六年级的奥数题-圆与组合图形.doc

合集下载

六年级奥数题:圆和组合图形(A)(精编文档).doc

六年级奥数题:圆和组合图形(A)(精编文档).doc

【最新整理,下载后即可编辑】圆和组合图形(1)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的长40厘米, BC 长 厘米.2平方厘米,等腰直角三角形的面7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径OA=OB=6厘米.45∠AOB, AC垂直OB于=C,那么图中阴影部分的面积是平方厘米.)π(=.314459.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知:AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O,半径r=9厘米,15=∠,那么阴影部∠1=2分的面积是多少平方厘米?)π.3(≈1414.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方。

六年级奥数题圆及组合图形(含分析答案解析)

六年级奥数题圆及组合图形(含分析答案解析)

ED C B A 六年级奥(Ao)数题圆及组合图形(含分析答案解析)一、填空(Kong)题1.算(Suan)出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影(Ying)部分面积是 平(Ping)方厘米.3.一个(Ge)扇形圆心角,以扇形的半(Ban)径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所(Suo)示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米..积为2平方厘米,等腰直角三角形的面积为 .6厘米27.扇形的面积是31.4平方厘(Li)米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度(Du).8.图中扇(Shan)形的半径OA =OB =6厘(Li)米., AC 垂(Chui)直OB 于(Yu)C ,那么(Me)图中阴影部分的面积是 平方厘米.9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率)6 CB AO 4512 15 2012.如图,半(Ban)圆S 1的面积(Ji)是14.13平方厘米,圆S 2的面积是19.625平方厘米.那(Na)么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知(Zhi)圆心是O ,半(Ban)径r =9厘(Li)米,,那么(Me)阴影部分的面积是多少平方厘米?14.右图中4个圆的圆心是正方(Fang)形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?S 2S 1 CB A0 1 2———————————————答(Da) 案——————————————————————1. 18平(Ping)方厘米.由图示可知,正方形两条对角线的长都是6厘米(Mi),正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为(平(Ping)方厘米).2. 1.14平方厘(Li)米.由图示可知,图中(Zhong)阴影部分面积为两个圆心角为的扇形面积(Ji)减去直角三角形的面积.即(平方厘(Li)米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是.BE=CE=(厘米).于是阴影部分周长为(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米. 半圆面积为(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为(厘米).⌒⌒A10DCB OE 6.平方(Fang)厘米.将(Jiang)等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆(Yuan)的半径为厘(Li)米.图中阴影部分面积是正方形与圆的面积之差的,于(Yu)是有,解(Jie)得.故等腰直(Zhi)角三角形的面积为(平方厘(Li)米).7..扇形面积是圆面积的,故扇形圆心角为的即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为(厘米),故三角形ACO 的面积为(平方厘米).而扇形面积为(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为(厘米).图形总面积为两个圆面积加上正方形的面积,即(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即(平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 的面积再加上圆面积的.三角(Jiao)形AED 的面(Mian)积是;正方(Fang)形面积是,圆面(Mian)积的41是(Shi),故阴影部分面积(Ji)为:(平方厘(Li)米).12. 由已知半(Ban)圆S 1的面积是14.13平方厘米得半径的平方为(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为(平方厘米),于是它的半径为2.5厘米,直径为5厘米. 阴影部分面积为(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 , 同理,于是.扇形面积为:(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为(平方厘米).正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 (平方厘米),所有空白部分面积为平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 (平方厘米).。

(完整word版)六年级组合图形、圆形、阴影部分面积

(完整word版)六年级组合图形、圆形、阴影部分面积

专题:圆与求阴影部分面积求下面图形中阴影部分的面积。

姓名:正方形面积是7平方厘米。

小圆半径为3厘米,大圆半径为10,问:空白部分甲比乙的面积多多少厘米?已知直角三角形面积是12平方厘米,求阴影部分的面积。

图中圆的半径为5厘米,求阴影部分的面积。

已知AC=2cm ,求阴影部分面积。

正方形ABCD的面积是36cm²例21.图中四个圆的半径都是1厘米,求阴影部分的面积。

一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。

大正方形的边长为6厘米,小正方形的边长为4厘米。

求阴影的面积。

完整答案例1解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11解:这种图形称为环形,可以用两个同心圆的面积差或例12.解:三个部分拼成一个半圆面积.差的一部分来求。

小学数学六年级奥数《圆和组合图形(2)》练习题(含答案)

小学数学六年级奥数《圆和组合图形(2)》练习题(含答案)

小学数学六年级奥数《圆和组合图形(2)》练习题(含答案)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 . 2 1 27.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解答题E D C B A GF O D C A B 2 甲 乙11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率22) 取12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++= 5.204.1645=⨯=(厘米). 6. 6548(平方厘米). 如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为 ⌒61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).7. 19.1416.花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米). 8. 2.43平方厘米. 如图,将①移到②得:阴影部分面积等于梯形CEFB 的面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即 43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ, 解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米11. 如图,小正方形的边长为2r ,则①的面积为: 72227224122r r r r =⨯-⎪⎭⎫ ⎝⎛⨯⨯, ②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1) 又9232=-x S ,于是有23184+-=S x ,解得S=6.14. 圆板的正面滚过的部分如右图阴影部分所求,它的面积为: )420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ 07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).D。

六年级奥数题:圆和组合图形 (3)

六年级奥数题:圆和组合图形 (3)

十二、圆和组合图形(2)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,311倍,那么,CAB∠是 度.10.厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解答题 11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值. 214.如图所示,一块半径为2厘米的圆板,从平面上1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。

求阴影部分的面积。

2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。

六年级奥数题:圆和组合图形B

六年级奥数题:圆和组合图形B

陆老师奥数培训讲义圆和组合图形(六年级)例1】.如图,阴影部分的面积是多少例 2】.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大多少平方厘米.例】 3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是多少 平方厘米 (π取3.14,结果精确到1)例4】.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).例5】.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π 练习题1.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是多少平方厘米.2.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是多少平方厘米.3.已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是多少平方厘米.4.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是多少度./5.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是多少平方厘米 (π取3.14)———————————————答 案—————————————————————— 例1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.例2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米). 例3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).2 1 2 E D C B A GF O D C AB2甲乙例4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).例5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++= 5.204.1645=⨯=(厘米). 练习题1. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米). 又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).2. 19.1416.花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).3. 2.43平方厘米.如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米). 4. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ, 解得x=60. 5. 0.14.⌒扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米14.043.057.0=-(平方厘米).11. 如图,小正方形的边长为2r,则①的面积为:72227224122r r r r =⨯-⎪⎭⎫ ⎝⎛⨯⨯,②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r . 12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1)又9232=-x S ,于是有23184+-=S x ,解得S=6.14. 圆板的正面滚过的部分如右图阴影部分所求,它的面积为:323204221)24(414)220(4222+=⨯⨯+⨯-⨯-⨯-+⨯πππ二、解答题11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)6厘米,中间小正方形边长是4厘米.求.S 的圆放在桌上,桌面被圆覆盖的面积,直线a 过两个圆心a 下方被圆覆盖的面积是9,求圆面积S 的 ,一块半径为2厘米的圆板,从平面上1AB 、BC 、CD 滚到2的位置,如果AB 、BC 、CD 米?CD120CD。

六年级奥数题:圆和组合图形B

六年级奥数题:圆和组合图形B

十二、圆和组合图形(2)一、填空题1.如图,阴影部分的面积是.2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是.7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是平方厘米.8.已知:厘米,阴影部分的面积是.9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是度.10.2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是平方厘米.(π取3.14)二、解答题 11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值. 厘米的圆板,从平面上1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、?2练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。

求阴影部分的面积。

2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。

求阴影部分的面积。

3、 如图18-4所示,DE =12AE ,BD =2DC ,S △EBD =5平方厘米。

六年级下册数学试题-圆和组合图形(b)全国通用

六年级下册数学试题-圆和组合图形(b)全国通用

六年级奥数题:圆和组合图形(B)
、填空题(共10小题,每小题3分,满分30分)
2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大
」方厘米.
3-在一个半径是4” 5厘米的13中挖去两个直径都是2厘米的E1.剩下的图形的面現是
方厘米)
4.圈中三甬形昱笫脛宜第三角務.阴影部分的面积昱平方厘峯*
5-抑險所求.圜的周怅是1阮4厘米T(3的面积与绘方飛附面积正好相等.图中阴盘部分的周弋是
x =3. 143
D C 4如图,Z 1^15'的圆的周^^62. 6厘米,点0为圆心,平行四炖飛■的面积为L00平方厘米.阴影邯井的面积是方厘米).
T.有八个半径为1厘米的小回,用它们的圆周的一邯分達戒一牛花瓣图形(如图).图中黒点是这些圆的凰心.如異風固率n-3. 1416^
那心花融图用的面积臭平方厘采.
10.右图申的正方飛的边怅是2厘米,啖圆弧为分界线的甲、乙两部分的面积羞(大减小〕是平方厘翠.("取3. 13
11.如图:阴影邮廿的面积是多少?四分之一大国的半径为"(计算时回固率取今)
13・有三个面积都是S的圆放在桌上,桌面被回菠盖的面积是2S+2,并且垂仑的两块是等面积的,直线a过两个圆心爪B,如果宜线a下方被E1覆盖的面枳是9・求E]面积S的值.。

六年级下册数学试题-奥数专题12:圆和组合图形(二)(含解析)全国通用

六年级下册数学试题-奥数专题12:圆和组合图形(二)(含解析)全国通用

212十二、圆和组合图形(2)年级班姓名得分一、填空题1.如图,阴影部分的面积是.2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是.E D C B A GF O D CA B7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解答题11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)2 甲乙12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,一块半径为2厘米的圆板,从平面上1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、CD 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?120 ABCD 1 2A B Ca1 OC B A ED———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++=5.204.1645=⨯=(厘米).6. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠, 又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).7. 19.1416.⌒E D C B AG F① ②花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).8. 2.43平方厘米. 如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即 43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ,解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米).11. 如图,小正方形的边长为2r,则①的面积为:72227224122r r r r =⨯-⎪⎭⎫ ⎝⎛⨯⨯,②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,①和②的面积和为2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1)又9232=-x S ,于是有23184+-=S x ,解得S=6.③① ②14. 圆板的正面滚过的部分如右图阴影部分所求, 它的面积为:)420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).ABD12。

19六年级奥数题:圆和组合图形(B)[1]

19六年级奥数题:圆和组合图形(B)[1]

小升初六年级奥数十二、圆和组合图形(2)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.2 1 28.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,311倍,那么,CAB∠是 度.10.厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解答题 11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值. 214.如图所示,一块半径为2厘米的圆板,从平面上1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。

求阴影部分的面积。

六年级奥数题圆和组合图形(A)

六年级奥数题圆和组合图形(A)

六年级奥数题测试(三)圆和组合图形年级 班 姓名 得分一、填空题(共10小题,每小题6分,满分60分) 1.算出圆内正方形的面积为 .2.下图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B 长40厘米,2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.两个阴影部分面积的和是 平方厘米.D 是半圆周的中点, BC 是半圆的直径,已知:AB =?(圆周率14.3=π)4512.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米六年级奥数题测试(三)答案:圆和组合图形1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米. 半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米. 将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫ ⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米).7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43⌒ ⌒圆面积加上正方形的面积,即 75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷ (平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 的面积再加上圆面积的41. 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;正方形面积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为: 22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+ 125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为2.5厘米,直径为5厘米.阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA ,同理150=∠AOC ,于是602150360=⨯-=∠BOC .扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为221221=⨯⨯⨯(平方厘米). 正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米.故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为8)2(22412=-⨯-⨯⨯ππ(平方厘米).。

(完整)六年级奥数题:圆和组合图形(含分析答案)

(完整)六年级奥数题:圆和组合图形(含分析答案)

圆和组合图形(后面有答案分析)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是厘米.(保留两位小数)5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.45二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平⌒ ⌒方厘米,故半圆面积比三角形ABC 的面积小28平方厘米.半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米. 将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫ ⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米).7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即 75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷ (平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 的面积再加上圆面积的41. 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;正方形面积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为: 22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+ 125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为2.5厘米,直径为5厘米. 阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA ,同理150=∠AOC ,于是602150360=⨯-=∠BOC .扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为 221221=⨯⨯⨯(平方厘米). 正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 8)2(22412=-⨯-⨯⨯ππ(平方厘米).。

六年级奥数题 圆和组合图形 A

六年级奥数题 圆和组合图形 A

六年级奥数题圆和组合图形 A六年级奥数题圆和组合图形a六年级奥数题:圆和组合图形(a)圆和女团图形(1)年级班姓名罚球1.算出圆内正方形的面积为.2.右图就是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积就是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是.4.如图所示,以b、c为圆心的两个半圆的直径都就是2厘米,则阴影部分的周长就是厘米.(留存两位小数)5.三角形abc是直角三角形,阴影部分①的面积比阴影部分②的面积小286.如右图,阴影部分的面积为2平方厘米,全等直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径oa=ob=6厘米.∠aob=45,ac横向ob于c,那么图中阴影部分的面积就是平方厘米.(π=3.14)9.右图中正方形周长是20厘米.图形的总面积是平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和就是平方厘米.11.abc是等腰直角三角形.d是半圆周的中点,bc是半圆的直径,已知:ab=bc=10,那么阴影部分的面积是多少?(圆周率π=3.14)12.例如图,半圆s1的面积就是14.13平方厘米,圆s2的面积就是19.625平方厘米.那么长方形(阴影部分的面积)就是多少平方厘米?13.如图,已知圆心是o,半径r=9厘米,∠1=∠2=15,那么阴影部分的面积是多少平方厘米?(π≈3.14)14.右图中4个圆的圆心就是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都就是1厘米,那么阴影部分的总面积就是多少平方厘米?———————————————答案——————————————————————1.18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的1三角形形成.三角形底为6厘米,低为3厘米,故正方形面积为6⨯3⨯⨯2=18(平22.1.14平方厘米.由图示所述,图中阴影部分面积为两个圆心角为45的扇形面积乘以直角三角形的面积.即3.14⨯22⨯451⨯2-2⨯2⨯=1.14(平方厘米).36023.125.6平方厘米.由未知条件所述圆的半径的平方为120平方厘米.故扇形面积为1203.14⨯120⨯=125.6(平方厘米).3604.3.09厘米.边结be、ce,则be=ce=bc=1(厘米),故三角形bce为等边三角形.于是60⌒⌒=1.045(厘米).于是阴影部分周长∠ebc=∠bce=60.be=ce=3.14⨯2⨯360为1.045⨯2+1=3.09(厘米).5.32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形abc的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形abc的面积大28平方厘米.⎛40⎛1半圆面积为3.14⨯⎛⨯=628(平方厘米),三角形abc的面积为⎛2⎛2628+28=656(平方厘米).bc的短为656⨯2÷40=32.8(厘米).96.37平方厘米.13将全等直角三角形补成一个正方形,设立正方形边长为x厘米,则圆的半径为x1厘米.图中阴影部分面积就是正方形与圆的面积之高的,于是存有823200⎛1⎛.故全等直角三角形的面积为x-3.14⨯x⎛=8⨯2,Champsaurx2=13⎛2⎛222320019⨯=37(平方厘米).13213扇形面积就是圆面积的31.4÷157=11,故扇形圆心角为360的即为72.558.5.13.三角形aco就是一个全等直角三角形,将ao看做底边,ao边上的低为1ao÷2=6÷2=3(厘米),故三角形aco的面积为⨯6⨯3=9(平方厘米).而扇245=14.13(平方厘米),从而阴影部分面积为形面积为3.14⨯62⨯36014.13-9=5.13(平方厘米).9.142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为20÷4=5(厘3米).图形总面积为两个圆面积加之正方形的面积,即433.14⨯52⨯⨯2+52=142.75(平方厘米).410.90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即(12÷2)2⨯3.14⨯1+(16÷2)2⨯3.14⨯1+12⨯15⨯1-(20÷2)2⨯3.14⨯1=902222(平方厘米).11.如图作出辅助线,则阴影部分的面积为三角形aed的面积减去正方形1bedo的面积再加之圆面积的.41三角形aed的面积是(10+10÷2)⨯(10÷2)⨯;正方形面积是(10÷2)2,圆211面积的就是⨯3.14⨯(10÷2)2,故阴影部分面积为:4411(10+10÷2)⨯(10÷2)⨯-(10÷2)2+⨯3.14⨯(10÷2)224=37.5-25+19.625=32.125(平方厘米).12.由已知半圆s1的面积是14.13平方厘米得半径的平方为14.13⨯2÷3.14=9(平方厘米),故半径为3厘米,直径为6厘米.又因圆s2的面积为19.625平方厘米,所以s2半径的平方为19.625÷3.14=6.25(平方厘米),于是它的半径为2.5厘米,直径为5厘米.阴影部分面积为(6-5)⨯5=5(平方厘米).13.因oa=ob,故三角形oab为等腰三角形,即∠oba=∠1=15,∠aob=180-15⨯2=150,同理∠aoc=150,于是∠boc=360-150⨯2=60.扇形面积为:60⨯3.14⨯92=42.39(平方厘米).36014.正方形可以划分成两个底为2,低为1的三角形,其面积为1⨯2⨯1⨯2=2(平方厘米).21正方形内空白部分面积为4个圆即一个圆的面积与正方形面积之差,即4π⨯12-2=π-2(平方厘米),所有空白部分面积为2(π-2)平方厘米.故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为为π⨯12⨯4-2⨯2(π-2)=8(平方厘米).。

六年级奥数题圆和组合图形B

六年级奥数题圆和组合图形B

精心整理陆老师奥数培训讲义圆和组合图形(六年级)例1】.如图,阴影部分的面积是多少?例2】.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大多少平方厘米.?例】3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是多少平方厘米?(π取3.14,结果精确到1平方厘米)例4】.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米). 例5】.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π练习题1.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是多少平方厘米?.2.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是多少平方厘米.?3.已知:ABC D 是正方形,ED =DA =AF =2厘米,阴影部分的面积是多少平方厘米?.4.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是多少度./? 5.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是多少平方厘米?(π取3.14)———————————————答案——————————————————————例1.6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位. 例2.188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).例3.57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).2 1 2 E D C B A GF O D CA B2 甲 乙例4.10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).例5.20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++= 5.204.1645=⨯=(厘米). 1.ACD因为151=∠, 又30215=⨯=∠AOC 36030平方厘米61262.1厘米3.2(+米设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有 2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ, 解得x=60. 5.0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部⌒4②,即阴⨯41的+2,并且a下方段20厘米C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆和组合图形(后面有答案分析)
一、填空题
1. 算出圆内正方形的面积为.
6 厘米
2. 右图是一个直角等腰三角形, 直角边长2 厘米, 图中阴影部分面积是
平方厘米.
2
3. 一个扇形圆心角120 , 以扇形的半径为边长画一个正方形, 这个正方形的
面积是120 平方厘米. 这个扇形面积是.
4. 如图所示, 以B、C为圆心的两个半圆的直径都是 2 厘米, 则阴影部分的周长是厘米.( 保留两位小数)
E
A B D
C
5. 三角形ABC是直角三角形, 阴影部分①的面积比阴影部分②的面积小28 平方厘米. AB长40 厘米, BC长厘米.
C


B A
6. 如右图, 阴影部分的面积为 2 平方厘米, 等腰直角三角形的面积为.
7. 扇形的面积是平方厘米, 它所在圆的面积是157 平方厘米, 这个扇形的圆心角是度.
8. 图中扇形的半径OA=OB=6厘米. AOB 45 , AC垂直OB于C,那么图中阴影部分的面积是平方厘米. ( 3.14 )
A
6
45
O C B
9. 右图中正方形周长是20 厘米. 图形的总面积是平方厘米.
10. 在右图中( 单位: 厘米), 两个阴影部分面积的和是平方厘米.
15
12
20
二、解答题
11. ABC是等腰直角三角形. D是半圆周的中点, B C是半圆的直径, 已知: AB=BC=10,那么阴影部分的面积是多少( 圆周率 3.14 )
10
B
A
D
C
12. 如图, 半圆S1的面积是平方厘米, 圆S2的面积是平方厘米. 那么长方形( 阴影部分的面积) 是多少平方厘米
S2
S1
13. 如图, 已知圆心是O,半径r =9 厘米, 1 2 15 , 那么阴影部分的面积是多少平方厘米( 3.14 )
A
1 2
B
C
14. 右图中4 个圆的圆心是正方形的 4 个顶点, 它
们的公共点是该正方形的中心. 如果每个圆的半径都是1 厘米, 那么阴影部分的总面积是多少平方厘米
———————————————答案——————————————————————
1. 18 平方厘米.
由图示可知, 正方形两条对角线的长都是 6 厘米, 正方形由两个面积相等的
1
三角形构成. 三角形底为6厘米, 高为3厘米, 故正方形面积为 6 3 2 18( 平
2
方厘米).
2. 1.14 平方厘米.
由图示可知, 图中阴影部分面积为两个圆心角为45 的扇形面积减去直角三
45 1
2 ( 平方厘米).
角形的面积. 即3.14 2 2 2 2 1. 14
360 2
3. 平方厘米.
由已知条件可知圆的半径的平方为120 平方厘米. 故扇形面积为
120
3.14 120 125.6 ( 平方厘米).
360
4. 3.09 厘米.
边结BE、CE, 则BE=CE=BC1=(厘米), 故三角形BCE为等边三角形. 于是
60


EBC BCE 60 . BE=CE=3.14 2 1. 045 (厘米). 于是阴影部分周长为
360
1.45 2 1 3.09 ( 厘米).
5. 32.8 厘米.
从图中可以看出阴影部分①加上空白部分的面积是半圆的面积, 阴影部分②加上空白部分的面积是三角形ABC的面积. 又已知①的面积比②的面积小28平方
厘米, 故半圆面积比三角形ABC的面积小28 平方厘米.
2
40 1
半圆面积为3.14 628( 平方厘米), 三角形ABC的面积为
2 2
628+28=656(平方厘米). BC的长为656 2 40 32.8 ( 厘米).
6.
9
37 平方厘米.
13
将等腰直角三角形补成一个正方形, 设正方形边长为x 厘米, 则圆的半径为
x 2 厘米. 图中阴影部分面积是正方形与圆的面积之差的
1
8
, 于是有
2
1
2 x
x 3.14 8 2,解得
2
3200
2
x . 故等腰直角三角形的面积为
13
3200 13 1
2
9
37
13
( 平方厘米).
7. 72 .
扇形面积是圆面积的
1
31.4 157 , 故扇形圆心角为360 的
5
1
5

72 .
8. 5.13.
三角形ACO是一个等腰直角三角形, 将A O看作底边, AO边上的高为
1
AO 2 6 2 3( 厘米), 故三角形ACO的面积为 6 3 9( 平方厘米). 而扇形
2
45
2 ( 平方厘米), 从而阴影部分面积为=(平方厘米).
面积为3.14 6 14.13
360
9. .
由正方形周长是20 厘米, 可得正方形边长也就是圆的半径为20 4 5( 厘
米). 图形总面积为两个3
4
圆面积加上正方形的面积, 即
3.14 2 ( 平方厘米).
3
2
5 2 5 142.75
4
10. 90 平方厘米.
图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即
2
12 2 3. 14 1
2
(16 2
2) 3.14
1
2
12 15
1
2
(20 2
2) 3.14
1
2
90
( 平方厘米).
10
B
E
A
11. 如图作出辅助线, 则阴影部分的面积为三角形
D
O
C
AED的面积减去正方形BEDO的面积再加上圆面积的1 4 .
三角形AED的面积是
1
(10 10 2) (10 2) ; 正方形面积是
2
2
( , 圆面
10 2)
积的1
4

1
4
3.14 (10 2) 2, 故阴影部分面积为:
(10 10 2) (10 2)
1
2
(10
1
2 3.14 (10 2)
2)
4
2
37. 525 19.625 32. 125(平方厘米).
12. 由已知半圆S
1 的面积是平方厘米得半径的平方为14.13
2 3.14 9(平方厘米), 故半径为
3 厘米, 直径为6 厘米.
又因圆S2 的面积为平方厘米, 所以S2 半径的平方为19. 625 3.14 6.25 (平方厘米), 于是它的半径为厘米, 直径为5 厘米.
阴影部分面积为(6 5) 5 5( 平方厘米).
13. 因OA=O,B故三角形OAB为等腰三角形, 即
OBA 1 15 , AOB 180 15 2 150 ,
同理AOC 150 , 于是BOC 360 150 2 60 .
60 2
扇形面积为: 3.14 9 42.39
360
(平方厘米).
14. 正方形可以分割成两个底为2, 高为1 的三角形, 其面积为
1
2
2 1 2 2 ( 平方厘米).
正方形内空白部分面积为 4 个1
4
圆即一个圆的面积与正方形面积之差, 即
12 ( 平方厘米), 所有空白部分面积为2( 2) 平方厘米.
2 2
故阴影部分面积为四个圆面积之和与两个空白面积之和的差, 即为
2 ( 平方厘米).
1 4
2 2( 2) 8。

相关文档
最新文档