高考数学知识点公式大全
高三必背数学知识点公式
高三必背数学知识点公式一、代数运算1. 加法公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22. 幂的性质:a^m * a^n = a^(m + n)(a^m)^n = a^(mn)a^(-m) = 1 / a^m3. 根式的性质:√(a * b) = √a * √b√(a / b) = √a / √b(√a)^2 = a4. 二次根式的展开和收集:√(a + b) ≠ √a + √b(√a + √b)(√a - √b) = a - b5. 平方差公式:a^2 - b^2 = (a + b)(a - b)6. 二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / 2a7. 余弦定理:c^2 = a^2 + b^2 - 2abcosC8. 正弦定理:a / sinA =b / sinB =c / sinC二、几何图形相关公式1. 长方形的面积和周长:面积 S = 长 a * 宽 b周长 P = 2a + 2b2. 正方形的面积和周长:面积 S = a^2周长 P = 4a3. 圆的面积和周长:面积S = πr^2周长C = 2πr4. 圆柱体的体积和表面积:体积V = πr^2h表面积A = 2πrh + 2πr^25. 直角三角形特殊关系:勾股定理:a^2 + b^2 = c^26. 同位角与内错角关系:同位角相等,内错角互补:∠A = ∠B ⇒∠C = ∠D, ∠E = 180° - ∠B7. 圆锥的体积和表面积:体积V = (1/3)πr^2h表面积A = πrl + πr^2三、三角函数和三角恒等式1. 三角函数的基本关系:sinθ = 对边 / 斜边cosθ = 临边 / 斜边tanθ = 对边 / 临边2. 三角函数的正负:第一象限:sinθ > 0, cosθ > 0, tanθ > 0第二象限:sinθ > 0, cosθ < 0, tanθ < 0第三象限:sinθ < 0, cosθ < 0, tanθ > 0第四象限:sinθ < 0, cosθ > 0, tanθ < 03. 三角函数的周期性:sin(θ + 2πn) = sinθcos(θ + 2πn) = cosθtan(θ + πn) = tanθ4. 三角函数的和差化积:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)5. 三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ) / (1 - tan^2θ)四、概率和统计相关公式1. 排列公式:A(n, m) = n! / (n - m)!2. 组合公式:C(n, m) = n! / (m!(n - m)!)3. 互斥事件的概率公式:P(A ∪ B) = P(A) + P(B)4. 独立事件的概率公式:P(A ∩ B) = P(A) * P(B)5. 条件概率公式:P(A | B) = P(A ∩ B) / P(B)总结:以上是高三数学知识点公式的概要,掌握这些公式对于成功备战高考至关重要。
高考必备数学公式知识点知识归纳
高考必备数学公式知识点篇一-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac<0注:方程有共轭复数根高考必备数学公式知识点篇二圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h高考必备数学公式知识点篇三长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r高考必备数学公式知识点篇四性质:(1)奇函数的图象关于原点对称;(2)奇函数在x>0和x<0上具有相同的单调区间;(3)定义在R上的奇函数,有f(0)=0.偶函数:在前提条件下,若有f(-x)=f(x),则f(x)就是偶函数。
高考数学知识点总结及公式大全
高考数学知识点总结及公式大全《高考数学知识点总结及公式大全》一、函数与方程1. 一次函数- 方程:y = ax + b- 直线的斜率公式:a = Δy / Δx- 直线的截距公式:b = y - ax2. 二次函数- 方程:y = ax^2 + bx + c- 抛物线的顶点坐标公式:(h, k) = (-b / (2a), c - b^2 / (4a))3. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 三角函数间的关系:sin^2(x) + cos^2(x) = 14. 指数函数与对数函数- 指数函数:y = a^x- 对数函数:y = loga(x)- 对数运算法则:loga(m * n) = loga(m) + loga(n)5. 不等式- 线性不等式:ax + b > 0- 二次不等式:ax^2 + bx + c > 0二、解析几何1. 直线与曲线- 一次函数的图像是一条直线- 二次函数的图像是一个抛物线2. 二维坐标系- 直角坐标系:以x轴和y轴为基准构建的坐标系- 极坐标系:以原点O和角度θ为基准构建的坐标系3. 几何图形- 圆:由所有与一个点的距离相等的点所组成的图形- 圆柱体:由一个圆沿着一条平行于其平面的直线旋转一周形成的立体图形三、概率与统计1. 概率- 事件的概率:P(A) = n(A) / n(S)- 互斥事件:P(A ∩ B) = 0- 独立事件:P(A ∩ B) = P(A)P(B)2. 统计- 平均数:A = (x1 + x2 + ... + xn) / n- 方差:Var(X) = (x1^2 + x2^2 + ... + xn^2) / n - (A)^2- 标准差:σ = √[ (x1 - A)^2 + (x2 - A)^2 + ... + (xn - A)^2 / n ]四、解题技巧1. 代入法:将未知数用已知条件中的数进行代入,并求解方程。
高考数学知识点大全
高考数学知识点大全一、集合与常用逻辑用语。
1. 集合。
- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。
- 集合间的关系:子集、真子集、相等集合的定义与判断。
- 集合的运算:交集、并集、补集的定义、性质及运算规律。
例如:A∩B={xx∈ A且x∈ B},A∪ B = {xx∈ A或x∈ B}。
2. 常用逻辑用语。
- 命题:命题的概念,真命题、假命题的判断。
- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系,互为逆否命题的真假性相同。
- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充分必要条件。
- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义及命题真假的判断。
例如:p∧ q为真当且仅当p,q都为真;p∨ q为真当且仅当p,q至少一个为真;¬ p与p真假相反。
二、函数。
1. 函数的概念。
- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。
- 函数的三要素:定义域、值域、对应关系。
求函数定义域的常见情况,如分式分母不为零,偶次根式被开方数非负等。
- 函数的表示方法:解析法、图象法、列表法。
2. 函数的基本性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1 < x_2时,有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
判断函数单调性的方法有定义法、导数法等。
- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)=f(x)(偶函数)或f(-x)= - f(x)(奇函数)。
高考数学必备知识点及公式总结
高考数学必备知识点及公式总结高考数学是一门需要掌握一定的数学知识和公式的科目。
下面是高考数学常见的知识点及相关公式的总结。
一、函数与方程1.函数的定义与性质-函数的定义:对应关系、自变量、因变量、定义域、值域等。
-函数的性质:奇偶性、周期性、单调性、极值点、对称轴等。
2.一次函数与二次函数- 一次函数的表达式:y = kx + b。
- 二次函数的表达式:y = ax² + bx + c。
-一次函数与二次函数的性质与图像:斜率、判别式、顶点、对称轴等。
3.指数函数与对数函数-指数函数:y=a^x,其中a>0且a≠1- 对数函数:y = logₐx,其中 a > 0 且a ≠ 1-指数函数与对数函数的性质:指数函数的增减性、对数函数的定义域等。
4.三角函数-基本三角函数:正弦函数、余弦函数、正切函数等。
-三角函数的基本关系:辅助角公式、三角恒等式等。
5.方程与不等式-方程的解的情况:无解、唯一解、无穷多解。
-一元二次方程的求解法:配方法、根的性质、韦达定理等。
-一元二次不等式的解集表示:区间表示、集合表示等。
二、空间几何与向量1.平面几何-平面上点与线的位置关系:点与直线的距离、点到线段的距离等。
-直线的方程:一般式、点斜式、两点式等。
-圆的方程:标准方程、一般方程等。
2.空间几何-空间中点与线的位置关系:点与直线的距离、点到线段的距离等。
-空间中直线的方程:点向式、两点式等。
-空间中平面的方程:一般式、点法式等。
3.向量的运算-向量的定义与性质:向量的模、方向、共线关系等。
-向量的加法与减法:平行四边形法则、三角形法则等。
-向量的数量积与向量积:数量积的定义与性质、向量积的定义与性质等。
4.空间向量的应用-点到直线的距离:点到直线的单位法向量与点的坐标的内积。
-直线与平面的位置关系:直线与平面的夹角等。
三、概率与统计1.随机事件与概率-随机事件的定义与性质:必然事件、不可能事件、事件的互斥与对立等。
高中数学知识点总结及公式大全
高中数学知识点总结及公式大全关于高中数学知识点总结及公式大全空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h 为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) 二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高一必修二数学复习知识点总结空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。
高考数学必背公式和知识点
高考数学必背公式和知识点在高中数学学习中,公式和知识点的记忆是非常重要的。
尤其在高考数学中,对于公式的熟悉程度直接决定了解题的效率和准确性。
下面将介绍一些高考数学必备的公式和知识点,希望能对大家备战高考有所帮助。
一、函数1. 一次函数的一般形式: y = kx + b,其中 k 表示斜率,b 表示截距。
2. 二次函数的一般形式: y = ax^2 + bx + c,其中 a 表示抛物线的开口方向,a>0 表示开口向上,a<0 表示开口向下。
二、直线和曲线1. 直线的斜率 k = (y2 - y1) / (x2 - x1)。
2. 直线的截距 b = y - kx,其中 (x, y) 是直线上的一个点。
3. 判定直线与坐标轴的交点: x 轴截距为 b1 = -b / k,y轴截距为 b2 = b。
4. 曲线的极限:当 x 趋近于 a 时,若存在一个常数 L,使得函数值 f(x) 趋近于 L,则称函数 f(x) 在 x=a 处有极限 L。
三、三角函数1. sinA = a / c,cosA = b / c,tanA = a / b,其中 c 表示斜边,a 表示对边,b 表示邻边。
2. 正弦定理:a / sinA = b / sinB = c / sinC。
3. 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA。
四、平面几何1. 相似三角形的比例定理:设两个三角形 ABC 和 A'B'C',若有三个边对应成比例,则可以推出两个三角形对应的角相等。
2. 两条平行线与一条横截线的对应角相等,即内错角和外错角互为补角。
3. 圆的面积公式:S = πr^2。
五、立体几何1. 直线和平面垂直的判定:若直线的方向向量与平面的法向量相互垂直,则两者垂直。
2. 圆柱体的体积公式:V = πr^2h。
3. 球体的表面积公式:S = 4πr^2。
六、概率与统计1. 组合公式:C(n, m) = n! / (m!(n-m)!),表示从 n 个数中取出 m 个数的组合数。
高考数学知识点总结及公式大全(实用)
高考数学知识点总结及公式大全(实用)高考数学必备公式1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式b2-4ac=0 注:方程有两个相等的实根b2-4acgt;0 注:方程有两个不等的实根b2-4aclt;0 注:方程没有实根,有共轭复数根4、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)5、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a6、抛物线1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
agt;0时,抛物线开口向上;alt;0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
数学高考知识点及公式总结
数学高考知识点及公式总结在高中数学的学习过程中,我们需要掌握各种各样的知识点和公式。
这些知识点和公式是我们高考备考的重要基础,也是我们在数学考试中的得分点。
下面,我们就来总结一下数学高考中常见的知识点和公式,希望对大家备考有所帮助。
一、代数与函数1. 方程与不等式- 一元二次方程:$ax^2 + bx + c = 0$- 二次函数图像的特征:顶点、对称轴、开口方向- 一元二次不等式:$ax^2 + bx + c > 0$ 或 $< 0$ 的解集2. 数列与数列极限- 等差数列通项公式:$a_n = a_1 + (n-1)d$- 等比数列通项公式:$a_n = a_1 \cdot q^{n-1}$- 递推关系与通项公式的转化- 数列极限的概念与计算3. 函数与图像- 一次函数:$y = kx + b$- 二次函数:$y = ax^2 + bx + c$- 指数函数:$y = a^x\ (a > 0,\ a \neq 1)$- 对数函数:$y = \log_a{x}\ (a > 0,\ a \neq 1)$- 三角函数:正弦函数、余弦函数、正切函数等二、平面几何1. 图形的性质- 四边形性质:平行四边形、矩形、正方形、菱形等- 三角形性质:等边三角形、等腰三角形、直角三角形等- 圆的性质:圆的周长、面积、弦长、弧长等2. 相似与全等- 三角形相似的判定条件- 三角形全等的判定条件3. 向量与坐标- 向量的基本运算:加法、减法、数乘- 向量的模、平行、垂直等概念- 平面直角坐标系中的点与向量的关系三、空间几何1. 空间图形的性质- 空间几何体:球、圆柱、圆锥、棱柱、棱锥等- 空间图形的表面积和体积计算2. 空间直角坐标系- 空间直角坐标系的建立与应用- 斜率与二维、三维直线的关系3. 空间平面与直线- 空间平面的方程与性质- 空间直线的方程与性质四、概率与统计1. 随机事件与概率- 随机事件的概念与性质- 概率的基本性质及其计算方法- 排列与组合的概念与计算2. 数据处理与统计- 数据分布的统计指标:平均数、中位数、众数、极差等- 统计图表的绘制与分析以上就是数学高考中常见的知识点和公式的总结。
2024高考数学重点必考公式归纳总结
2024高考数学重点必考公式归纳总结2024高考数学重点必考公式归纳(一)数学两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)数学椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积(三)数学某些数列前n项和公式1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1×2+2×3+3×4+4×5+5×6+6×7+…+n(n+1)=n(n+1)(n+2)/3高考数学必背公式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1×X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前 n 项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+ … +(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+ …n3=n2(n+1)2/41×2+2×3+3×4+4×5+5×6+6×7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c×h 斜棱柱侧面积 S=c×h正棱锥侧面积S=1/2c×h 正棱台侧面积 S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi×r2圆柱侧面积S=c×h=2pi×h 圆锥侧面积 S=1/2×c×l=pi×r×l弧长公式l=a×r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2×l×r 锥体体积公式V=1/3×S×H 圆锥体体积公式 V=1/3×pi×r2h斜棱柱体积V=SL 注:其中,S是直截面面积, L 是侧棱长柱体体积公式V=s×h 圆柱体 V=pi×r2h高中文科数学必背公式总结公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到 2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及 3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上 k∈Z)高三学数学最有效的方法一轮复习①立足课本,迅速激活已学过的各个知识点。
高考数学知识点总结及公式大全免费
高考数学知识点总结及公式大全免费高考数学重要知识点( 一 ) 导数第一定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x(x0+△x 也在该邻域内 ) 时,相应地函数取得增量△y=f(x0+△x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第一定义( 二 ) 导数第二定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x(x-x0 也在该邻域内 ) 时,相应地函数变化△y=f(x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第二定义( 三 ) 导函数与导数如果函数 y=f(x) 在开区间 I 内每一点都可导,就称函数 f(x) 在区间 I 内可导。
这时函数 y=f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y=f(x) 的导函数,记作y',f'(x),dy/dx,df(x)/dx 。
导函数简称导数。
( 四 ) 单调性及其应用1. 利用导数研究多项式函数单调性的一般步骤(1) 求 f ¢ (x)(2) 确定 f ¢ (x) 在 (a , b) 内符号 (3) 若 f ¢ (x)0 在 (a , b) 上恒成立,则 f(x) 在 (a , b) 上是增函数 ; 若 f ¢ (x)0 在 (a , b) 上恒成立,则f(x) 在 (a , b) 上是减函数2. 用导数求多项式函数单调区间的一般步骤(1) 求 f ¢ (x)(2)f ¢ (x)0 的解集与定义域的交集的对应区间为增区间 ;f ¢ (x)0 的解集与定义域的交集的对应区间为减区间全国卷高考数学知识点必修一: 1 、集合与函数的概念 ( 这部分知识抽象,较难理解 )2 、基本的初等函数 ( 指数函数、对数函数 )3 、函数的性质及应用 ( 比较抽象,较难理解 ) 必修二: 1 、立体几何 (1) 、证明:垂直 ( 多考查面面垂直 ) 、平行 (2) 、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
数学高考基础知识点公式
数学高考基础知识点公式数学一直是许多学生头疼的科目。
而在高考中,数学占据着重要的地位。
为了帮助广大学生更好地掌握高考数学基础知识点,本文将对一些常用的数学公式进行归纳和总结。
1. 三角函数公式三角函数是高中数学中常见的一类函数。
它们以角为自变量,以比值为函数值。
在高考中,我们常用的三角函数有正弦函数、余弦函数和正切函数。
它们之间存在许多重要的关系式。
- 正弦函数公式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sinC}=2R$,其中,$R$为三角形外接圆半径。
- 正弦差公式:$\sin(A-B)=\sin A\cos B-\cos A\sin B$- 余弦函数公式:- 余弦定理:$a^2=b^2+c^2-2bc\cos A$- 余弦和公式:$\cos(A+B)=\cos A\cos B-\sin A\sin B$- 正切函数公式:- 正切和公式:$\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$2. 平面几何公式- 三角形面积公式:- 海伦公式:$S=\sqrt{p(p-a)(p-b)(p-c)}$,其中,$p$为三角形的半周长。
- 已知三边长求面积公式:$S=\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}$- 四边形面积公式:- 正方形面积公式:$S=a^2$- 长方形面积公式:$S=ab$- 平行四边形面积公式:$S=ah$- 圆面积公式:- 圆的面积公式:$S=\pi r^2$,其中,$r$为圆的半径。
3. 解析几何公式- 直线公式:- 一般式方程:$Ax+By+C=0$- 点斜式方程:$y-y_1=k(x-x_1)$- 两点式方程:$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$ - 圆的方程:- 标准方程:$(x-a)^2+(y-b)^2=r^2$,其中,$(a,b)$为圆心坐标,$r$为半径。
数学高考公式知识点大全
数学高考公式知识点大全数学高考是每位中学生都将面临的重要考试,其中数学科目是很多学生认为最具挑战性的科目之一。
为了帮助大家更好地准备数学高考,本文将提供数学高考公式知识点大全,以帮助学生们复习和掌握重要的数学公式。
一、代数公式1. 两点间距离公式:设两点坐标分别为(x₁, y₁)和(x₂, y₂),则两点间距离d为:d = √((x₂ - x₁)² + (y₂ - y₁)²)2. 一元二次方程求根公式:对于一元二次方程ax² + bx + c = 0,其求根公式为:x = (-b ± √(b² - 4ac)) / 2a3. 因式分解公式:对于二次多项式ax² + bx + c,可以利用因式分解公式将其分解为两个一次多项式的乘积。
4. 二次函数顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为:(h, k),其中 h = -b / (2a),k = f(h)5. 等差数列通项公式:对于等差数列a₁, a₂, a₃, ...,其通项公式为:aₙ = a₁ + (n - 1)d,其中aₙ表示第n个数,a₁为首项,d为公差。
二、几何公式1. 矩形的周长和面积公式:设矩形的长为l,宽为w,则矩形的周长C为:C = 2(l + w),面积S为:S = lw2. 三角形的周长和面积公式:设三角形的三边长为a、b、c,其中s 为半周长,则三角形的面积A为:A = √(s(s-a)(s-b)(s-c)),周长P为:P = a + b + c3. 圆的周长和面积公式:设圆的半径为r,则圆的周长C为:C =2πr,面积A为:A = πr²4. 直角三角形勾股定理:对于直角三角形,设两直角边长为a和b,斜边长为c,则有a² + b² = c²5. 圆柱体体积公式:设圆柱体的底面半径为r,高度为h,则圆柱体的体积V为:V = πr²h三、概率公式1. 事件的概率公式:对于试验中的某一事件A,其概率P(A)表示事件A发生的可能性,计算公式为P(A) = n(A) / n(S),其中n(A)表示事件A的样本点数,n(S)表示样本空间中的样本点数。
高考数学知识点公式
高考数学知识点公式高考数学是许多同学感到头疼的科目,但只要掌握了核心的知识点和公式,就能在考场上更加从容应对。
以下是为大家整理的高考数学中常见且重要的知识点公式。
一、函数1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
记作:y=f(x),x∈A。
2、函数的性质(1)单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
(2)奇偶性:设函数 f(x)的定义域为 D,如果对于定义域 D 内任意一个 x,都有 x∈D,且 f(x)= f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内任意一个 x,都有 x∈D,且 f(x)= f(x),那么函数f(x)就叫做偶函数。
3、一次函数y = kx + b(k,b 为常数,k≠0)4、二次函数一般式:y = ax²+ bx + c(a≠0)顶点式:y = a(x h)²+ k(a≠0,顶点坐标为(h, k))交点式:y = a(x x1)(x x2)(a≠0,x1,x2 为抛物线与 x 轴交点的横坐标)5、反比例函数y = k/x(k 为常数,k≠0)二、三角函数1、同角三角函数基本关系sin²α +cos²α = 1tanα =sinα/cosα2、诱导公式sin(α) =sinα,cos(α) =cosα,tan(α)=tanαsin(π α) =sinα,cos(π α) =cosα,tan(π α) =tanαsin(π +α) =sinα,cos(π +α) =cosα,tan(π +α) =tanα3、两角和与差的三角函数公式sin(α +β) =sinαcosβ +cosαsinβsin(α β) =sinαcosβ cosαsinβcos(α +β) =cosαcosβ sinαsinβcos(α β) =cosαcosβ +sinαsinβtan(α +β) =(tanα +tanβ)/(1 tanαtanβ)tan(α β) =(tanα tanβ)/(1 +tanαtanβ)4、二倍角公式sin2α =2sinαcosαcos2α =cos²α sin²α =2cos²α 1 =1 2sin²αtan2α =2tanα/(1 tan²α)5、正弦定理a/sinA = b/sinB = c/sinC = 2R(R 为三角形外接圆半径)6、余弦定理a²= b²+ c² 2bccosAb²= a²+ c² 2accosBc²= a²+ b² 2abcosC三、数列1、等差数列(1)通项公式:an = a1 +(n 1)d(2)前 n 项和公式:Sn = n(a1 + an)/2 = na1 + n(n 1)d/22、等比数列(1)通项公式:an = a1q^(n 1)(2)前 n 项和公式:当q≠1 时,Sn = a1(1 q^n)/(1 q);当 q =1 时,Sn = na1四、不等式1、基本不等式对于任意实数 a,b,有 a²+b² ≥ 2ab,当且仅当 a = b 时,等号成立。
高考必备数学公式知识点
高考必备数学公式知识点数学是高考中不可或缺的一门科目,难度较高但又可以通过熟悉一些必备的数学公式知识点来提高解题的效率。
本文将介绍一些高考必备的数学公式知识点,希望能够对广大考生有所帮助。
一、平面几何公式1. 长方形的面积公式:面积 = 长 ×宽。
2. 正方形的面积公式:面积 = 边长 ×边长。
3. 三角形的面积公式:面积 = 底边 ×高 / 2。
4. 直角三角形勾股定理:a² + b² = c²,其中a、b分别为直角边,c 为斜边。
5. 圆的面积公式:面积= π × 半径²,其中π取3.14或取3.1416。
二、立体几何公式1. 立方体的表面积公式:表面积 = 6 ×边长²。
2. 球的表面积公式:表面积= 4 × π × 半径²。
3. 棱柱的体积公式:体积 = 底面积 ×高。
4. 圆柱的体积公式:体积 = 底面积 ×高。
5. 锥体的体积公式:体积 = 底面积 ×高 / 3。
三、三角函数公式1. 正弦函数的定义:sinθ = 对边 / 斜边。
2. 余弦函数的定义:cosθ = 邻边 / 斜边。
3. 正切函数的定义:tanθ = 对边 / 邻边。
4. 余切函数的定义:cotθ = 邻边 / 对边。
5. 正割函数的定义:secθ = 斜边 / 邻边。
6. 余割函数的定义:cscθ = 斜边 / 对边。
四、排列组合公式1. 阶乘公式:n! = n × (n-1) × (n-2) × ... × 1。
2. 排列公式:A(n, m) = n! / (n-m)!,表示从n个元素中选取m个元素进行排列的方式数。
3. 组合公式:C(n, m) = n! / (m! × (n-m)!),表示从n个元素中选取m 个元素进行组合的方式数。
高考数学知识点总结及公式大全 高考数学必考知识点总结
高考数学知识点总结及公式大全高考数学必考知识点总结
一、高中数学40条必备公式
1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,
周期必无限 b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x 相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为
x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
高考数学知识点总结及公式大全
高考数学知识点总结及公式大全高三数学公式整理1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae/xy=lnx y=1/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1/cos^2x8.y=cotx y=-1/sin^2x9.y=arcsinx y=1/√1-x^210.y=arccosx y=-1/√1-x^211.y=arctanx y=1/1+x^212.y=arccotx y=-1/1+x^2三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边 / ∠α的邻边cot α=∠α的邻边 / ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°) /2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)数学圆锥公式知识点正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的`标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r0扇形面积公式s=1/2.l.r锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学知识点公式大全
高考数学必背公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于π/2*k ±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα。