高中物理重要知识点必背手册 (5) 机械振动、机械波与电磁波
高中物理机械振动机械波知识点总结课件新人教版选修
一完整曲 线对应横 坐标
一个周期
一个波长
波动问题的一个显著特点是多解性,出现多解的原因主要有以下几点:
A
波的空间周期性
B
沿波的传播方向相距波长整数倍的各质点振动情况完全相同,因此在同一波形图上,某一振动状态(位移、速度等)会不断地重复出现,这就是波的空间周期性.
C
波的时间周期性
衍射:波可以绕过障碍物继续传播的现象.产生明显衍射现象的条件是:____________.
波的叠加:几列波相遇时,每列波都能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的________.
干涉:频率相同的两列波叠加,使某些区域的振动________,某些区域的振动________,这种现象叫做波的干涉.产生稳定的干涉现象的必要条件:________.
干涉和衍射是波所特有的现象.
答案: 一、2.(1)①平衡位置 振动质点所在位置 ②最大距离 ③一次全振动 全振动的次数 3.振幅 振幅 三、1.周期性驱动力 驱动力 无 2.相等 四、1.机械振动 2.波源 介质 3.(1)相互垂直 波峰 波谷 (2)同一直线上 密部 疏部 4.(2)波源 不变 (3)介质 v=λf 五、位移 平衡位置 正弦(或余弦) 六、1.障碍物或孔的尺寸比波长小或与波长相差不多 2.矢量和 3.加强 减弱 两列波的频率相同
波速与波长和频率的关系:________.
横波的图象 如图所示为一横波的图象.纵坐标表示某一时刻各个质点偏离平衡位置的________,横坐标表示在波的传播方向上各个质点的________.它反映了在波传播的过程中,某一时刻介质中各质点的位移在空间的分布.简谐波的图象为________曲线.
机械振动和机械波知识点总结
机械振动和机械波知识点总结机械振动和机械波是力学中重要的研究对象,涵盖了许多基本的物理概念和理论。
本文将对机械振动和机械波的知识点进行总结和概述。
一、机械振动机械振动是指物体在作用力或外界激励下,围绕平衡位置做周期性的运动。
其基本概念和理论如下:1. 平衡位置和位移:机械振动的平衡位置是物体在受到作用力后不再发生位移的位置,位移则是指物体在振动过程中距离平衡位置的偏离量。
2. 振幅和周期:振幅是指物体在振动过程中位移的最大值,周期是指物体完成一个完整振动所需要的时间。
3. 频率和角速度:频率是指单位时间内振动的次数,通常用赫兹(Hz)来表示;角速度则是指单位时间内角位移的变化率,通常用弧度/秒来表示。
4. 谐振和简谐振动:谐振是指物体在受到与其固有振动频率相同的外力激励时产生的振动现象,简谐振动是一种特殊的谐振,其运动方式是由正弦函数所描述的。
二、机械波机械波是指由固体、液体、气体等介质传递的一种能量和动量的传播形式。
以下是机械波相关的知识点总结:1. 波的性质:波的振幅、频率、波速、波长是描述波的基本性质。
振幅是指波动的最大位移,波速是指波在介质中传播的速度,波长是指波动的最小周期。
2. 纵波和横波:根据传播方向和振动方向的关系,波可以分为纵波和横波。
纵波的振动方向与波的传播方向一致,横波的振动方向与波的传播方向垂直。
3. 声波和机械波:声波是一种机械波,是由介质分子振动引起的机械波。
声波的传播需要介质的存在,例如空气、水等。
4. 声速和音频:声速是指声波在介质中传播的速度,与介质的密度和弹性有关。
音频是指人类能够听到的声波的频率范围,通常在20Hz到20kHz之间。
三、振动和波的应用振动和波有着广泛的应用领域,以下是部分应用的概述:1. 振动传感器:振动传感器可以检测物体的振动状态,并将其转换为电信号输出。
其在机械故障监测、地震预警等领域有着重要作用。
2. 声纳技术:声纳技术利用声波在水中传播的特性,用于海洋勘探、潜艇探测等军事和民用领域。
高中物理机械振动和机械波知识点
高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。
一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。
振动具有周期性、往复性和简谐性等特点。
2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。
振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。
3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。
简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。
4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。
阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。
5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。
当外力的频率与振动系统的固有频率相同时,产生共振现象。
6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。
当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。
二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。
波有传播介质,传播介质可以是固体、液体或气体。
波分为机械波和电磁波两种。
2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。
横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。
3.波的传播速度波的传播速度与介质的性质和波的频率有关。
在同一介质中,传播速度与波长成正比,与频率成反比。
在不同介质中,波长相等时,传播速度与频率成正比。
4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。
当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。
5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。
波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。
高考物理第六章机械振动和机械波知识点
高考物理第六章机械振动和机械波知识点高考物理第六章机械振动和机械波知识点机械振动和机械波部分是高中物理的一大重要版块,学好这一部分对整个高中阶段物理的学习至关重要。
下面是店铺为大家精心推荐的机械振动和机械波知识点总结,希望能够对您有所帮助。
机械振动和机械波必背知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。
1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。
例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。
1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。
1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的`频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。
高中物理机械波知识点
高中物理机械波知识点机械振动在介质中的传播称为机械波,机械波也是高中物理选修中的知识点。
以下是店铺为你整理的高中物理机械波知识点,希望能帮到你。
高中物理机械波知识点一:波动形成和传播1、机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。
2、横波和纵波:质点的振动方向与波的传播方向垂直的叫横波。
质点的振动方向与波的传播方向在同一直线上的叫纵波。
气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。
3、机械波的特点:(1)每一质点都以它的平衡位置为中心做简振振动;后一质点的振动总是落后于带动它的前一质点的振动。
(2)波只是传播运动形式(振动)和振动能量,介质并不随波迁移。
高中物理机械波知识点二:波的图像1、横波的图象用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。
2、简谐波的图象是正弦曲线,也叫正弦波简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。
波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。
高中物理机械波知识点三:波长频率与波速1、波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。
振动在一个周期内在介质中传播的距离等于波长。
2、频率f:波的频率由波源决定,在任何介质中频率保持不变。
3、波速v:单位时间内振动向外传播的距离。
波速的大小由介质决定。
高中物理机械波知识点四:波的反射和折射1.惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。
2、波的反射:波遇到障碍物会返回来继续传播3、反射规律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。
高中物理选修3-4机械振动机械波光学知识点汇总
高中物理选修3-4机械振动机械波光学知识点汇总机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F :使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个力沿振动方向的合力或是某一个力沿振动方向的分力。
(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。
物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。
4.位移x :相对平衡位置的位移。
它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。
5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
(1)动力学表达式为:F = -kxF=-kx 是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
(2)运动学表达式:x =A sin(ωt +φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。
(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。
故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。
(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向却有指向或背离平衡位置两种可能。
(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。
高三物理知识点振动和波
高三物理知识点振动和波
高三物理知识点振动和波
查字典物理网为高三同学总结归纳了高三物理知识点:振动和波。
希望对高三考生在备考中有所帮助,欢迎大家阅读作为参考。
振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角100;lr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=f=/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:
332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源。
高中物理机械波知识点[高中物理机械振动和机械波考点]
高中物理机械波知识点[高中物理机械振动和机械波考点](一)机械振动1.机械振动①定义:物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
②产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
2.简谐振动①定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k某,其中“-”号表示力方向跟位移方向相反。
②简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
③简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
3.描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
①振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
②周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
4.单摆:摆角小于5°的单摆是典型的简谐振动。
高中物理机械振动机械波知识点总结新人教选修PPT学习教案
第13页/共23页
振动类型 项目
自由振动
受力情况
仅受回复力
振动周期或频率
振动能量 常见例子
由系统本身性质 决定,即固 有周期或固 有频率
振动物体的机械 能不变
弹簧振子或单摆 (θ<5°)
受迫振动
共振
周期性驱动力作用
周期性驱动力作 用
由驱动力的周期或 频率决定,即T T驱=T固或f驱=f固 =T驱或f=f驱
第7页/共23页
4.描述机械波的物理量 (1)波长λ:在波动中,振动相位总是相同的两个相邻质点间的距离叫波
长. 在横波中,两个相邻波峰(或波谷)间的距离等于波长.在纵波中,两
个相邻密部(或疏部)间的距离等于波长. (2)频率f:波的频率由________决定,无论在什么介质中传播,波的频
率都________. (3)波速v:单位时间内振动向外传播的距离.波速的大小由________
第20页/共23页
3.波传播的双向性 在一维的条件下,机械波既可以向x轴正方向传播,又可以向x轴负方
向传播,这就是波传播的双向性.波沿正负两个方向传播的最短时间 之和为一个周期、最短距离之和为一个波长.即Δt左+Δt右=T,Δx左 +Δx右=λ.如图所示,实线为t时刻波形,虚线为t+Δt时刻波形.
3.简谐运动的能量 简谐运动过程中动能和势能相互转化,机械能守恒,振动
能量与________有关,________越大,能量越大.
第3页/共23页
二、简谐运动的两种基本模型
弹簧振子(水平)
单摆
模型示意图
条件 平衡位置
细线不可伸长、质量忽略、无 忽略弹簧质量、无摩擦等阻力
空气等阻力、摆角很小
高中物理机械振动知识点总结
高中物理机械振动知识点总结
高中物理机械振动的知识点总结如下:
1. 机械振动的概念和特点:机械振动是物体围绕平衡位置做周期性的来回振动运动,具有周期性、周期、频率、振幅等特点。
2. 动力学模型:机械振动可以用质点振动和弹簧振子来进行模拟,质点振动模型是研究单自由度振动的基本模型,弹簧振子模型是研究多自由度振动的基本模型。
3. 平衡位置和平衡力:平衡位置是物体在没有外力作用时处于的位置,平衡力是指物体在平衡位置附近的力,可以分为恢复力和阻尼力。
4. 振动方程:振动方程描述了物体在振动过程中的运动规律,可以用一阶微分方程或二阶微分方程表示,具体形式根据不同的振动模型而定。
5. 振动的能量:机械振动存在动能和势能的相互转换。
在简谐振动中,能量以振幅的平方的形式表示。
6. 简谐振动:简谐振动是指物体在恢复力作用下,在平衡位置附近做频率恒定、振幅不变、沿直线轨迹的振动。
简谐振动的特点包括周期性、频率、振幅、相位等。
7. 强迫振动和共振:强迫振动是指物体在外部周期性力的驱动下进行的振动,共振是指当外部周期性力与物体的固有频率相等或接近时,物体振幅达到最大的现象。
8. 阻尼振动:阻尼振动是指在受到阻尼力的作用下,物体振幅
逐渐减小并最终停止振动的现象。
阻尼振动可以分为欠阻尼、临界阻尼和过阻尼三种情况。
9. 波动方程:波动方程描述了波在传播过程中的运动规律,可以用一维或二维波动方程表示。
10. 波的传播:波的传播可以分为机械波和电磁波两种类型,机械波需要介质传播,而电磁波可以在真空中传播。
以上是高中物理机械振动的主要知识点总结,希望对你有帮助。
高考物理 重要知识点必背手册(5)机械振动、机械波与电磁波
重要知识点手册:机械振动、机械波与电磁波机械振动、机械波:基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全振动过程中各物理量的变化规律。
简谐振动: 回复力: F = 一KX 加速度:a =一KX/m单摆:T= 2πL g (与摆球质量,振幅无关) *弹簧振子T= 2πm K(与振子质量有关,与振幅无关)等效摆长、等效的重力加速度 影响重力加速度有:①纬度,离地面高度②在不同星球上不同,与万有引力圆周运动规律(或其它运动规律)结合考查③系统的状态(超、失重情况)④所处的物理环境有关,有电磁场时的情况⑤静止于平衡位置时等于摆线张力与球质量的比值注意等效单摆(即是受力环境与单摆的情况相同)T=2πgL ⇒g=22T L 4π 应用:T 1=2πg L O g L -L 2T O 2∆=π ⇒22212T -T L 4g ∆=π沿光滑弦cda 下滑时间t 1=t oa =g R 2g R 2=沿cde 圆弧下滑t 2或弧中点下滑t 3: gR 2g R 424T t t 32ππ====共振的现象、条件、防止和应用机械波:基本概念,形成条件、特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离 ②一个周期内波传播的距离 ③两相邻的波峰(或谷)间的距离④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长波从一种介质传播到另一种介质,频率不改变, 波长、波速、频率的关系: V=λf =λT (适用于一切波)波速与振动速度的区别 波动与振动的区别:研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现, 图象特点和意义 联系:波的传播方向⇔质点的振动方向(同侧法、带动法、上下波法、平移法)知波速和波形画经过(∆t )后的波形(特殊点画法和去整留零法)波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件+CL+ + + +―――-CLq=0 i=I m+ + + +―――-q=Q m i=0CL充电q↑i↓放电q↓i↑充电q↑i↓一个周期性变化放电q↓i↑CLq=0 i=I m电磁波:LC振荡电路:产生高频率的交变电流. T=2πLC电场能↑→电场线密度↑→电场强度E↑→电容器极板间电压u↑→电容器带电量q↑磁场能↑→磁感线密度↑→磁感强度B↑→线圈中电流i↑(2)电磁振荡的产生过程放电过程:在放电过程中,q↓、u↓、E电场能↓→i↑、B↑、E磁场能↑,电容器的电场能逐渐转变成线圈的磁场能。
高中物理机械振动、机械波知识要点
高中物理机械振动、机械波知识要点1、简谐运动、振幅、周期和频率的概念(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:,。
(2)简谐运动的规律:①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。
②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。
③振动中的位移x都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。
加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。
(3)振幅A:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
它是标量。
(4)周期T和频率f:振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz)。
周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f。
2、单摆的概念(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。
(2)单摆的特点:①单摆是实际摆的理想化,是一个理想模型;②单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关;③单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角时,单摆的振动是简谐运动,其振动周期T=。
(3)单摆的应用:①计时器;②测定重力加速度g,g=。
3、受迫振动和共振(1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)共振:①共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
②产生共振的条件:驱动力频率等于物体固有频率。
振动和波知识点总结
振动和波知识点总结振动和波是物理学中重要的基础概念,它们在自然界中随处可见,从小至分子的振动到大至地球上的地震波都是振动和波的表现。
振动和波的研究不仅在理论物理和工程技术中有着重要的应用,也对我们理解自然界的规律有着重要的意义。
在以下内容中,我将对振动和波的基本知识进行总结,包括定义、特征、分类、数学描述等方面的内容。
1. 振动振动是物体围绕平衡位置做有规律的来回运动的现象。
振动的基本特征包括振幅、周期、频率和相位。
振动可以分为机械振动、电磁振动和声学振动等不同类型。
(1)机械振动机械振动是指物体由于外力的作用,导致物体围绕平衡位置做周期性的来回运动。
典型的机械振动包括弹簧振子、简谐振动、阻尼振动等。
弹簧振子是挂在弹簧上的质点由于弹簧的弹性力而做的振动。
简谐振动是一种特殊的机械振动,它的加速度和位移成正比。
阻尼振动则是在振动过程中受到阻力的影响,振动逐渐减弱并最终停止。
(2)电磁振动电磁振动是指在电场或磁场作用下的振动现象。
最典型的电磁振动包括交流电路中的电磁振荡以及电磁波的传播。
在交流电路中,电容器和电感器的交替充放电导致了电荷和电流的振动。
电磁波是由变化的电场和磁场相互作用而产生的波动,具有能量传递和传播的作用。
(3)声学振动声学振动是指在介质中传播的机械波的形式,它包括了横波和纵波两种类型。
声波在空气、水、固体等介质中的传播都是声学振动的表现。
声学振动的特点是由固体、液体或气体的粒子围绕平衡位置做有规律的运动,从而传播声音。
声波的传播速度与介质的类型有关,例如在空气中的声速比在水中的声速要慢。
振动的数学描述可以借助于正弦函数或复数的方法来进行。
通过正弦函数可以对振动的位移、速度和加速度进行描述,而借助复数则可以对振动的相位和振幅进行描述。
2. 波波是指物质、能量或信息传递的方式,它在空间中按照一定规律传播的现象。
波的特征包括波长、频率、波速和振幅等。
(1)机械波机械波是需要介质来传播的波动,包括了横波和纵波两种类型。
(完整版)机械振动和机械波知识点总结
机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。
回复力是指振动物体所受的总是指向平衡位置的合外力。
回复力是产生振动的条件,它使物体总是在平衡位置附近振动。
它属于效果力,其效果是使物体再次回到平衡位置。
回复力可以是某一个力,也可以是几个力的合力或某个力的分力。
平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。
简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。
例如弹簧振子、单摆。
注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。
振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。
②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。
高中物理:机械波和电磁波
简谐运动质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置 T :由自身决定(振子质量和弹簧劲度系数)km π2T = 单摆周期:摆球重心距离)、重力加速度决定和摆球重量、振幅无关(1)振动能量=动能+势能=最大位移的势能=平衡位置的动能由振幅决定,与周期和频率无关(2)阻尼振动和无阻尼振动1、阻尼振动——存在阻力做负功,能量减小,振幅减小(减幅振动)2、无阻尼振动(等幅振动)在振动中,为保持振幅不变(能量不变),应及时地补充能量,使A 不变(3)受迫振动1、得到持续的、等幅振动的最简单的办法是用周期性的外力(驱动力)作用于物 体,物体在驱动力作用下的振动叫受迫振动.2、物体做受迫振动的频率由驱动力决定,等于驱动力频率,而与固有频率无关(4)共振——在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大(5)共振的防止和应用1、利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……2、防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……机械波振源+介质(有机械波一定有机械振动,有机械振动不一定有机械波)各质点做受迫振动,传播的是能量和振动形式在波动中,各个质点的振动周期是相同的,它们都等于波源的振动周期,这个周期也叫做波的周期。
同样,各个质点的振动频率也是波的频率。
与波源无关,所以波从一种媒质进入另一种媒质时f 不变、v 变化,波速也是波的能量传播速度横波:绳波、光波、引力波纵波:声波、弹簧波 波长、波速、频率:f T v λλ==波速由介质决定,频率由自身决定(所有波)g l π2T =(1)频率的大小取决于振源振动的快慢,与介质无关;(2)波长的大小取决于介质中波的传播速度和振源频率,与介质有关;(3)振幅在无外界附加阻尼的情况下为常量。
电磁波横波可以在真空中传播电磁波在真空中的速率恒为c,与频率无关;在介质中的速率,因不同的介质而不同,且在同一介质中,频率高的电磁波速率比频率低的电磁波速率低。
高中物理知识点总结归纳
高中物理知识点总结归纳高中物理知识点总结:机械波1、机械波简介机械振动在介质中的传播称为机械波。
机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波形成原因:机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不一定有机械波产生。
2、形成条件波源波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。
波源即是机械波形成的必要条件,也是电磁波形成的必要条件。
波源可以认为是第一个开始振动的质点,波源开始振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。
介质机械波在介质中的传播速率是由介质本身的固有性质决定的。
在不同介质中,波速是不同的。
3、机械波传播的本质在机械波传播的过程中,介质里本来相对静止的质点,随着机械波的传播而发生振动,这表明这些质点获得了能量,这个能量是从波源通过前面的质点依次传来的。
所以,机械波传播的实质是能量的传播,这种能量可以很小,也可以很大,海洋的潮汐能甚至可以用来发电,这是维持机械波(水波)传播的能量转化成了电能。
质点的运动:机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。
例如:人的声带不会随着声波的传播而离开口腔。
简谐振动做等幅震动,理想状态下可看作做能量守恒的运动。
阻尼振动为能量逐渐损失的运动。
高中物理动力学知识点1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FNG,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重要知识点手册:机械振动、机械波与电磁波
机械振动、机械波:
基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全振动过程中各物理量的变化规律。
简谐振动: 回复力: F = 一KX 加速度:a =一KX/m 单摆:T= 2π
L g
(与摆球质量,振幅无关) *弹簧振子T= 2πm K (与振子质量有关,与振幅无关)
等效摆长、等效的重力加速度 影响重力加速度有: ①纬度,离地面高度
②在不同星球上不同,与万有引力圆周运动规律(或其它运动规律)结合考查 ③系统的状态(超、失重情况)
④所处的物理环境有关,有电磁场时的情况
⑤静止于平衡位置时等于摆线张力与球质量的比值 注意等效单摆(即是受力环境与单摆的情况相同) T=2π
g
L
⇒g=
2
2T L 4π 应用:T 1=2π
g
L O
g
L -L 2T O 2∆=π
⇒
2
2212T -T L 4g ∆=
π 沿光滑弦cda 下滑时间t 1=t oa =g R 2g R 2=
沿cde 圆弧下滑t 2或弧中点下滑t 3: g
R 2
g R 4
24T t t 32π
π
===
=
共振的现象、条件、防止和应用
机械波:基本概念,形成条件、
特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动,
②起振方向与振源的起振方向相同, ③离源近的点先振动,
④没波传播方向上两点的起振时间差=
波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长 波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离 ②一个周期内波传播的距离
③两相邻的波峰(或谷)
间的距离
④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长
波从一种介质传播到另一种介质,频率不改变, 波长、波速、频率的关系: V=λf =λ
T
(适用于一切波)
波速与振动速度的区别 波动与振动的区别:
研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现, 图象特点和意义 联系:
波的传播方向⇔质点的振动方向(同侧法、带动法、上下波法、平移法) 知波速和波形画经过(∆t )后的波形(特殊点画法和去整留零法)
波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件
电磁波:LC 振荡电路:产生高频率的交变电流. T =2π
+
C
L
L
充 电
q ↑ i ↓
放 电
q ↓ i ↑
充 电 q ↑ i ↓ 放 电
q ↓ i ↑
q=0 i=I 电场能↑→电场线密度↑→电场强度E ↑→ 电容器极板间电压u ↑→ 电容器带电量q ↑ 磁场能↑→磁感线密度↑→磁感强度B ↑→线圈中电流i ↑
(2)电磁振荡的产生过程
放电过程:在放电过程中,q ↓、u ↓、E 电场能↓→i ↑、B ↑、E 磁场能↑,电容器的电场能逐渐转变成线圈的磁场
能。
放电结束时,q=0, E 电场能=0
,i 最大,E 磁场能
最大,电场能完全转化成磁场能。
充电过程:在充电过程中,q ↑、u ↑、E 电场能↑→I ↓、B ↓、E 磁场能↓,线圈的磁场能向电容器的电场能转化。
充电结束时,q 、E 电场能增为最大,i 、E 磁场能均减小到零,磁场能向电场能转化结束。
反向放电过程: q ↓、u ↓、E 电场能↓→i ↑、B ↑、E 磁场能↑,电容器的电场能转化为线圈的磁场能。
放电结束时,q=0, E 电场能=0,i 最大,E 磁场能最大,电场能向磁场能转化结束。
反向充电过程: q ↑、u ↑、E 电场能↑→i ↓、B ↓、E 磁场能↓,线圈的磁场能向电容器的电场能转化。
充电结束时,
q 、E 电场能增为最大,i 、E 磁场能均减小到零,磁场能向电场能转化结束。
麦克斯韦的电磁场理论:
①变化的磁场产生电场:均匀变化的磁场将产生恒定的电场,周期性变化的磁场将产生同频率周期性变化的电场。
②变化的电场产生磁场:均匀变化的电场将产生恒定的磁场,周期性变化的电场将产生同频率周期性变化的磁场。
发射电磁波的条件①频率要有足够高。
②振荡电路的电场和磁场必须分散到尽可能大的空间,采用开放电路.
特点:(1)电磁波是横波。
(2)三个特征量的关系v =λ/T =λf
(3)电磁波可以在真空中传播,向周围空间传播电磁能,能发生反射,折射,干涉和衍射。
无线电波的发射:LC 振荡器电路产生的高频振荡电流通过L 2与L 1的互感作用,使L 1也产生同频率的振荡电流,振荡电流在开放电路中激发出无线电波,向四周发射。
调制要传递的信号附加到高频等幅振荡电流上的过程叫调制。
两种方式:调幅和调频
a.调幅使高频振荡的振幅随信号而改变叫做调幅。
(AM) 中波和短波的波段
b.调频使高频振荡的频率随信号而改变叫做调频。
(FM)和电视广播,微波中的甚高频(VHF)和超高频(UHF)波段。
电波的接收(1)电谐振选台。
当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强.这种现象叫做电谐振,相当于机械振动中的共振。
(2)检波由调谐电路接收到的感应电流,是经过调制的高频振荡电流,还不是所需要的信号。
还必须从高频振荡电流中“检”出声音或图象信号,从接收到的高频振荡中“检”出所携带的信号,叫做检波。
也叫解调。
下图中L2、D、C2和耳机共同组成检波电路。
检波之后的信号再经过放大重现我们就可以听到或看到了。
(如上图)。