⎨⎪⎧x -2≥0x -3≠0解得x ≥2且x ≠3.故选C.4.二次函数y =-2(x +1)2+8的最值情况是( ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值 [答案] C[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值. 5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别是3和10,则5在f 作用下的像是( )A .3B .4C .5D .6[答案] A[解析] 由已知可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1b =-2.于是y =x -2,因此5在f 下的像是5-2=3.6.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f x +2,x <0,那么f (-3)的值为( ) A .-2 B .2 C .0 D .1[答案] B[解析] 依题意有f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2,即f (-3)=2.7.不论m 取何值,二次函数y =x 2+(2-m )x +m 的图像总过的点是( ) A .(1,3) B .(1,0) C .(-1,3) D .(-1,0)[答案] A[解析] 由题意知x 2+2x -y +m (1-x )=0恒成立,∴⎩⎪⎨⎪⎧x 2+2x -y =01-x =0,解得⎩⎪⎨⎪⎧x =1y =3,∴图像总过点(1,3).8.定义在R 上的偶函数f (x )在区间[-2,-1]上是增函数,将f (x )的图像沿x 轴向右平移2个单位,得到函数g (x )的图像,则g (x )在下列区间上一定是减函数的是( )A .[3,4]B .[1,2]C .[2,3]D .[-1,0][答案] A[解析] 偶函数f (x )在[-2,-1]上为增函数,则在[1,2]上为减函数,f (x )向右平移2个单位后在[3,4]上是减函数.9.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( ) A .f (3)+f (4)<0 B .f (-3)-f (-2)<0 C .f (-2)+f (-5)<0 D .f (4)-f (-1)>0 [答案] D[解析] 由题意知函数f (x )在[0,6]上递增.A 中f (3)+f (4)与0的大小不定,A 错;B 中f (-3)-f (-2)=f (3)-f (2)>0,B 错;C 中f (-2)+f (-5)=f (2)+f (5)与0的大小不定,C 错;D 中f (4)-f (-1)=f (4)-f (1)>0,D 正确. 10.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值X 围为( )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[答案] D[解析]∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立;k ≠0时,Δ<0,也成立.∴0≤k <34.11.函数y =ax 2-bx +c (a ≠0)的图像过点(-1,0),则ab +c +ba +c -ca +b的值是( )A .-1B .1 C.12 D .-12[答案] A[解析]∵函数y =ax 2-bx +c (a ≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b . ∴ab +c +ba +c -ca +b=-1.12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值X 围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23[答案] A[解析]由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A. 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y=x2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是________.[答案]y=x2+4x+2[解析]y=(x+2)2+1-3=(x+2)2-2=x2+4x+2.14.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.[答案]0[解析]本题考查偶函数的定义等基础知识.∵f(x)为偶函数,∴f(-x)=f(x),即x2-|-x+a|=x2-|x+a|,∴|x-a|=|x+a|,平方,整理得:ax=0,要使x∈R时恒成立,则a=0.15.已知函数f(x),g(x)分别由下表给出则f[g(1)]的值为当g[f(x)]=2时,x=________.[答案] 1 1[解析]f[g(1)]=f(3)=1,∵g[f(x)]=2,∴f(x)=2,∴x=1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”有________个.[答案] 3[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎩⎪⎨⎪⎧x 2|x |≤11 |x |>1,(1)画出f (x )的图像; (2)求f (x )的定义域和值域.[分析] 解答本题可分段画出图像,再结合图像求函数值域. [解析] (1)利用描点法,作出f (x )的图像,如图所示.(2)由条件知,函数f (x )的定义域为R .由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].18.(本小题满分12分)已知函数f (x )=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f (x )的最大值和最小值;(2)某某数a 的取值X 围,使y =f (x )在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f (x )=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5, 所以当x =-3时,f (x )min =-19, 当x =3时,f (x )max =41.(2)函数f (x )=(x -a )2+2-a 2的图像的对称轴为x =a ,因为f (x )在[-3,3]上是单调函数,所以a ≤-3或a ≥3.19.(本小题满分12分)已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增加的;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2.则f (x 1)-f (x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2). ∴函数f (x )在(0,+∞)上是增加的. (2)∵f (x )在[12,2]上的值域是[12,2],又∵f (x )在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f 12=12,f 2=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z },满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足(1),(2)的幂函数f (x )的解析式,并求x ∈[0,3]时f (x )的值域. [解析] 由{x |-2<x <2,x ∈Z }={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m <1,∴m =-1或0.由(2)知f (x )是奇函数.当m =-1时,f (x )=x 2为偶函数,舍去. 当m =0时,f (x )=x 3为奇函数. ∴f (x )=x 3.当x ∈[0,3]时,f (x )在[0,3]上为增函数, ∴f (x )的值域为[0,27].21.(本小题满分12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:f (x )是偶函数;(2)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称,f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2, 当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -12-2,x ≥0,x +12-2,x <0.根据二次函数的作图方法,可得函数图像,如图函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1]上为减函数,在[-1,0),[1,3]上为增函数.(3)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2. 当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2. 故函数f (x )的值域为[-2,2].22.(本小题满分12分)已知函数f (x )=x +x 3,x ∈R . (1)判断函数f (x )的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b >0,试比较f (a )+f (b )与0的大小. [解析] (1)函数f (x )=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1)=(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=x +x 3,x ∈R 是增函数. (2)由a +b >0,得a >-b ,由(1)知f (a )>f (-b ), 因为f (x )的定义域为R ,定义域关于坐标原点对称, 又f (-x )=(-x )+(-x )3=-x -x 3=-(x +x 3)=-f (x ), 所以函数f (x )为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

02第二章
函数
§1生活中的变量关系
§2对函数的进一步认识
2.1函数概念
课时过关·能力提升1已知函数f(x)=1
的定义域为M,g(x)=√x+2的定义域为N,则M∩N=()
√2-x
A.{x|x≥-2}
B.{x|x<2}
C.{x|-2<x<2}
D.{x|-2≤x<2}
答案:D
2函数f(x)=1
(x∈R)的值域是()
x2+1
A.(0,1)
B.(0,1]
C.[0,1)
D.[0,1]
≤1,
解析:由x2+1≥1,得0<1
x2+1
故函数f(x)的值域为(0,1].
答案:B
3已知函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点有()
A.0个
B.1个
C.2个
D.0个或多个
解析:函数y=f (x )的定义域为(-1,3),则在同一坐标系中,函数f (x )的图像与直线x=2的交点个数有1个,故选B .
答案:B
4已知等腰三角形ABC 的周长为10,且底边长y 关于腰长x 的函数关系为y=10-2x ,则此函数的定义域为( )
A.R
B.{x|x>0}
C.{x|0<x<5}
D.{x |52<x <5} 解析:∵等腰三角形的周长为10,
∴{x >0,10-2x >0,2x >10-2x ,
∴52<x<5. 答案:D
5已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,则方程g (f (x ))=x 的解集为
( )
A.{1}
B.{2}
C.{3}
D.⌀
解析:当x=1时,g (f (1))=g (2)=2,不符合题意;
当x=2时,g (f (2))=g (3)=1,不符合题意;。

相关文档
最新文档