石墨烯的结构与性能.
石墨烯性能简介
第一章石墨烯性能及相关概念1 石墨烯概念石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。
石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。
但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。
单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。
完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。
石墨烯具有优异的导热性能(3×103W/(m•K))和力学性能(1.06×103 GPa)。
此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。
石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。
石墨烯结构图2 石墨烯结构石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。
石墨烯中碳 -碳键长约为 0.142nm。
每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。
垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。
石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。
形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。
在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。
单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。
石墨烯的结构非常稳定,碳原子之间连接及其柔韧。
受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。
石墨烯的性质及应用
石墨烯的性质及应用石墨烯是一种由碳原子通过共价键结合形成的二维晶体结构,具有一系列独特的性质和应用潜力。
以下将详细介绍石墨烯的性质和应用。
性质:1. 单层结构:石墨烯是由单层碳原子构成的二维晶体结构,在垂直方向上只有一个原子层,具有单层的特点。
2. 高强度:尽管石墨烯只有一个碳原子层,但其强度非常高。
石墨烯的破断强度远远超过钢铁,是已知最强硬的材料之一。
3. 高导电性:石墨烯的碳原子呈现出类似于蜂窝状的排列方式,使得电子能够在其表面自由传导。
石墨烯的电子迁移率是晶体硅的200倍以上,使得其具有非常高的导电性能。
4. 高热导性:由于石墨烯中的碳原子排列紧密,热量传递效率非常高。
石墨烯的热导率超过铜的13000倍,是已知最高的热导材料之一。
5. 弹性:石墨烯具有非常强的弹性,在拉伸过程中可以扩展到原始长度的20%以上,然后恢复到原始形状。
这种弹性使得石墨烯在柔性电子学和拉伸传感器等领域具有广泛应用。
应用:1. 电子器件:石墨烯的高导电性和高迁移率使其成为制造高速电子器件的理想材料。
石墨烯可以作为传统半导体材料的替代品,用于制造更小、更快的电子元件,如晶体管、电容器和电路等。
2. 透明导电膜:石墨烯具有优异的透明导电性能,可以制备成透明导电膜,用于制造触摸屏、显示器和太阳能电池等设备。
相比于传统的氧化铟锡(ITO)薄膜,石墨烯具有更好的柔性和耐久性。
3. 电池材料:石墨烯可以用作锂离子电池的电极材料,具有高电导性和高比表面积的优势。
石墨烯电极可以提高电池的充放电速度和储能密度,有望在电动汽车和可再生能源储存等领域得到应用。
4. 传感器:石墨烯具有优异的电子迁移率和极高的比表面积,使其成为制造高灵敏传感器的理想材料。
石墨烯传感器可以用于检测气体、压力、湿度和生物分子等,具有快速响应和高灵敏度的特点。
5. 柔性电子学:石墨烯的高强度和高弹性使其成为柔性电子学的重要组成部分。
石墨烯可以制备成柔性电路、柔性显示屏和柔性传感器等,有望应用于可穿戴设备、智能医疗和可卷曲设备等领域。
石墨烯简介
石墨烯简介摘要:在碳材料中,石墨烯具有特殊的单层窝蜂状结构,由于特殊的分子结构,使得石墨烯具有优良的化学和物理性质,例如:超高的比表面积超高的比表面积(2630m2/g),导电性能(电导率106S/m),机械性能(杨氏模量有1TPa)等,在高科技领域中展现了巨大的潜力。
同时,石墨烯在能源、生物技术、航天航空等领域都展现出宽广的应用前景。
但是由于石墨烯片层之间存在范德华力,促使分子层之间易发生团聚,不利于石墨烯的分散,导致电阻率升高和片层厚度增加,无法大规模高质量的制备石墨烯。
本文主要介绍石墨烯的结构,性质,制备方法,以及石墨烯在现阶段的应用。
关键词:石墨烯结构性质制备应用目录第一部分:石墨烯的结构第二部分:石墨烯的性质第三部分:石墨烯的制备方法第四部分:石墨烯的应用及其前景第五部分:结语第一部分:石墨烯的结构严格意义上的石墨烯原子排列与单层石墨的相同,厚度仅有一个原子尺寸,即0.335nm,因此又被称为目前世界上已知的最薄的材料,每个碳原子附近有三个碳原子连接成键,碳.碳键长0.142nm,通过sp2杂化与邻近的三个碳原子成键形成正六边形,连接十分牢固,因此可是称为最坚硬的材料。
然后每个正六边形在二维结构平面,不断无限延伸形成了一个巨大的平面多环芳烃[1],如图1-1所示。
2007年,Meryer[2]根据自己的研究发现大多数的石墨烯片层呈现单原子厚度,同时表现出有序的结构,通过透射电镜发现,该片层并非完全平整,表现出粗糙的起伏。
也正因为这种褶皱的存在,才使得二维晶体结构能够存在。
图1-1石墨烯的结构构型第二部分:石墨烯的性质石墨烯在力学、电学、光学、热学等方面具有优异特性。
力学特性石墨烯中,碳原子之间的连接处于非常柔韧的状态.当被施加外部机械力时,碳原子面会弯曲变形.碳原子不必重新排列来适应外力,因此保持了结构稳定。
石墨烯是人类已知强度最高的材料,比世界上强度最高的钢铁高100多倍。
电学特性石墨烯具有超高的电子迁移率,它的导电性远高于目前任何高温超导材料。
石墨烯性能简介
第一章石墨烯性能及相关概念之迟辟智美创作1石墨烯概念石墨烯(Graphene)是从石墨资料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子.但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜.单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构.完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比概况积高达2.6×102 m2 /g.石墨烯具有优异的导热性能(3×103W/(m•K))和力学性能(1.06×103 GPa).另外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 /(V·s).石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨年夜兴趣,成为资料科学研究热点.石墨烯结构图2石墨烯结构石墨烯指仅有一个原子标准厚单层石墨层片,由sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构.石墨烯中碳-碳键长约为0.142nm.每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状.垂直于晶面方向上的π键在石墨烯导电的过程中起到了很年夜的作用.石墨烯是石墨、碳纳米管、富勒烯的基本组成单位,可以将它看做一个无限年夜的芳香族分子,平面多环烃的极限情况就是石墨烯.形象来说,石墨烯是由单层碳原子紧密聚积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面.在单层石墨烯中,每个碳原子通过sp2 杂化与周围碳原子成键给构整流变形,每一个六边单位实际上类似苯环,碳原子都贡献出个一个未成键电子.单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一.石墨烯的结构非常稳定,碳原子之间连接及其柔韧.受到外力时,碳原子面会发生弯曲变形,使碳原子不用重新排列来适应外力,从而保证了自身的结构稳定性.石墨烯是有限结构,能够以纳米级条带形式存在.纳米条带中电荷横向移动时会在中性点附近发生一个能量势垒,势垒随条带宽度的减小而增年夜.因此,通过控制石墨烯条带的宽度即可以进一步获得需要的势垒.这一特性是开发以石墨烯为基础的电子器件的基础.石墨烯能带结构图3石墨烯性能石墨烯是一种超轻资料,面密度为0.77mg/m2,的主要性能是:一是具有超强的导电性.石墨烯的电子迁移率比纳米碳管或硅晶体高,是硅的100倍,在室温下可以到达15 000cm2 /( V·s) .电阻率比铝、铜和银低很多,只有10 ~6Ω·cm 左右.二是具有超强的导热性.石墨烯的导热性能优于碳纳米管,是铜、铝等金属的数10倍,导热系数高达5300W/m•K.三是具有超强的力学性,石墨烯的硬度超越金刚石,断裂强度到达钢铁的100倍.四是具有超强的透光性.石墨烯的吸光率非常小,透光率高达97. 7%.五是具有超强的比概况积.石墨烯的比概况积每克比普通活性炭高出1130m2,到达2630m2 /g.3.1 石墨烯的光学性能石墨烯是已知的世上最薄、最坚硬的纳米资料,它几乎是完全透明的,只吸收2.3%的光,具有优异的光学性能.理论和实验结果标明,单层石墨烯吸收2.3%的可见光,即透过率为97.7%.从基底到单层石墨烯、双层石墨烯的可见光透射率依次相差2.3%,因此可以根据石墨烯薄膜的可见光透射率来估算其层数.结合非交互狄拉克-费米子理论,模拟石墨烯的透射率,可以得出与实验数据相符的结果.根据折射和干涉原理,分歧层数的石墨烯在光学显微镜下会显示出分歧的颜色和比较度,为石墨烯层数的分辨提供了方便.理论和实验标明年夜面积石墨烯薄膜同样具有优异的光学性能,且其光学特性岁石墨烯的厚度发生变动.石墨烯薄膜是一种典范的透明导电薄膜,可以取代氧化铟锡(ITO)、掺氟氧化铟(FTO)等传统薄膜资料,即可克服ITO薄膜的脆性缺点,也可解决铟资源稀缺对应用的限制等诸多问题.石墨烯透明导电薄膜可作为染料敏化太阳能电池和液晶设备的窗口层电极.另外,当入射光的强度超越某一临界值时,石墨烯对其的吸收会到达饱和.这一非线性光学行为成为饱和吸收.在近红外光谱区,在强光辐照下,由于其宽波段吸收和零带隙的特点,石墨烯会慢慢接近饱和吸收.利用这一性质,石墨烯可用于超快速光子学,如光纤激光器等.3.2 石墨烯的电学性能石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成π键,π电子可以自由移动,赋予石墨烯优异的导电性.由于原子间作用力非常强,在常温下,即使周围碳原子发生碰撞,石墨烯中的电子收到的干扰也很小.电子在石墨烯中传输时不容易发生散射,传输效率1.5×105cm2/(V·s),约为硅中电子迁移率的140倍.其电导率可达106s/m,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的资料.因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管.由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池.石墨烯的呈现在科学界激起了巨年夜的波涛.人们发现,石墨烯具有非同寻常的导电性能,超越钢铁数十倍的强度和极好的透光性,它的呈现有望在现代电子科技领域引发一轮革命.在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯暗示得好.由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费72%-81%的电能,石墨烯则分歧,它的电子能量不会被损耗,这使它具有了非比寻常的优良特性.3.3 石墨烯的力学性能石墨烯是一直资料中强度和硬度最高的晶体结构.其抗拉强度和弹性模量分别为125GPa和1.1TPa.石墨烯的强度极限为42N/m2.理想石墨烯的强度约为普通钢的100倍,面积为1m2的石墨烯层片可接受4kg的质量.石墨烯可作为一种典范的二维增强资料,在复合资料领域具有潜在的应用价值.石墨烯的强度比金刚石还要硬,在高温下,还能坚持其原有的形态,从这一点就震撼了物理界,主要是因为石墨烯内碳原子排列是有规有律的,当施加外力作用于石墨烯时,内部的碳原子不会发生位移,只是发生了弯曲变形,就可以抵抗外力,保证自己的稳定性.石墨烯的室温热导率是室温下铜的热导率的10倍多,导热系数高5300W/m•K,高于碳纳米管和金刚石.石墨烯的理论比概况积可达2630m2/g,用石墨烯支撑的微传感器可以感应单个原子或分子,当气体附着或脱离石墨烯概况时,吸附的分子改变了石墨烯的局部载流子浓度,招致电阻发生阶跃型变动.这一特性可用于制作气体传感器.理论计算标明,石墨烯与锂可形成多孔复合结构,具有极强的氢气贮存能力.3.5 石墨烯的磁学性能石墨烯氢化以后往往会具有铁磁性,主要是由于石墨烯在氢化以后,在边缘处有孤对电子对,这样就使得石墨烯有磁性.研究人员还在有磁场的情况下,做过通过改变温度,看能否让石墨烯的磁性有所变动.确定磁场强度为1T,当温度T<90K 时,石墨烯会暗示出顺磁特性;当温度T>90K 时,石墨烯会呈现出了反磁特性.3.6 石墨烯的化学性能石墨烯的电子性质受到了广泛关注,然而石墨烯的化学性质却一直无人问津,至今关于石墨烯化学性能我们只知道的是:石墨烯可以将周围的原子和分子进行有序的吸附(例如:二氧化氮,氨,钾),这条性质和我们所认知的活性炭有些相似.二氧化氮,氨,钾往往是被作为给体或受体,使得石墨烯内部的碳原子浓度发生变动,然而石墨烯自己就是一种导电资料.其它的吸附物,如氢离子和氢氧根离子则会发生导电性很差的衍生物,但这些都不是新的化合物,只是石墨烯装饰分歧吸附物而已.由于石墨烯和石墨都是碳的同素异形体,从化学的角度上来看,往往它们具有一些相同的性质,所以在一些石墨烯不熟悉的领域可以通过石墨来进行相应的实验,来发现石墨烯的规律,有了这条比力简单又方便的思想,在未来,石墨烯更多的化学性质将会被挖掘出来.石墨烯的光学、电学、力学以及热学特性示意图。
石墨烯的介绍
-
1 石墨烯的基本性质 2 石墨烯的制备方法 3 石墨烯的应用领域 4 结论与展望
石墨烯的介绍
石墨烯是一种由碳原子组成 的二维材料,它是单层石墨 的片状结构,具有极高的电 导率、热导率和机械强度
下面我们将详细介绍石墨烯 的基本性质、制备方法、应 用领域以及研究现状
CHAPTER 1
石墨烯的应用领域
能源领域
石墨烯的热导率和电导率都非常高,因此它在能源领域也有广泛的应用。例如,石墨烯可 以用于制造高效能电池和超级电容器等能源器件。此外,石墨烯还可以作为催化剂载体用 于燃料电池等领域
石墨烯的应用领域
生物医学领域
石墨烯具有良好的生物相容性和抗氧化性,因此在生物医学领域也有广泛的应用。例如, 石墨烯可以用于制造药物载体、生物传感器和成像试剂等生物医学器件。此外,石墨烯还 可以作为生物材料用于组织工程等领域
CHAPTER 3
石墨烯的应用领域
石墨烯的应用领域
石墨烯的应用领域
由于石墨烯具有优异 的物理和化学性质, 它在许多领域都有广 泛的应用。以下是石 墨烯的主要应用领域
石墨烯的应用领域
电子器件领域
石墨烯具有很高的电 导率,因此它在电子 器件领域具有广泛的 应用。例如,石墨烯 可以用于制造晶体管 、场效应管、太阳能 电池等电子器件。此 外,石墨烯还可以作 为透明导电膜用于显 示器等领域
CVD法
CVD法是一种常用的制备石墨烯的方法,它是通过加热含碳气体(如甲烷、乙炔等)在基底 表面形成石墨烯。这种方法可以制备大面积、高质量的石墨烯,但需要高温条件和复杂的 设备
石墨烯的制备方法
氧化还原法
氧化还原法是一种通过氧化剂将石墨氧化成氧化石墨,再通过还原剂将氧化石墨还原成石 墨烯的方法。这种方法制备的石墨烯质量较高,但需要使用化学试剂和复杂的工艺流程
石墨烯的结构及性质、用途
石墨烯的结构及性质、用途一、石墨烯的发现2004年,英国曼彻斯特大学的安德烈·K·海姆(Andre K. Geim)等制备出了石墨烯。
海姆石墨烯和他的同事偶然中发现了一种简单易行的新途径。
他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。
不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。
斯德哥尔摩2010年10月5日电瑞典皇家科学院5日宣布,将2010年诺贝尔物理学奖授予英国曼彻斯特大学科学家安德烈-海姆和康斯坦丁-诺沃肖洛夫,以表彰他们在石墨烯材料方面的卓越研究。
二、石墨烯结构石墨烯的问世引起了全世界的研究热潮。
它不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。
石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum physics)才能描绘。
石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。
石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。
这种稳定的晶格结构使碳原子具有优秀的导电性。
石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。
由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨毡石墨烯中电子受到的干扰也非常小。
三、石墨烯的性质石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性石墨烯晶体质和相对论性的中微子非常相似。
为了进一步说明石墨烯中的载荷子的特殊性质,我们先对相对论量子力学或称量子电动力学做一些了解。
石墨烯原理
石墨烯原理
石墨烯是由碳原子排列成六角形的二维晶体结构。
它是由单层碳原子构成的一种超薄材料,具有出色的导电性、热导性和机械性能。
石墨烯的原理可以归结为碳原子之间的共价键连接。
每个碳原子有三个σ键和一个π键与邻近的碳原子相连。
这种结构使得石墨烯非常稳定,并且具有高度的结构完整性。
由于石墨烯是单层结构,只有一个原子厚度,所以它具有许多独特的特性。
首先,石墨烯具有极高的电子迁移率,这意味着电子在其表面上能够以极高的速率移动,实现出色的导电性能。
这使得石墨烯在电子器件中具有巨大的应用潜力。
其次,石墨烯具有出色的热导率。
由于其单层结构,热量能够自由传播并且很少受到散射的影响。
这使得石墨烯在导热材料中表现出色,有望应用于热管理和热传导方面。
此外,石墨烯还具有高强度和柔韧性。
由于其特殊的结构,石墨烯能够承受很高的拉伸应力,而且还具有出色的弯曲性能。
这使得石墨烯在纳米机械系统和柔性电子器件等领域有着广泛的应用前景。
总之,石墨烯的原理是基于碳原子之间的共价键连接。
由于其独特的结构,石墨烯表现出出色的导电性、热导性和机械性能,具有广泛的应用潜力。
石墨烯的结构与性能全解
石墨烯的结构
• 石墨烯是由碳六元环组成的两维(2D)周期蜂窝状 点阵结构, 它可以翘曲成零维的富勒烯,卷成一维 的碳纳米管或者堆垛成三维的石墨, 因此石墨烯 是构成其他石墨材料的基本单元。石墨烯的基本 结构单元为有机材料中最稳定的苯六元环, 是目 前最理想的二维纳米材料.。理想的石墨烯结构 是平面六边形点阵,可以看作是一层被剥离的石 墨分子,每个碳原子均为sp2杂化,并贡献剩余 一个p轨道上的电子形成大π键,π电子可以自由 移动,赋予石墨烯良好的导电性。二维石墨烯结 构可以看是形成所有sp2杂化碳质材料的基本组 成单元。
石墨烯的 制备与应用
王永强
目录
• • • • • 石墨烯的发现 石墨烯的结构 石墨烯的性能 石墨烯的简单分类 石墨烯的制备
通 向 的 电 梯
石墨烯的发现
曾经有人在《太空电梯》一文中设想: 1)有一天你走进电梯,按下上升按钮就到了外太 空,是不 是很酷?这就是太空电梯,它将使人类的梦想成为现实。 2)目前,将一个重 约2.2千克的东西发射到近地轨道就需耗 资约5. 3万元人民币,但是太空电梯却可以大大降低成本, 让普通人可以在太空中旅行。 3)太空电梯的载人舱能够在数千万米长的电缆上移动,而电 缆则靠地球转动产生的离心力来固定。碳纳米管的出现又朝 这一梦想的实现前进了一步。科学家爱德华兹已证明利用纳 米技术可以做出能够支撑太空电的电梯是个合理的设想 ,而且具有商业价值。一个200吨的太空电 梯 的大小 相当 于一架大型的商务飞机。太空电梯的大小完全取决于人的意 愿,不受任何物理层面的限制。
• 3氧化还原法 该法以石墨粉为原料, 经过强氧化剂浓硫酸和高锰 酸钾的氧化,石墨的层间被插入了羟基、环氧及羧基 等含氧基团, 拉大了石墨的层间距,从而得到了石墨 氧化物。然后通过超声作用, 将石墨氧化物剥离得 到单层的石墨烯氧化物( GO )。对GO进行还原, 可 以将GO平面结构上的含氧基团去除,可使大P键共 轭体系得到恢复,即可制得高导电性的石墨烯。但该 方法简单,成本低,可以大量的制备石墨烯。
石墨烯简介
石墨烯简介石墨烯是一种由碳原子构成的单层二维晶格材料,具有出奇制胜的电学、热学和力学性质。
它的发现引发了广泛的科学研究和技术应用,被誉为材料科学领域的"奇迹"。
下面是对石墨烯的详细介绍:石墨烯的结构石墨烯的结构非常简单,它是由一个层层叠加的碳原子构成,每一层都只有一个碳原子的厚度。
这些碳原子排列成六角形的蜂窝状晶格,就像蜜蜂蜂巢一样。
这种排列方式赋予石墨烯许多独特的性质。
电学性质石墨烯的电学性质令人惊叹。
它是一种半导体材料,但在室温下,电子能够在其表面以极高的移动速度自由传导,几乎没有电阻。
这使得石墨烯成为极好的导电材料,有望用于高速电子器件和新型电池。
热学性质尽管石墨烯是世界上最薄的材料之一,但它的热传导性能却非常出色。
石墨烯可以有效地传递热量,因此被广泛应用于散热材料和热导材料的领域。
机械性质石墨烯具有出色的机械强度,是世界上最坚硬的材料之一。
它的强度比钢还要高,并且非常轻薄。
这些性质使得石墨烯在材料科学和纳米技术中具有广泛的应用前景。
光学性质石墨烯对光的吸收和散射也表现出了独特的性质。
它在可见光和红外光谱范围内表现出高吸收率,但对其他波长的光几乎是透明的。
这一性质在光电子学和传感器领域具有重要应用价值。
应用领域石墨烯的独特性质使得它在许多领域都有广泛的应用潜力。
目前,石墨烯已经在电子器件、柔性显示屏、电池技术、传感器、材料强化、医疗设备等领域取得了重要突破。
总之,石墨烯是一种具有革命性潜力的材料,其独特的电学、热学、力学和光学性质使其在科学研究和技术创新中备受瞩目。
随着对石墨烯的深入研究和应用的不断推进,我们可以期待看到更多令人兴奋的发现和应用。
石墨烯散热原理
石墨烯散热原理
石墨烯是一种单层碳原子构成的二维材料,具有极高的导热性能。
其独特的散热原理,主要基于以下几个方面:
1. 刚性结构:石墨烯的碳原子排列呈六角晶格,形成了高度有序的结构。
这种结构使得石墨烯具有高度的刚性,能够有效地传导热量。
2. 高导热率:石墨烯具有极高的导热率,达到5000-6000
W/m·K,是铜的几倍甚至更高。
这是因为碳原子之间的共价
键非常强大,热量能够迅速传递并扩散到整个石墨烯层。
3. 跨维导热:石墨烯是二维材料,可以在平面内自由传导热量。
然而,石墨烯也可以垂直于平面方向传导热量,这是由于石墨烯的轻质原子和无序的振动模式,使得热能可以在垂直方向上频繁地跃迁。
4. 优秀的热界面特性:石墨烯与其他材料之间的热界面接触非常紧密。
石墨烯在接触面上形成了强烈的范德华力,使得热量能够更好地传递,有效地提高热导率。
这种特性使得石墨烯可以高效地散热,将热量迅速传递到外界。
综上所述,石墨烯具有极高的导热性能和热界面特性,能够在传热过程中快速传递和散发热量,提高散热效率。
这使得石墨烯在电子器件、电路板等领域中具有广泛的应用前景。
石墨烯材料的性质及应用
石墨烯材料的性质及应用石墨烯是一种类似于石墨的二维材料,是由碳原子通过共价键连接成一个平面网络。
石墨烯的单层结构具有许多惊人的性质,如高导电性、高热导性、高强度、高柔韧性、高光学透明性等。
这些性质使得石墨烯材料在电子学、光学、能源、生物医学等领域应用极为广泛,有着巨大的潜力和市场前景。
1. 石墨烯的制备石墨烯最早是由英国的两位诺贝尔奖获得者安德里·海姆和康士坦丁·诺沃肖洛夫在2004年实验室中发现的。
目前,石墨烯的制备方法主要有以下几种:(1)机械剥离法机械剥离法是最早发现的石墨烯制备方法,其原理是通过石墨石材料的机械剥离可以获得单层石墨烯结构。
这种方法简单易行,但是有着较低的制备效率和较粗糙的表面。
(2)化学气相沉积法(CVD)化学气相沉积法是一种典型的材料制备方法,通过在高温下将气相前体分子反应在金属基底上,可以实现石墨烯薄膜的制备。
该方法成品质量较高,但需要高成本设备和复杂操作。
(3)氧化还原法(GO/RGO)氧化还原法是用强酸处理粉末石墨制备氧化石墨(GO),再通过还原还原氧化石墨(RGO)的方法制备石墨烯的过程。
这种方法制备的石墨烯具有高度的可控性和高质量程度。
2. 石墨烯材料的性质石墨烯具有许多优异的性质和特点,使其成为当今材料科学中的新宠。
(1)高导电性石墨烯中的碳原子只有两个相邻的原子可以形成共价键,因此石墨烯的电子可以自由运动,电荷载流性能极佳。
它的电学性质趋近于一个理想的二维金属,因此在电子学、光学、能源、生物医学等领域被广泛应用。
(2)高热导性由于石墨烯中碳原子的高度紧密排列,热量可以快速传导。
与金属材料相比,石墨烯的热导率达到了非常高的数值,这种性质需要在热管理、电子冷却等应用中得到广泛应用。
(3)高强度和高柔性石墨烯具有极高的强度和柔性,在普通条件下可承受巨大的拉力和压力,同时保持材料的完整性,因此在制备微型机械、生物传感器等领域应用中具有很大的潜力。
石墨烯微观结构
石墨烯微观结构石墨烯是一种由碳原子构成的二维晶体材料,具有极高的强度、导电性和热导率等优异性能,被誉为“21世纪的材料之王”。
石墨烯的微观结构是其优异性能的基础,本文将从石墨烯的原子结构、晶格结构和电子结构三个方面介绍石墨烯的微观结构。
石墨烯的原子结构是由碳原子构成的,每个碳原子有四个价电子,它们通过共价键形成六角形的晶格结构。
石墨烯中的碳原子排列成一个个六角形,每个六角形中有一个碳原子,相邻的六角形通过共边共面的方式连接在一起,形成一个平面的二维晶体结构。
石墨烯的原子结构决定了其具有极高的强度和导电性。
石墨烯的晶格结构是由原子结构组成的,它是一个平面的六角形晶格,每个六角形中有一个碳原子,相邻的六角形通过共边共面的方式连接在一起。
石墨烯的晶格结构具有高度的对称性,它是一个具有六重旋转对称性的晶体结构。
石墨烯的晶格结构决定了其具有极高的强度和热导率。
石墨烯的电子结构是由原子结构和晶格结构共同决定的,它是石墨烯优异性能的基础。
石墨烯中的碳原子通过共价键形成的六角形晶格结构具有π电子能带结构,其中价带和导带之间存在一个零能隙,导致石墨烯具有极高的导电性。
此外,石墨烯中的π电子能带结构还决定了其具有极高的热导率和光学透明性。
石墨烯的微观结构是其优异性能的基础,它由原子结构、晶格结构和电子结构三个方面组成。
石墨烯的原子结构是由碳原子构成的,每个碳原子有四个价电子,它们通过共价键形成六角形的晶格结构。
石墨烯的晶格结构是由原子结构组成的,它是一个平面的六角形晶格,具有高度的对称性。
石墨烯的电子结构是由原子结构和晶格结构共同决定的,它具有π电子能带结构,导致石墨烯具有极高的导电性、热导率和光学透明性。
石墨烯的性能及应用分析
石墨烯的性能及应用分析石墨烯被誉为21世纪材料之王,因其诸多独特性能而备受关注。
本文将从石墨烯的结构,物理性质和应用领域三个方面进行分析。
一、石墨烯的结构石墨烯是一种二维的单层碳原子晶体,它由一个平面六角网格构成,每个六角网格的顶点是一个碳原子,相邻碳原子之间通过共价键连接,形成一种类似蜂窝的结构,这种结构也被称为“蜂窝状”。
二、石墨烯的物理性质1. 电子传输性能:石墨烯是一种半金属材料,其电子移动速度非常快,可达到传统硅材料的100倍,使石墨烯在电子传输领域具有广泛的应用前景,如电子元件和光电子设备等。
2. 机械性能:石墨烯具有极高的机械强度和韧性,它的拉伸模量大约为1 TPa,相当于金属铁丝的200倍,使其在高强度纤维复合材料和超级硬材料方面有着无限的潜力。
3. 热导性能:石墨烯的热导率非常高,是铜的两倍甚至更高,所以它在制造散热器等领域有着广泛的应用前景。
4. 光学性能:石墨烯的吸收率很低,只有2.3%,因此它可以用来制造透明电极、薄膜太阳能电池等光学器件。
三、石墨烯的应用领域1. 电子领域:石墨烯可用于制造高性能电子器件,如晶体管、场效应器、传感器等。
2. 机械材料领域:石墨烯可用于制造高强度材料、碳纤维复合材料等,在航空航天、汽车制造等领域有着广泛应用。
3. 能源领域:石墨烯可以制造高效太阳能电池、锂离子电池等,还可以用于制造新型储能材料。
4. 生物医学领域:石墨烯可以用于制造纳米药物、生物传感器等,在生物医学领域有着广泛的应用前景。
总之,石墨烯是一种非常神奇的材料,具有许多独特的性质,对我们的生活和科技发展都具有重要的影响。
而随着石墨烯研究的不断深入,我们相信会有更多更好的石墨烯应用被发明和创造出来,为人类社会带来更多更广泛的福利和发展机遇。
石墨烯的结构性能及应用
姓名:李雄杰学号:20071050198专业:物理学石墨烯的结构性能及应用(云南大学物理科学技术学院物理系云南昆明650091)摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。
石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。
本文详细介绍了石墨烯的结构,特殊性能及相关应用。
关键词:石墨烯;结构性能;相关应用一、引言石墨烯是2004年以来发现的新型电子材料【1】石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。
在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。
石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。
石墨烯被认为是平面多环芳香烃原子晶体。
石墨烯在电子和光电器件领域有着重要和广阔的应用前景【2】正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。
图1石墨烯结构图石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率(2×105cm2/v),在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料石墨烯具有良好的导热性[3000W/(m·K)]、高强度(110GPa)和超大的比表面积(2630mZ/g)。
这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及复合材料等领域有光明的应用前景【3-4】二.石墨烯的特殊性能石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的【5】,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。
石墨烯的电子迁移率实验测量值超过15000cm2/(V·s)(载流子浓度n≈1013cm-2),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散作者简介:李雄杰(1987-)、男,湖南人,云南大学物理学专业在读本科生,主要研究碳纳米材料及应用。
石墨烯的分类
石墨烯的分类石墨烯的分类石墨烯是一种由碳原子构成的单层二维晶体材料,具有高度的机械强度、导电性和导热性等特殊性质。
根据其结构和制备方法的不同,可以将石墨烯分为多种类型。
本文将从不同角度出发,对石墨烯的分类进行详细介绍。
一、按结构分类1.平面型石墨烯平面型石墨烯是最基本的一种结构类型,由六角形网格组成。
它具有高度的机械强度、导电性和导热性等特殊性质,因此在纳米电子学、纳米光学、生物医学等领域都有广泛应用。
2.非平面型石墨烯非平面型石墨烯是指由多个六角形网格组成的复杂结构。
例如,曲率卷曲的“纳米薄膜”就属于非平面型结构。
这种结构可以通过化学气相沉积、机械剥离等方法制备得到。
3.多层型石墨烯多层型石墨烯是指由两层或多层平面型石墨烯叠加而成的结构,也称为石墨烯堆叠。
它具有比单层石墨烯更强的机械性能和导电性能,因此在柔性电子学、传感器等领域有广泛应用。
二、按制备方法分类1.机械剥离法机械剥离法是最早发现的一种制备单层石墨烯的方法。
其原理是利用胶带等材料将石墨材料表面上的单层石墨烯剥离下来。
这种方法简单易行,但产量低且不易控制。
2.化学气相沉积法化学气相沉积法是目前最主要的一种制备单层石墨烯的方法。
其原理是将碳源分子在高温下分解成碳原子,并通过催化剂在基底上形成单层结构。
这种方法可以实现大规模生产,并且可以控制晶格方向和尺寸。
3.液相剥离法液相剥离法是一种新兴的制备单层石墨烯的方法。
其原理是将氧化图形ene等材料溶解在溶剂中,然后通过离心、过滤等方法将单层石墨烯分离出来。
这种方法产量高,且可以制备大面积的石墨烯薄膜。
三、按应用领域分类1.电子学领域由于其优异的导电性能和机械性能,石墨烯在电子学领域有广泛应用。
例如,可以制备高性能的场效应晶体管、透明导电膜等。
2.生物医学领域由于其单层结构和生物相容性,石墨烯在生物医学领域有广泛应用。
例如,可以制备高灵敏度的生物传感器、细胞成像等。
3.能源储存与转化领域由于其高比表面积和优异的导电性能、导热性能,石墨烯在能源储存与转化领域有广泛应用。
石墨烯的制备、结构、性能
石墨烯及其派生物示意图
石墨烯中的各个碳原子之间的连接十分柔韧,当对其施加外部机械力时,碳原子面 就会弯曲变形,从而使碳原子不必重新排列来适力,就保持了该材料结构的稳定性。 同时,这种稳定的晶格结构也使石墨烯具有优秀的导电性,石墨烯中的电子在轨道 中移动时,不会因晶格缺陷或引入外来原子而发生散射。 石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能 等一系列优异的性质。
4.2 石墨烯在储氢 甲烷中的应用 石墨烯在储氢/甲烷中的应用 Dimitrakakis利用石墨烯和碳纳米管设计了一个三维储 利用石墨烯和碳纳米管设计了一个三维储 氢模型,如果这种材料掺入锂离子, 氢模型,如果这种材料掺入锂离子,其在常压下储氢能力 可以达到41g/L。因此,石墨烯这种新材料的出现,为人 。因此,石墨烯这种新材料的出现, 可以达到 们对储氢/甲烷材料的设计提供了一种新的思路和材料。 们对储氢/甲烷材料的设计提供了一种新的思路和材料。
2 石墨烯的制备方法
石墨烯制备方法
机械方法
化学方法
机械方法
微机械剥 离法
取向附生法
外延生长法
2.1 微机械剥离法
微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体 上剪裁下来。英国曼彻斯特大学的Gim等于2004年用微机械剥离法成功 地从高定向热解石墨上剥离并观测到单层石墨烯。 具体工艺如下:Geim等利用离子束首先在1mm厚的高定向热解石墨 (HOPG)表面用氧等离子刻蚀进行离子刻蚀。在表面刻蚀出宽20 µm~2mm、深5µm的微槽,并将其用光刻胶粘到玻璃衬底上,然后用 透明胶带进行反复撕揭,将多余的HOPG去除,随后将粘有微片的玻璃 衬底放入丙酮溶液中超声。再将单晶硅片放入丙酮溶剂中,将单层石墨 烯“捞出”。
石墨烯介绍
医学成像
生物医学工程
石墨烯的生物相容性和良好的力学性 能使其在组织工程、再生医学等领域 具有潜在应用。
石墨烯可用于制造高灵敏度的医学成 像设备,如超声成像、光声成像等。
能源储存与转换器件
电池
石墨烯的高比表面积和良好的导 电性使其成为电池电极的理想材 料,可提高电池的能量密度和功
率密度。
超级电容器
石墨烯的高比表面积和优异的电 化学性能使其在超级电容器领域 具有广泛应用,可实现快速充放
优异导电导热性能
导电性能
石墨烯具有优异的导电性能,其电导率可达10⁶ S/m,是铜 的100倍。
导热性能
石墨烯的导热性能也非常出色,其热导率可达5000 W/m·K ,远高于铜等传统导热材料。这使得石墨烯在散热器件、热 管理等领域具有广阔的应用前景。
02
石墨烯制备方法与技术
机械剥离法优点简单 Nhomakorabea行,成本低廉。
石墨烯介绍
• 石墨烯基本概念与特性 • 石墨烯制备方法与技术 • 石墨烯应用领域及前景展望 • 石墨烯产业发展现状与趋势分析 • 总结:石墨烯——颠覆性创新材料引领未来科技
革命
01
石墨烯基本概念与特性
石墨烯定义及结构
定义
石墨烯是一种由单层碳原子以sp² 杂化轨道组成六角型呈蜂巢晶格 的二维碳纳米材料。
创新应用拓展
石墨烯在柔性电子、可穿戴设备、生物医学、环 保等领域的应用拓展,将催生一批新的高科技产 业。
推动多学科交叉融合创新发展
促进物理学、化学和材料科学等基础学科的发展
石墨烯的研究涉及凝聚态物理、量子化学和材料科学等多个学科领域,其深入研究将有助 于揭示物质的基本规律和性质。
交叉融合创新
石墨烯性能简介
第一章石墨烯性能及相关概念1石墨烯概念石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。
石墨烯狭义上指单层石墨,厚度为0.335nm,仅有排列而成的蜂窝状晶体结构。
石墨烯中碳-碳键长约为0.142nm。
每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。
垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。
石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。
形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。
在单层石墨烯中,每个碳原子通过sp2杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。
单层石墨烯厚度仅0.35nm,约为头发丝直径的二十万分之一。
100倍,在室温下可以达到15000cm2/(V·s)。
电阻率比铝、铜和银低很多,只有10~6Ω·cm左右。
二是具有超强的导热性。
石墨烯的导热性能优于碳纳米管,是铜、铝等金属的数10倍,导热系数高达5300W/m?K。
三是具有超强的力学性,石墨烯的硬度超过金刚石,断裂强度达到钢铁的100倍。
四是具有超强的透光性。
石墨烯的吸光率非常小,透光率高达97.7%。
五是具有超强的比表面积。
石墨烯的比表面积每克比普通活性炭高出1130m2,达到2630m2/g。
3.1石墨烯的光学性能石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,具有优异的光学性能。
理论和实验结果表明,单层石墨石饱和。
这一非线性光学行为成为饱和吸收。
在近红外光谱区,在强光辐照下,由于其宽波段吸收和零带隙的特点,石墨烯会慢慢接近饱和吸收。
利用这一性质,石墨烯可用于超快速光子学,如光纤激光器等。
3.2石墨烯的电学性能石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成π键,π电子可以自由移动,赋予石墨烯优异的导电性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大面积石墨烯的制备—CVD法
原 理 将碳氢气体吸附于具有催化活性的非金属或金属表 面,加热使碳氢气体脱氢在衬底表面形成石墨烯.
生长条件
生长机体 碳源
气压
烃类气体
甲烷( CH4) 乙烯( C2H4) 乙炔( C2H2)
镍膜 铜箔
载气 温度
பைடு நூலகம்面积石墨烯的制备—CVD法
Cu
Ni
大面积石墨烯的制备—CVD法:
石墨烯性能简介
• • • • 光学性能 电学性能 力学性能 热学性能
光学性能
• 石墨烯具有优异的光 学性能。 • 理论和实验结果表明 ,单层石墨烯吸收 2.3%的可见光,即透 过率为97.7%。 • 如图从基底到单层石 墨烯、双层石墨烯的 可见光透射率依次相 差2.3%。
电学性能
• 石墨烯的每个碳原子均为sp2杂化,并贡献 剩余一个p轨道电子形成一个大键,电子可 以自由移动,赋予石墨烯优异的导电性。 • 电子在石墨烯中传输时不易发生散射,迁 移率可达200000cm2/(V*s),约为硅中电子 迁移率的140倍,其电导率可达104S/m, 是室温下导电性最佳的材料。
电学性能 • 石墨烯的导电性可通过化学改性的 方法进行控制,并可同时获得各种 基于石墨烯的衍生物。 • 双层石墨烯在一定条件下还可呈现 出绝缘性。
力学性能 • 石墨烯是已知材料中强度和硬度最 高的晶体结构。 • 其抗拉强度和弹性模量分别为 125GPa和1.1TPa。 • 石墨烯的强度极限为42N/m2.。
得到单层或少层 较理想石墨烯,但难 实现大面积制备、能 耗高、不利转移
外延法
单层,生长连续、 均匀、大面积
碳化硅外延法
金属外延法
原理
SiC加热 蒸掉Si, C重构生 成石墨烯
衬底处理
1、清洗 2、浸泡 3、蚀刻 4、吹干
制备步骤
1.衬底升温除 水蒸气 2.750℃蒸Si 3.1300℃退火 重构得石墨烯
准备工作 UHV生长室 在晶格匹配 衬底粗糙度 的金属上高 <0.03um, 真空热解含 丙酮、乙醇 碳化合物 超声波洗涤
原理
制备步骤
金属放入UHV 生长室,在金 属衬底上热分 解乙烯,并高 温退火。
大面积石墨烯的制备—外延生长法
SiC外延单层石 墨烯AFM图
Cu外延石墨 烯STM图
原子分辨率 STM图
光子传感器
石墨烯的应用
太空电梯缆线、替代硅生产超级计算机、光子 传感器、液晶显示材料、新一代太阳能电池
可折叠的显示器
薄得像纸一样的iPhone概念手机
石墨烯的应用—储能材料
石墨烯具有极高的理论比表 面积,结构上独立存在。故 石墨烯片层两边均可以形成 双电层。且由于石墨烯片层 所特有的褶皱,有利于电解 液的扩散。
力学性质——比砖石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每100纳米 距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们 测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨 烯断裂。如果物理学家能制取出厚度相当于普通食品塑料包装 袋的(厚度约为100纳米)石墨烯,那么需要施加差不多两万牛 的压力才能将其扯断。换句话说,如果用石墨烯制成包装袋, 那么它将承受大约两吨重的物品。打个比方说单层石墨烯的强 度,就像把大象的重量加到一支铅笔上,才能够用这支铅笔刺 穿仅像保鲜膜一样厚度的单层石墨烯。
石墨烯的结构
• 完美的石墨烯是二维的 ,它只包括六边形结构( 等角六边形)。 • 石墨烯中的碳-碳键长约 为0.142nm.晶格间连接 十分牢固,形成了稳定 的六边形状。垂直于晶 面方向上的键在石墨烯 的导电过程中起到了很 大的作用。
石墨烯的结构
石墨烯的结构 • 如果有五边形和七边形存在,则 会构成石墨烯的缺陷。 • 少量的五角元胞细胞会使石墨烯 翘曲,12个五角形石墨烯会共同 形成富勒烯。石墨烯卷成圆桶形 可以用为碳纳米管 。
在二氧化硅/硅衬底上沉积300nm镍膜
镍膜/石 墨烯
衬底在1000°C下退火并预处理石英管式炉 气压200托+甲烷50ml/min+氩气500ml/min+900--1000℃ 氩气2000ml/min+氢气500ml/min降温冷却10 ℃/s
大面积石墨烯的制备—CVD法:
结 论 晶粒尺寸较小, 层数不均一且难以控制, 晶界处存 在较厚的石墨烯, Ni与石墨烯的热膨胀率相差较大, 因此降温造成石墨烯的表面含有大量褶皱
在室温下硅基处理器的运行速度达到 4-5GHz 后就很难在继续提高。
使用石墨烯作为基质生产出 的处理器能够达到1THz (即1000GHz)
超级计算机芯片-目前世上电阻率 最小的材料,电阻率仅为10-6 Ω•cm
石墨烯的应用
太空电梯缆线、替代硅生产超级计算机、光子 传感器、液晶显示材料、新一代太阳能电池
石墨烯的结构
• 石墨烯根据边缘碳链 的不同可以分为锯齿 型和扶手椅型。 • 锯齿型石墨烯条带通 常为金属型,而扶手 椅型石墨烯条带则可 能为金属型或半导体 型。
石墨烯的发现
• 石墨烯(Graphene)是2004年由英国曼 彻斯特大学物理学家安德烈· 海姆(Andre Geim)和康斯坦丁· 诺沃肖洛夫(Kostya Novoselov)发现的,他们使用一种被称 为机械微应力技术(micromechanical cleavage) 的简单方法。 • 正是这种简单方法制备出来的简单物质— —石墨烯推翻了科学界一个长久以来的错 误认识——任何二维晶体不能在有限的温 度下稳定存在。
石墨烯的制备:
微机械剥离法 碳纳米管横向切割法 微波法
电弧放电法 光照还原法 外延生长法
石 墨 烯 的 制 备 方 法
石墨氧化还原法
电化学还原法
溶剂热法 液相剥离石墨法
碳化硅裂解法
化学气相沉积法
大面积石墨烯的制备:
大面积石墨烯薄膜的制备
外延生 长法
化学气 相沉积 法
大面积石墨烯的制备—外延生长法
锂电子电池
太阳能电池 超级电容器
储能材料
超级电容器是一种新型 储能装置,不仅绿色环 保,且功率密度、循环 寿命都比电池大得多
石墨烯的应用—超级电容器的制
作
压制 石墨烯: 成直径14 乙炔黑:聚四 毫米,厚度 氟乙烯=85:10: 0.3mm电极片 5混匀
两电极 超级电 容器
120℃下真 空干燥12 小时
比钻石还硬的材料 ——石墨烯
姓名: 王金杰
学号:122702106
比钻石还硬的材料 ——石墨烯
主要内容
• • • • • • 石墨烯的定义 石墨烯的结构 石墨烯的发现 石墨烯的制备 石墨烯的性能 石墨烯的应用
石墨烯材料的定义
• 石墨烯(Graphene)是 碳原子紧密堆积成单层二 维蜂窝状晶格结构的一种 碳质新材料,厚度只有 0.335纳米,仅为头发的20 万分之一,是构建其它维 数碳质材料(如零维富勒 烯、一维纳米碳管、三维 石墨)的基本单元,具有 极好的结晶性、力学性能 和电学质量。
(a)石墨烯超级电容器装置原理图 (b)产业级硬币状的超级电容器
超级电容 器的制作
在Ni膜上的SEM照片 不同层数的TEM照片
转移到二氧化硅/硅 上的光学照片
实验室制备方法
石墨经过强氧化剂氧化得到氧化石墨,在石墨层的六元环上形成 羟基、环氧基和羧基。一方面,含氧基团为亲水性,它们的引入 改善了石墨烯的水溶性,使氧化石墨在水中溶解度变大,稳定性 增加,这一点在科研中,多被用来制备改性石墨烯。另一方面, 含氧基团的引入由于空间位阻效应使石墨层间距变大,减小了石 墨层间的团聚现象。
热学性能
• 石墨烯的室温热导率约为5300 W/m· K,高于碳纳米管和金刚 石,是室温下铜的热导率的10 倍多。 • 石墨烯的理论比表面积可达 2630m2/g。
石墨烯的应用
双层石墨烯可降低元器件电噪声
美国IBM公司T.J. 沃森研究 中心的科学家,最近攻克 了在利用石墨构建纳米电 路方面最令人困扰的难题, 即通过将两层石墨烯片叠 加,可以将元器件的电噪 声降低10倍,由此可以大 幅改善晶体管的性能,这 将有助于制造出比硅晶体 管速度快、体积小、能耗 低的石墨烯晶体管。
石墨烯的应用
微电子领域
微电子领域也具有巨大的应用潜 力。研究人员甚至将石墨烯看作 是硅的替代品,能用来生产未来 的超级计算机。
可在26GHz频率下运作可望使该种 材料超越硅的极限,达到100GHz 以上的速度跨入兆赫(terahertz ) 领域。
石墨烯的应用
太空电梯缆线、替代硅生产超级计算机、光子 传感器、液晶显示材料、新一代太阳能电池