七年级数学下册平行线的判定(提高)知识讲解

合集下载

初一数学下册:平行线的性质相关知识点

初一数学下册:平行线的性质相关知识点

1. 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。

2. 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。

3 . 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:1、垂直于同一直线的两条直线互相平行。

2、平行线间的距离,处处相等。

3、如果两个角的两边分别平行,那么这两个角相等或互补。

4、平行线的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5、平行线间的距离两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离.平行线的性质书写(1)∵AB∥CD(已知)∴∠1=∠2(两直线平行,同位角相等)(2)∵AB∥CD(已知)∴∠3=∠2(两直线平行,内错角相等)(3)∵AB∥CD(已知)∴∠2+∠4=180°(两直线平行,同旁内角互补)平行线的性质与判定①平行线的性质与判定是互逆的关系两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。

其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。

★要点提示★1.由性质1推导性质2,进一步导出性质3,再运用平行线的知识得出平行线的传递性,体现了几何演绎的思想和方法,要逐步领会和掌握.2.几何学习要注意“看图说话”、“用图说话”,要逐步学会文字语言、图形语言、符号语言的转换和各自功效.如平行线的传递性,可用符号语言表示为:对于直线a、b、c,如果a∥b,b∥c,则a∥c.3.有了平行线间的距离,至此就学了几何中的三种距离:两点间的距离,点到直线的距离,两平行线间的距离.两点间的距离是两点间线段的长度,后两种都可转化为两点间的距离.两平行线间的距离是一条直线上任意点到另一条直线的距离(点到直线的距离),而点到直线的距离是该点到直线的垂线段的长度,即点到垂足(点到点)的距离.。

人教版七年级数学课件《平行线的判定》

人教版七年级数学课件《平行线的判定》
A.①②
B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时

CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.

七年级下册数学平行线及其判定

七年级下册数学平行线及其判定

七年级下册数学平行线及其判定数学是一门严谨的学科,它涵盖了许多重要的概念和定理。

在这篇文章中,我们将讨论平行线及其判定。

平行线是指在二维平面上没有交点的直线。

在几何学中,平行线的性质和判定方法是非常重要的,我们将通过详细的解释和例子来帮助同学们更深入地理解这一概念。

1.平行线的定义首先,让我们来看一下平行线的定义。

在几何学中,两条直线是平行线,当且仅当它们在同一平面上且永远不相交。

这意味着无论我们如何延长这两条直线,它们也永远不会相交。

通过这个定义,我们可以很容易地理解什么是平行线。

但是,实际中我们如何判断两条直线是否平行呢?接下来,我们将讨论几种常见的平行线判定方法。

2.平行线的判定2.1直线与直线的判定首先,让我们来看一下两条直线是否平行的判定方法。

根据几何学的知识,我们知道,如果两条直线的斜率相等,那么它们就是平行线。

这是因为斜率代表了直线的倾斜程度,如果两条直线的斜率相等,那么它们的倾斜程度也相等,这就意味着它们是平行的。

举个例子,假设我们有两条直线,分别是y=2x+3和y=2x-1。

我们可以很容易地计算出它们的斜率都是2,这意味着这两条直线是平行的。

2.2点与直线的判定除了两条直线的斜率相等之外,我们还可以利用点与直线之间的关系来判定两条直线是否平行。

具体来说,如果一条直线上的一点到另一条直线的距离为0,则这两条直线是平行的。

这是因为如果两条直线是平行的,那么它们的距离永远不会改变,所以一个点到另一条直线的距离也永远是不变的。

举个例子,假设我们有一条直线L:y=2x+3,还有一点A(1,5),我们需要判断这个点到直线L的距离。

我们可以利用点到直线的距离公式来计算,如果计算出来的距离为0,那么这个点和直线是平行的。

2.3垂直线的判定有时候,我们也需要判断两条直线是否是垂直的。

其实,判断两条直线是否垂直与判断两条直线是否平行是类似的。

如果两条直线的斜率的乘积为-1,那么这两条直线是垂直的。

第05讲 平行线的判定(1个知识点+5类热点题型讲练+习题巩固)(解析版)七年级数学下册

第05讲 平行线的判定(1个知识点+5类热点题型讲练+习题巩固)(解析版)七年级数学下册

第05讲平行线的判定课程标准学习目标①平行的判定方法1.掌握同位角相等判定两直线平行,内错角相等判定两直线平行,同旁内角互补判定两直线平行,并能够熟练选择判定方法。

2.能够利用平行公理的推论以及垂直于同一直线的两直线平行判定两直线平行。

知识点01平行线的判定1.同位角相等,两直线平行:①判定内容:两条直线被第三条所截,如果同位角相等,那么这两条直线平行。

简单说成同位角相等,两直线平行。

②符号语言:若∠NEB=∠NFD,则AB∥CD。

2.内错角相等,两直线平行:①判定内容:两条直线被第三条所截,如果内错角相等,那么这两条直线平行。

简单说成内错角相等,两直线平行。

②符号语言:若∠AEM=∠DFN,则AB∥CD。

3.同旁内角互补,两直线平行:①判定内容:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。

简单说成同旁内角互补,两直线平行。

②符号语言:若∠BEM+∠DFN=180°,则AB∥CD。

利用同位角、内错角以及同旁内角判定平行时,平行线一定是这些角不公共的边。

4.平行公理的推论判定平行:①判定内容:平行于同一直线的两直线平行。

②符号语言:若a∥b,a∥c,则b∥c5.垂直判定平行:①判定内容:垂直于同一直线的两直线平行。

②符号语言:a⊥b,a⊥c,则b∥c【即学即练1】1.如图,点E在BC延长线上,下列条件中,不能推断AB∥CD的是()A.∠4=∠3B.∠1=∠2C.∠B=∠5D.∠B+∠BCD=180°【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠3=∠4,∴AD∥BC,无法得出AB∥CD,故本选项错误;B、∵∠1=∠2,∴AB∥CD,故本选项正确;C、∵∠B=∠5,∴AB∥CD,故本选项正确;D、∵∠B+∠BCD=180°,∴AB∥CD,故本选项正确.故选:A.【即学即练2】2.对于同一平面内的三条直线a,b,c,下列命题中不正确的是()A.若a∥b,b∥c,则a∥c B.若a⊥b,a⊥c,则b⊥cC.若a∥b,a⊥c,则b⊥c D.若a⊥b,a⊥c,则b∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行”和“垂直于同一条直线的两直线平行”进行分析判断.【解答】解:A.a∥b,b∥c,则a∥c,正确;B.a⊥b,a⊥c,则b∥c,故错误;C.a∥b,a⊥c,则b⊥c,正确;D.a⊥b,a⊥c,则b∥c,正确;故选:B.题型01确定判定两直线平行的条件【典例1】如图,能推断AB∥CD的是()A.∠3=∠5B.∠2=∠4C.∠1=∠2+∠3D.∠D+∠4+∠5=180°【分析】根据平行线的判定定理(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【解答】解:A、∵∠3=∠5,∴BC∥AD,不能推出AB∥CD,故本选项错误;B、∵∠2=∠4,∴AB∥CD,故本选项正确;C、∵∠1=∠2+∠3,∴∠1=∠BAD,∴BC∥AD,不能推出AB∥DC,故本选项错误;D、∵∠D+∠4+∠5=180°,∴BC∥AD,不能推出AB∥DC,故本选项错误;故选:B.【变式1】如图,下列条件中,不能判定l1∥l2的是()A.∠1=∠3B.∠2+∠4=180°C.∠2=∠3D.∠4+∠5=180°【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、∵∠1=∠3,∴直线l1∥l2,故此选项不合题意;B、∵∠2+∠4=180°,∴直线l1∥l2,故此选项不合题意;C、∠2=∠3,不能得出直线l1∥l2,故此选项符合题意;D、∵∠2=∠5,∠4+∠5=180°,∴∠4+∠2=180°,∴直线l1∥l2,故此选项不合题意.故选:C.【变式2】如图,下列推理中正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥DC C.若∠A=∠3,则AD∥BC D.若∠3=∠4,则AB∥DC 【分析】根据平行线的判定判断即可.【解答】解:A、根据∠1=∠2不能推出AD∥BC,故本选项错误;B、根据∠1=∠2能推出AB∥DC,故本选项正确;C、根据∠A=∠3不能推出AD∥BC,故本选项错误;D、根据∠3=∠4不能推出AB∥DC,故本选项错误.故选:B.【变式3】如图,点D是△ABC的边BC延长线上一点,射线CE在∠ACD内部,下列条件中能判定AB∥CE的是()A.∠A=∠ACE B.∠B=∠ACB C.∠A=∠ECD D.∠B=∠ACE【分析】根据平行线的判定方法即可求解.【解答】解:A选项,∠A=∠ACE,内错角相等,两直线平行,故符合题意;B选项,∠B=∠ACB,不能判定AB∥CE,故不符合题意;C选项,∠A=∠ECD,不能判定AB∥CE,故不符合题意;D选项,∠B=∠ACE,不能判定AB∥CE,故不符合题意;故选:A.【变式4】如图,下列推理中正确的是()A.∵∠1=∠4,∴BC∥ADB.∵∠BCD+∠ADC=180°,∴BC∥ADC.∵∠2=∠3,∴AB∥CDD.∵∠CBA+∠C=180°,∴BC∥AD【分析】结合图形分析相等或互补的两角之间的关系,根据平行线的判定方法判断.【解答】解:A、∵∠1=∠4,∴AB∥CD,故选项错误,不符合题意;B、∵∠BCD+∠ADC=180°,∴AD∥BC,故选项正确,符合题意;C、∵∠2=∠3,∴BC∥AD,故选项错误,不符合题意;D、∵∠CBA+∠C=180°,∴AB∥CD,故选项错误,不符合题意.故选:B.【变式5】如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠3;②∠4=∠8;③∠1+∠6=180°;④∠5+∠8=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定方法一一判断即可.【解答】解:能判断a∥b的条件是:②∠4=∠8;③∠1+∠6=180°;故选:B.【变式6】若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠DD.如果∠2=50°,则有BC∥AE【分析】根据平行线的判定和性质一一判断即可【解答】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.【变式7】以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图A,展开后测得∠1=∠2B.如图B,展开后测得∠1=∠2且∠3=∠4C.如图C,测得∠1=∠2D.如图D,测得∠1=∠2【分析】根据平行线的判定定理,逐一进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确,不符合题意;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确,不符合题意;C、测得∠1=∠2,∵∠1与∠2既不是内错角也不是同位角,∴不一定能判定两直线平行,故错误,符合题意;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确,不符合题意;故选:C.题型02添加判定条件判定平行【典例1】如图,请填写一个条件∠2=∠4,使a∥b.【分析】根据平行线的判定定理求解即可.【解答】解:填写条件∠2=∠4,理由如下:∵∠2=∠4,∴a∥b(内错角相等,两直线平行),故答案为:∠2=∠4(答案不唯一).【变式1】如图,要得到AE∥BG的结论,需要添加的条件是∠EDC=∠BCD(答案不唯一).(写出一个正确答案即可)【分析】∠EDC与∠BCD为内错角,可利用内错角相等,两直线平行判定平行线.【解答】解:要得到AE∥BG的结论,则需要角相等的条件是∠EDC=∠BCD(答案不唯一).故答案为:∠EDC=∠BCD(答案不唯一).【变式2】如图:请写出一个条件:∠B=∠BCD,使AB∥CD.理由是:内错角相等,两直线平行.【分析】可以写一个条件内错角∠B=∠BCD,所以两直线AB∥CD.【解答】解:可以写一个条件:∠B=∠DCE;∵∠B=∠BCD;∴AB∥CD(内错角相等,两直线平行);故答案为:∠B=∠BCD.题型03根据判定条件求值【典例1】如图,已知∠1=85°,下列条件能判断AB∥CD的是()A.∠2=75°B.∠3=85°C.∠3=95°D.∠4=95°【分析】根据平行线的判定条件逐一判断即可.【解答】解:A、∵∠1=85°,∠2=75°,∴∠1≠∠2,∴AB与CD不平行,不符合题意;B、∵∠1=85°,∠3=85°,∴∠1+∠3=170°≠180°,∴AB与CD不平行,不符合题意;C、∵∠1=85°,∠3=95°,∴∠1+∠3=180°,∴AB∥CD,符合题意;D、由∠1=85°,∠4=95°无法证明AB∥CD,不符合题意;故选:C.【变式1】如图是小明探索直线平行的条件时所用的学具,木条a,b,c在同一平面内,经测量,要使木条a∥b,∠2=110°,要使木条a与b平行,则∠1的度数应为()A.20°B.70°C.110°D.160°【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=110°,∴∠3=∠2=110°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣110°=70°.故选:B.【变式2】如图,分别将木条a,b与固定的木条c钉在一起,∠1=50°,∠2=80°,顺时针转动木条a,下列选项能使木条a与b平行的是()A.旋转30°B.旋转50°C.旋转80°D.旋转130°【分析】根据平行线的判定定理即可求解.【解答】解:在图中标注出∠3,如图所示:若a∥b,则∠2=∠3,∵∠1=∠3,∴∠1=∠2=50°,故应将木条a顺时针转动30°.故选:A.【变式3】如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a 旋转的度数.【解答】解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.【变式4】如图,直线EF上有两点A、C,分别引两条射线AB、CD,∠DCF=60°,∠EAB=70°,射线AB、CD分别绕A点,C点以1度/秒和4度/秒的速度同时顺时针转动,在射线CD转动一周的时间内,使得CD与AB平行所有满足条件的时间=秒或秒.【分析】分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据内错角相等两直线平行,列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解.【解答】解:∵∠EAB=70°,∠DCF=60°,∴∠BAC=110°,∠ACD=120°,分三种情况:如图①,AB与CD在EF的两侧时,∠ACD=120°﹣(4t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠ACD=∠BAC,即120°﹣(4t)°=110°﹣t°,解得t=;②CD旋转到与AB都在EF的右侧时,∠DCF=360°﹣(4t)°﹣60°=300°﹣(4t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即300°﹣(4t)°=110°﹣t°,解得t=;③CD旋转到与AB都在EF的左侧时,∠DCF=(4t)°﹣(180°﹣60°+180°)=(4t)°﹣300°,∠BAC=t°﹣110°,要使AB∥CD,则∠DCF=∠BAC,即(4t)°﹣300°=t°﹣110°,解得t=﹣,∴此情况不存在.综上所述,当时间t的值为或秒时,CD与AB平行.故答案为:秒或秒.【变式5】如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=75(度).【分析】直接利用邻补角的定义结合平行线的性质得出答案.【解答】解:如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180°,解得:x=17,则∠1=(3x+24)°=75°.故答案为:75.题型04平行公理的推论以及判定平行【典例1】如果b∥a,c∥a,那么b∥c.【分析】根据平行公理推论求解即可.【解答】解:如果b∥a,c∥a,那么b∥c(平行于同一直线的两直线平行),故答案为:b∥c.【典例2】同一平面内三条直线a、b、c,若a⊥b,c⊥b,则a与c的关系是:a∥c.【分析】根据平行线的性质:垂直于同一直线的两条直线互相平行可知直线a与直线c的关系是平行.【解答】解:∵a⊥b,c⊥b,∴a∥c.故答案为:a∥c.【变式1】若直线a,b,c,d有下列关系,则推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理及推论,逐一判断即可解答.【解答】解:A、∵a∥b,b∥c,∴c∥a,故A不符合题意;B、∵a∥c,b∥d,∴c与d不一定平行,故B不符合题意;C、∵a∥b,a∥c,∴b∥c,故C符合题意;D、∵a∥b,c∥d,∴a与c不一定平行,故D不符合题意;故选:C.【变式2】a、b、c是直线,下列说法正确的是()A.若a⊥b,b∥c,则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则b∥c D.若a∥b,b∥c,则a∥c【分析】根据平行公理以及平行线的性质判断即可.【解答】解:A、在同一平面内,若a⊥b,b∥c,则a⊥c,原说法错误,不符合题意;B、在同一平面内,若a⊥b,b⊥c,则a∥c,原说法错误,不符合题意;C、在同一平面内,若a∥b,b⊥c,则a⊥c,原说法错误,不符合题意;D、若a∥b,b∥c,则a∥c,正确,符合题意.故选:D.【变式3】同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系【分析】作出图形,根据平行公理的推论解答.【解答】解:如图,∵a∥b,a⊥c,∴c⊥b,又∵b⊥d,∴c∥d.故选:B.题型05平行线的判定证明【典例1】如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD对吗?为什么?【分析】由已知∠ABC=120°,∠BCD=60°,即∠ABC+∠BCD=120°+60°=180°,可得关于AB ∥CD的判定条件:同旁内角互补,两直线平行.【解答】解:说管道AB∥CD是对的.理由:∵∠ABC=120°,∠BCD=60°∴∠ABC+∠BCD=180°∴AB∥CD(同旁内角互补,两直线平行).【典例2】直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?【分析】根据对顶角相等可得∠1=∠3,再根据∠1=∠2,可推出∠2=∠3,根据同位角相等,两直线平行可推出AB∥CD.【解答】解:AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.【典例3】如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?【分析】由于∠1=47°,∠2=133°,则∠ABC+∠2=180°,根据平行线的判定方法得到AB∥CD;然后利用平角的定义计算出∠BCD=180°﹣133°=47°,则∠BCD=∠D,根据平行线的判定即可得到BC∥DE.【解答】解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.【变式1】如图,GH分别交AB、CD于点E、F,∠AEF=∠EFD.(1)试写出AB∥CD的依据;(2)若ME是∠AEF的平分线,FN是∠EFD的平分线,则EM、FN平行吗?若平行,请说明理由.【分析】(1)根据内错角相等,两直线平行,推出即可;(2)根据角平分线定义求出∠MEF=∠NFE,根据内错角相等,两直线平行,推出即可.【解答】(1)证明:∵∠AEF=∠EFD,∴AB∥CD(内错角相等,两直线平行).(2)EM∥FN,证明:∵ME是∠AEF的平分线,FN是∠EFD的平分线,∴∠MEF=∠AEF,∠NFE=∠EFD,∵∠AEF=∠EFD,∴∠MEF=∠NFE,∴EM∥FN(内错角相等,两直线平行).【变式2】已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.【分析】先根据垂直的定义可得∠APQ+∠2=90°,再结合∠1+∠2=90°可得∠APQ=∠1,然后根据“内错角相等,两直线平行”即可证明结论.【解答】证明:∵PM⊥EF(已知),∴∠APQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠APQ=∠1(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).【变式3】已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.1.下列画出的直线a与b不一定平行的是()A.B.C.D.【分析】根据平行线的判定定理即可解答.【解答】解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.2.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D+∠ACD=180°C.∠D=∠DCE D.∠1=∠2【分析】根据平行线的判定定理分别进行分析即可.【解答】解:A、∠3=∠4可判断DB∥AC,故此选项错误;B、∠D+∠ACD=180°可判断DB∥AC,故此选项错误;C、∠D=∠DCE可判断DB∥AC,故此选项错误;D、∠1=∠2可判断AB∥CD,故此选项正确;故选:D.3.如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠ABC+∠BCD=180°D.∠BAD+∠ABC=180°【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠ABC+∠BCD=180°,∴AB∥CD.故选:C.4.蜂房的顶部由三个全等的四边形围成,每个四边形的形状如图所示,其中∠α=109°28′,∠β=70°32′.则这个四边形对边的位置关系为()A.平行B.相等C.垂直D.不能确定【分析】先计算两角的和得180°,再根据平行线判定定理“同旁内角互补,两直线平行”即可得出这个四边形对边的位置关系.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.【解答】解:如图标字母,∵∠BAD=∠α=109°28′,∠ADC=∠β=70°32′∴∠BAD+∠ADC=∠α+∠β=109°28′+70°32′=179°60′=180°,∴AB∥CD(同旁内角互补,两直线平行)∵∠BAD=∠α=109°28′,∠ABC=∠β=70°32′∴∠BAD+∠ABC=∠α+∠β=109°28′+70°32′=179°60′=180°,∴AD∥BC(同旁内角互补,两直线平行).故选:A.5.如图所示,由下列条件能判定AB∥CD的是()A.∠BAC=∠DAC B.∠DAC=∠ACBC.∠BAC=∠DCA D.∠D+∠DCB=180°【分析】根据平行线的判定定理判断求解即可.【解答】解:由∠BAC=∠DAC,不能判定AB∥CD,故A不符合题意;∵∠DAC=∠ACB,∴AD∥BC,故B不符合题意;∵∠BAC=∠DCA,∴AB∥CD,故C符合题意;∵∠D+∠DCB=180°,∴AD∥BC,故D不符合题意;故选:C.6.如图所示,下列条件中,能判断AB∥CD的是()A.∠BAD=∠BCD B.∠1=∠2C.∠BAC=∠ACD D.∠3=∠4【分析】两条直线被第三条所截,如果内错角相等,那么这两条直线平行,据此进行判断即可.【解答】解:A.根据∠BAD=∠BCD,不能判断AB∥CD;B.根据∠1=∠2,只能判断AD∥BC;C.根据∠BAC=∠ACD,能判断AB∥CD;D.根据∠3=∠4,不能判断AB∥CD;故选:C.7.如图,固定木条b、c,使∠1=80°,旋转木条a,要使得a∥b,则∠2应调整为()A.70°B.80°C.90°D.100°【分析】根据同旁内角互补两直线平行,求出∠2的度数即可.【解答】解:要使得a∥b,则需满足∠1+∠2=180°,∵∠1=80°,∴∠2=100°,故选:D.8.如图,下列推理不正确的是()A.∵∠1=∠2,∴AB∥CD B.∵∠1=∠2,∴AD∥BCC.∵∠3=∠4,∴AD∥BC D.∵∠4=∠5,∴AB∥CD【分析】根据平行线的判定定理判断求解即可.【解答】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∵∠1=∠2,∴AB∥CD,故B不正确,符合题意;∵∠3=∠4,∴AD∥BC,故C正确,不符合题意;∵∠4=∠5,∴AB∥CD,故D正确,不符合题意;故选:B.9.在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【分析】根据题目的已知条件并结合图形进行分析,然后根据内错角相等,两直线平行,即可解答.【解答】解:在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是:内错角相等,两直线平行,故选:A.10.下列说法正确的是()A.a、b、c是直线,若a⊥b,b∥c,则a∥cB.a、b、c是直线,若a⊥b,b⊥c,则a⊥cC.a、b、c是直线,若a∥b,b⊥c,则a∥cD.a、b、c是直线,若a∥b,b∥c,则a∥c【分析】根据平行线的性质和判定逐个判断即可.【解答】解:A、∵a⊥b,b∥c,∴a⊥c,故本选项错误;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项错误;C、当a∥b,b⊥c时,a⊥c,故本选项错误;D、当a∥b,b∥c时,a∥c,故选项正确;故选:D.11.如图,点E在AC的延长线上,请添加一个恰当的条件∠1=∠2(答案不唯一),使AB∥CD.【分析】利用平行线的判定定理进行分析即可.【解答】解:当∠1=∠2时,利用内错角相等,两直线平行可判定AB∥CD;当∠A=∠DCE时,利用同位角角相等,两直线平行可判定AB∥CD;当∠A+∠ACD=180°时,利用同旁内角互补,两直线平行可判定AB∥CD;当∠ABD+∠D=180°时,利用同旁内角互补,两直线平行可判定AB∥CD;故答案为:∠1=∠2(答案不唯一).12.三个完全相同的含30°角的三角板如图摆放,可以判断AB与EC平行的理由是同位角相等,两直线平行(答案不唯一).【分析】根据“同位角相等,两直线平行”求解即可.【解答】解:∵∠ACB=60°,∠ACE=90°,∠ECD=30°,∴∠ACB+∠ACE+∠ECD=180°,∴B、C、D在一条直线上,∵∠B=30°=∠ECD,∴AB∥EC(同位角相等,两直线平行),故答案为:同位角相等,两直线平行(答案不唯一).13.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有3个.【分析】根据平行线的判断方法,可以判断出各个小题中的条件是否可以得到直线l1∥l2,从而可以解答本题.【解答】解:∵∠1=∠3,∴l1∥l2,故①符合题意;当∠2=∠3时,无法判断l1∥l2,故②不符合题意;∵∠4=∠5,∴l1∥l2,故③符合题意;∵∠2+∠4=180°,∴l1∥l2,故④符合题意;故答案为:3.14.如图,在下列四组条件中:①∠1=∠2,②∠3=∠4,③∠BAD+∠ABC=180°,④∠BAC=∠ACD,能判定AD∥BC的是①②③.【分析】根据平行线的判定,逐一判断即可解答.【解答】解:①∵∠1=∠2,∴AD∥BC;②∵∠3=∠4,∴AD∥BC;③∵∠BAD+∠ABC=180°,∴AD∥BC;④∵∠BAC=∠ACD,∴AB∥CD;所有,能判定AD∥BC的是①②③,故答案为:①②③.15.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°),当∠ACE<180°,且点E在直线AC的上方时,满足三角尺BCE有一条边与斜边AD平行,那么此时∠ACE=120或165或30.【分析】根据平行线的判定和性质定理即可得到结论.【解答】解:①当AD∥CE时,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;②当BE∥AD时,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°∴∠ACE=90°+75°=165°.③如图中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.故答案为:120或165或30.16.如图,点A在射线DE上,点C在射线BF上,∠B+∠BAD=180°,∠1=∠2.求证:AB∥CD.请将下面的证明过程补充完整.证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°,∴∠1=∠B,∵∠1=∠2(已知),∴∠2=∠B(等量代换),∴AB∥CD(同位角相等,两直线平行).【分析】根据“同角的补角相等”得出∠1=∠B,等量代换得出∠2=∠B,根据“同位角相等,两直线平行”即可得解.【解答】证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°,∴∠1=∠B,∵∠1=∠2(已知),∴∠2=∠B(等量代换),∴AB∥CD(同位角相等,两直线平行).故答案为:∠B;∠B;等量代换;同位角相等,两直线平行.17.如图,直线a,b被直线c所截,∠1=50°,请你再添加一个条件,可以说明直线a与b平行,并说明理由.【分析】根据平行线的判定定理求解即可.【解答】解:添加∠4=50°(添加条件不唯一),可以说明直线a与b平行,∵∠1=50°,∠4=50°,∴∠1=∠4,∴a∥b(内错角相等,两直线平行).18.如图所示,直线AF,BD相交于点C,过点C作射线CE,使得CD平分∠ECF,连接AB,若∠B=∠ACB,试说明AB∥CE.【分析】根据角平分线定义得出∠ECD=∠DCF,根据对顶角相等得出∠ACB=∠DCF,结合已知条件∠B=∠ACB,等量代换得出∠B=∠ECD,然后根据同位角相等,两直线平行即可证明AB∥CE.【解答】证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.19.如图,已知∠A=∠C,∠1与∠2互补,求证:AB∥CD.【分析】首先由∠1、∠2互补,可判定AD、BC平行,即可得∠A、∠ABC互补,通过等量代换,可求得∠ABC、∠C互补,即可判定AB∥CD.【解答】证明:∵∠1与∠2互补,即∠1+∠2=180°,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=∠C,∴∠C+∠ABC=180°,∴AB∥CD.20.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.【分析】首先根据角平分线的性质可得∠1=∠GPQ=APQ,∠2=∠PQH=∠EQD,根据条件∠1=∠2,可得∠GPQ=∠PQH,∠APQ=∠PQD,根据内错角相等两直线平行可证明AB∥CD,PG∥QH.【解答】解:AB∥CD,PG∥QH,理由:∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=APQ,∠2=∠PQH=∠EQD,∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD,∴AB∥CD,PG∥QH.。

七年级下册数学 平行线的性质及尺规作图(提高) 人教版【精编】

七年级下册数学 平行线的性质及尺规作图(提高) 人教版【精编】

平行线的性质及尺规作图(提高)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解尺规作图的基本知识及步骤;4. 通过用尺规作图活动,进一步丰富对“平行线及角”的认识.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.类型二、两平行线间的距离2.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m2类型四、平行的性质与判定综合应用5. (黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( ) .A.120° B.130° C.140° D.150°【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是 ( )A.45° B.135° C.45°或135° D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为( )A.150° B.130° C.120° D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是( )A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有( )A.5个 B.4个 C.3个 D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7. 如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是( )A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是 _.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D ;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的.2. 【答案】D ;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D .3. 【答案】C ;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C =180°-30°-30°=120°.4. 【答案】B ;【解析】反向延长射线ST 交PR 于点M,则在△MSR 中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE 相等的角有:∠DCA ,∠ACB ,∠COF ,∠CAB ,∠DAC .6. 【答案】C ;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC=∠DCE=35°(两直线平行,内错角相等),所以∠BEC=∠FEB+∠FEC=60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC=80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵ AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴ AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴ AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).- 11 -。

5-2-2平行线的判定-七年级下册人教版数学课件

5-2-2平行线的判定-七年级下册人教版数学课件

课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。

七年级下册数学平行线的判定

七年级下册数学平行线的判定

七年级下册数学平行线的判定七年级下册数学平行线的判定一、概述平行线是初中数学中的重要知识点,也是七年级下册的一项难点内容。

平行线的判定方法有多种,本文将对其中的三种方法进行详细介绍。

二、第一种判定方法:同旁内角等1.定义:同旁内角等定义为,两条直线上的同旁内角相等,则这两条直线是平行线。

2.具体步骤:(1)画两条直线l和m,并选择任意一点A点。

(2)在l上找到一点B,在m上找到一点C。

(3)以A点为圆心,在l上画一个圆,焦点在B点上;在m上画另一个圆,焦点在C点上。

(4)设两圆的交点分别为D、E、F。

(5)连接ADE、BCF,并证明∠ADE=∠BCF。

(6)如果∠ADE=∠BCF,则可得出l和m是平行线。

三、第二种判定方法:同位角相等1.定义:同位角相等定义为,两条直线被另外一条直线割成的同位角相等,则这两条直线是平行线。

2.具体步骤:(1)画两条直线l和m,并选择任意一条直线n,使得n与l和m相交。

(2)在l和m上各找到一组同位角,分别为A1、A2,B1、B2。

(3)连接A1B1、A2B2,并证明∠A1=∠A2。

(4)如果∠A1=∠A2,则可得出l和m是平行线。

四、第三种判定方法:反证法1.定义:反证法定义为,如果已知两条直线l和m不平行,则这两条直线必相交。

2.具体步骤:(1)画两条直线l和m,并选择任意一点A点。

(2)在l上找到一点B,在m上找到一点C,连接BC。

(3)如果BC与l平行,则BC与l的交点D无限远,不可能相交;同样,如果BC与m平行,则BC与m的交点E也无限远,不可能相交。

(4)如果BC既不与l平行也不与m平行,则l和m一定相交,与假设不符。

因此l和m是平行线。

五、总结以上是七年级下册数学平行线的三种判定方法。

在学习过程中,可以根据具体情况灵活运用不同的方法来判断平行线关系,掌握这些方法可以帮助学生提高数学水平,更好地应对课堂测试和考试。

5.2.2平行线的判定(课件)-2022—2023学年数学七年级下册(人教版)

5.2.2平行线的判定(课件)-2022—2023学年数学七年级下册(人教版)

简单说成: 内错角相等,两直线平行.
c
符号语言:如图
a
∵ ∠3=∠4(已知)
3
∴ a∥b
4
(内错角相等,两直线平行)
b
如图,∠1与∠2互补,直线a与直线b 平行吗?为什么?
c
a
3
2
b
1
两条直线被第三条直线所截,如果同旁 内角互补,那么这两条直线平行.
a
同旁内角互补,两直线平行。 A
C
几何语言:
B
2
1
D
∵ ∠1+∠2=180°(已知) ∴ AB∥CD (同旁内角互补,两直线平行)
探究
已知:如图,a⊥c,b⊥c。求证:a∥b。
a 1
b 2
c
结论:在同一平面内,垂直于同一条直线的两 条直线互相平行。
判定两直线平行的方法:
同位角相等,两直线平行。 内错角相等,两直线平行。
同旁内角互补,两直线平行。
∠3与∠4是直线_直_线__A_B_与 _直_线AC__被 __直__线_B_C___所截得的__同_旁__内__角。
A
D
B4
3 21
E
C
回忆画平行线的过程
一、放 二、靠 三、推 四、画
探索新知
a (1)画图过程中,什么角 1
始终保持相等?
同位角相等
b
2
(2)直线a,b位置
关系如何?
c
两直线平行
如图,点A在直线l上,如果∠B=75º, ∠C=43º,则 (1)当∠1=__7_5_°____时,直线l //BC (2)当∠2=__4_3_°_____时,直线l //BC;
A
l
12
75°

浙教版初中数学七年级下册平行线及其判定(提高)知识讲解

浙教版初中数学七年级下册平行线及其判定(提高)知识讲解

平行线及其判定(提高)知识讲解【学习目标】1.熟练掌握平行线定义及画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.【要点梳理】要点一、平行线及平行公理1.平行线的定义在同一平面内,不相交的两条直线叫做平行线. 两直线平行,用符号“∥”表示. 如下图,两条直线互相平行,记作AB∥CD或a∥b.要点诠释:(1)同一平面内,两条直线的位置关系:相交和平行.(2)互相重合的直线通常看作一条直线,两条线段或射线平行是指它们所在的直线平行.2.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.3.平行公理及推论平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.4. 两条平行线间的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即两条平行线之间的距离处处相等.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:(1)平行线的判定是由角相等或互补,得出平行,即由数推形.(2)今后我们用符号“∵”表示“因为”,用“∴”表示“所以”.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型二、平行线的判定3. 如图,给出下列四个条件:(1)AC=BD;(2)∠DAC=∠BCA;(3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有().A.(1)(2)B.(3)(4)C.(2)(4)D.(1)(3)(4)【思路点拨】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件.【答案】C【解析】从分解图形入手,即寻找AD、BC的截线.【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【:平行线及判定403102经典例题2】【变式】已知,如图,BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB、CD的位置关系,请说明理由.【答案】解:AB∥CD,理由如下:∵BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠1,∠CDB=2∠2.又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴AB∥CD(同旁内角互补,两直线平行).。

初一下册数学知识点:平行线的特征知识点

初一下册数学知识点:平行线的特征知识点

初一下册数学知识点:平行线的特征知识点学习可以这样来看,它是一个潜移默化、厚积薄发的进程。

查字典数学网编辑了平行线的特征知识点,希望对您有所协助!重点:灵敏地应用平行线的三个特征处置效果;难点:如何对图形停止平移与旋转。

一、稳固旧知,效果引入。

稳固平行线的判定方法,并引导先生剖析平行线的判定是由一些角的关系得出平行的结论在先生剖析的基础上,提出假定交流判定中的条件与结论,能否由〝两直线平行〞得出〝同位角相等〞等一些角的关系,从而引入课题。

二、实验验证,探求特征。

1、教室的窗户的横格是平行的,请看教员用三角尺去检验一对同位角,看看结果怎样?(教员用三角尺在窗户演出示,先生观察并思索)2、先生实验(发印好平行线的纸单)(1),a//b,恣意画一条直线c与平行线a、b相交。

(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系(要求先生多画几条截线试试,鼓舞先生用多种方法停止探求)3、实验结论:两条平行线被第三条直线所截,同位角相等。

简记为〝两直线平行,同位角相等〞识记该性质,并讨论在这个特征中,的是什么,结论是什么?它与前面学过的〝同位角相等,两直线平行〞有什么不同?4、效果讨论:我们知道两条平行线被第三条直线所截,不但构成有同位角,还有内错角、同旁内角。

我们曾经知道〝两条平行线被第三条直线所截,同位角相等〞。

那么请同窗们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢如图,直线a//b,思索∠1与∠2、∠2与∠3之间有什么关系?为什么?(小组讨论,给予充足的时间交流,可引导先生与同位角停止比拟,从而得出结论,关注先生在此能否积极地、有条理地思索)结论:〝两直线平行,内错角相等〞〝两直线平行,同旁内角互补〞(识记这两特性质,并思索什么条件,得出什么结论,与〝内错角相等,两直线平行〞〝同旁内角互补,两直线平行〞有什么不同。

)。

七年级数学下册教学课件《5.2.2平行线的判定》

七年级数学下册教学课件《5.2.2平行线的判定》

第3题图
第 4 题图
第 5 题图
5.如图,能判定 AB∥CD 的条件有___①①③③④④ ___.(填序号)
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
当堂检测
6.如图所示,∠B=∠C,∠DEF=∠A.试问CD与EF平行吗?为什么? 解:CD∥EF.理由:∵∠B=∠C,∴AB∥CD(内错角相等,两直线平行). ∵∠DEF=∠A,∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
方法二:∵∠1+∠4=180°(平角定义), ∵∠1+∠2=180°(已知),∴∠2=∠4(同角的 补角相等),∴a∥b(内错角相等,两直线平行).
预习成果
1.如图1,∠C=60°,当∠ABE= 60° 时,就能使 BE∥CD.根据 同位角相等,两直线平行 . 2.如图2,∠1=120°,∠2=60°,问a与b的位置关系? 3.如图3,直线CD、EF被直线AB所截. (1)量得∠3=120°,∠4=120°,就可以判定 CD ∥ EF , 根据 内错角相等,两直线平行 . (2)量得∠1=60°,∠3=120°,就可以判定 CD ∥ EF , 根据 同旁内角互补,两直线平行 .
巩固例题
【例 2】如图,BE平分∠ABD,DE平分∠BDC,且 ∠1+∠2=90°. 求证:AB∥CD. 解:∵BE平分∠ABD,DE平分∠BDC(已知), ∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义). ∵∠1+∠2=90°, ∴∠ABD+∠BDC=2(∠1+∠2)=180°. ∴AB∥CD(同旁内角互补,两直线平行).
②当∠2+∠3=180°时,a∥b.证明: ∵∠2+∠4=180°,∠3+∠6=180°(平角定义), ∴∠2+∠4+∠3+∠6=360°,∵∠2+∠3=180° ∴∠4+∠6=180°∴a∥b(同旁内角互补,两直线平行).

人教版数学七年级下册 5.2.2 平行线的判定 课件

人教版数学七年级下册 5.2.2 平行线的判定 课件

为什么?
解:直线与平行. 理由如下:
∵∠1 + ∠ = 180°, ∠1 + ∠ = 180°,
∴∠ = ∠.
∵∠ = ∠,
∴∠ = ∠.
∴∥(同位角相等,两直线平行).
【例题2】如图,∠ + ∠ = 180°,∠ = ∠,试说明∥.



∠ + ∠ = ∠
∠ = ∠ − ∠
∠ = ∠
∠ = ∠ − ∠ = ∠
【例题3】如图,∠ + ∠ = ∠,试说明∥.
解: 如图,作∠ = ∠.
∵∠ = ∠
∴∥.
又∵∠ + ∠ = ∠,
解: ∵∠1=∠2, ∴AB∥CD.
∵∠3+∠4=180°,∴CD∥EF,
∴AB∥EF.
3.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你
∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°
所添加的条件是___________________________________________(不允许添加
任何辅助线).
4.如图,下列条件不能判断直线a∥b的是( D
).
A. ∠1=∠4 B. ∠3=∠5 C. ∠2+∠5=180° D. ∠2+∠4=180°
平行线的判定方法
1. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2. 同位角相等,两直线平行.
3. 内错角相等,两直线平行.
4. 同旁内角互补,两直线平行.
∠1 = ∠2

判定方法2
线平行.
两条直线被第三条直线所截,如果内错角相等,那么这两条直

浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)

浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)

专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及3个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。

几何语言:∵∠1=∠2∴AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。

∵∠2=∠3∴AB∥CD(内错角相等,两直线平行)判定方法(3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简单说成:同旁内角互补,两直线平行。

∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典例分析】【考点1:平行线公理及推论】【典例1】(2023秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【变式1】(2023秋•奉化区校级期末)下列说法正确的是()A.两点之间,直线最短B.永不相交的两条直线叫做平行线C.若AC=BC,则点C为线段AB的中点D.两点确定一条直线【典例2】(2023春•麒麟区期末)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【变式2-1】(2023春•阳春市校级月考)下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个A B.2个C.3个D.4个【变式2-2】(2023春•饶平县校级期中)若AB∥CD,AB∥EF,则∥,理由是.【考点2:平行线判定】【典例3】(2023秋•香坊区校级期中)如图,下列各组条件中,能得到AB∥CD 的是()A.∠1=∠3B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°【变式3-1】(2023春•台江区校级期中)如图,过直线外一点作已知直线的平行线,其依据是()A.两直线平行,同位角相等B.内错角相等,两直线平行C.同位角相等,两直线平行D.两直线平行,内错角相等【变式3-2】(2023•德保县二模)如图,能判定AD∥BC的条件是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠2=∠4【变式3-3】(2023春•宾阳县期中)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①②③④D.①③④【典例4】(2023春•重庆月考)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又∵∠1=∠B()∴()∴∠AFB=∠AOE()∴∠AFB=90°()又∵∠AFC+∠AFB+∠2=(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴(内错角相等,两直线平行)【变式4-1】(2023秋•社旗县期末)〖我阅读〗“推理”是数学的一种基本思想,包括归纳推理和演绎推理.演绎推理是一种从一般到特殊的推理,它借助于一些公认的基本事实及由此推导得到的结论,通过推断,说明最后结论的正确.〖我会做〗填空(理由或数学式)已知:如图,∠1=∠E,∠B=∠D.求证:AB∥CD.证明:∵∠1=∠E()∴()∴+∠2=180° ()∵∠B=∴+=180°∴AB∥CD()【变式4-2】(2023春•岳池县期末)把下面的说理过程补充完整:已知,如图,直线AB,CD被直线EF所截,点H为CD与EF的交点,GH ⊥CD于点H,∠2=30°,∠1=60°.试说明:AB∥CD.解:∵GH⊥CD(),∴∠CHG=90°()又∵∠2=30°(),∴∠3=()∴∠4=60°()又∵∠1=60°()∴∠1=∠4()∴AB∥CD()【变式4-3】(2023春•宁远县期末)完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β ()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().【典例5】(2023春•大埔县期末)如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点D在线段EC上,求证:AB∥CD.【变式5-1】(2023秋•西乡县期末)如图,已知∠A=∠ADE,∠C=∠E.求证:BE∥CD.【变式5-2】(2023春•宣恩县期末)如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及两个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。

(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。

(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。

二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。

2024年初中七年级数学下册同步讲义第03课 平行线的判定(学生版)

2024年初中七年级数学下册同步讲义第03课  平行线的判定(学生版)

第03课平行线的判定课程标准1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线的位置关系;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.知识点01 平行线的定义及画法1.定义:在同一平面内,两条直线叫做平行线,如果直线a与b平行,记作.注意:(1)平行线的定义有三个特征:一是;二是;三是,三者缺一不可;不在同一平面内的两条直线,如果没有交点,但是也可能不平行,需要注意;(2)有时说两条射线平行或线段平行,实际是指它们,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有和两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.目标导航知识精讲知识点02 平行公理及推论1.平行公理:经过一点,一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也.注意:(1)平行公理特别强调“”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫.知识点02 直线平行的判定判定方法1:同位角,两直线.如上图,几何语言:∵∴(同位角相等,两直线平行)判定方法2:内错角,两直线.如上图,几何语言:∵∴(内错角相等,两直线平行)判定方法3:同旁内角,两直线.如上图,几何语言:∵∴(同旁内角互补,两直线平行)注意:平行线的判定是由角相等或互补,得出平行,即由数推形.能力拓展考法01 平行线【典例1】在同一平面内,两条直线的位置关系是()A.平行和垂直B.平行和相交C.垂直和相交D.平行、垂直和相交【即学即练】下列说法正确的是()A.经过一点有无数条直线与已知直线平行B.在同一平面内,有且只有一条直线与已知直线平行C.经过直线外一点,有且只有一条直线与已知直线平行D.以上说法都不正确【即学即练】下列结论正确的是()A.不相交的直线互相平行B.不相交的线段互相平行C.不相交的射线互相平行D.有公共端点的直线一定不平行【即学即练】若直线a∥b,b∥c,则a∥c的依据是( )A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行【即学即练】已知直线AB及一点P,要过点P作一直线与AB平行,那么这样的直线( ) A.有且只有一条B.有两条C.不存在D.不存在或者只有一条【即学即练】下列说法正确的是()A.同一平面内不相交的两线段必平行B.同一平面内不相交的两射线必平行C.同一平面内不相交的一条线段与一条直线必平行D.同一平面内不相交的两条直线必平行【即学即练】如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行考法02 平行线的判定【典例2】如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等【典例3】在同一平面内,a 、b 、c 是直线,下列说法正确的是( )A .若a∥b ,b∥c 则 a∥cB .若a∥b ,b∥c ,则a∥cC .若a∥b ,b∥c ,则a∥cD .若a∥b ,b∥c ,则a∥c【即学即练】如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∥∥1=∥3,∥AB∥CD (内错角相等,两直线平行)B .∥AB∥CD ,∥∥1=∥3(两直线平行,内错角相等)C .∥AD∥BC ,∥∥BAD+∥ABC =180°(两直线平行,同旁内角互补)D .∥∥DAM =∥CBM ,∥AB∥CD (两直线平行,同位角相等)【即学即练】如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A.5个B.4个C.3个D.2个【即学即练】如图,下列条件中,能判断直线a∥b的有()个.①∥1=∥4;②∥3=∥5;③∥2+∥5=180°;④∥2+∥4=180°A.1B.2C.3D.4【即学即练】如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∥1=∥2,则a∥c C.若∥3=∥2,则b∥c D.若∥3+∥5=180°,则a∥c【即学即练】一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°【即学即练】如图,在下列条件中,不能判定直线a与b平行的是()A .∥1=∥2B .∥2=∥3C .∥3=∥5D .∥3+∥4=180°【典例4】如图,已知∥1=∥2,其中能判定AB∥CD 的是( )A .B .C .D .【即学即练】如图,下列条件中,能判断AB∥CD 的是( )A .∥FEC =∥EFBB .∥BFC+∥C =180° C .∥BEF =∥EFCD .∥C =∥BFD【即学即练】如图,下列条件中能得到AB∥CD 的是( )A .12∠∠=B .23∠∠=C .14∠∠=D .34∠∠=【即学即练】如图,下列条件:①12∠=∠:②180BAD ADC ∠+∠=︒;③ABC ADC ∠=∠;④34∠=∠,其中能判定AB CD ∥的有( )A .1个B .2个C .4个D .3个考法03 平行判定的几何语言【典例5】结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∥____________,∥a∥b.【典例6】如图所示:(1)若∥1=∥B,则_____∥_____,理由是;(2)若∥3=∥5,则_____∥_____,理由是;(3)若∥2=∥4,则_____∥_____,理由是;(4)若∥1=∥D,则_____∥_____,理由是;(5)若∥B+∥BCD=180°,_____∥_____,理由是;【即学即练】如图,AC平分∥DAB,∥1=∥2,试说明AB∥CD.证明:∥AC平分∥DAB(),∥∥1=∥____(),又∥∥1=∥2(),∥∥2=∥____(),∥AB∥____().【即学即练】如图,已知∥1=∥3,∥2+∥3=180°,请说明AB与DE平行的理由.解:将∥2的邻补角记作∥4,则∥2+∥4=°()因为∥2+∥3=180° ()所以∥3=∥4()因为 ( )所以∥1=∥4( )所以AB //DE ( )【即学即练】如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∥1=∥2,________________________.(2)∥A=∥3,________________________.(3)∥ABC+∥C=180°,________________________.【即学即练】完成下面的证明:已知:如图,BE 平分ABD DE ∠,平分BDC ∠,且90a β∠+∠=.求证://AB CD ,证明:BE 平分ABD ∠(已知)2ABD a ∴∠=∠( ) DE 平分BDC ∠(已知)BDC ∴∠=( )(222)ABD BDC a a ββ∴∠+∠=∠+∠=∠+∠( )90a β∠+∠=(已知)ABD BDC ∴∠+∠=()//AB CD∴()题组A 基础过关练1.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短2.已知直线a、b、c在同一平面内,则下列说法错误的是()A.如果a∥b,b∥c,那么a∥cB.a∥b,c∥b,那么a∥cC.如果a与b相交,b与c相交,那么a与c一定相交D.如果a与b相交,b与c不相交,那么a与c一定相交3.如下图,下列条件中:①∥B+∥BCD=180°;②∥1=∥2;③∥3=∥4;④∥B=∥5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③4.如图,点E在射线AB上,要AD//BC,只需()A.∥A=∥CBE B.∥A=∥C C.∥C=∥CBE D.∥A+∥D= 180°5.如图,直线,a b被直线c所截,下列条件中不能判定a//b的是()分层提分A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒6.下列说法不正确的是( )A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行 7.如图,由∥1=∥2,则可得出( )A .AB ∥CD B .AD ∥BC C .AD ∥BC 且 AB ∥CD D .∥3=∥4题组B 能力提升练1.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.2.小明把一副三角板摆放在桌面上,如图所示,其中边BC ,DF 在同一条直线上,可以得到________//________,依据是________.3.如图,∥1=120°,∥2=45°,若使b∥c ,则可将直线b 绕点A 逆时针旋转_________度.4.如图, 已知: CDE是直线, ∥1=130°, ∥A=50°, 则___∥__.理由是_______________.5.如图,条件__(填写所有正确的序号)一定能判定AB∥CD.①∥B+∥BCD=180°;②∥1=∥2;③∥3=∥4;④∥B=∥5.6.已知:如图AB∥BC,BC∥CD且∥1=∥2,试说明:BE//CF.解:∥AB∥BC,BC∥CD(已知)∥________=________=90°(___)∥∥1=∥2(已知)∥________=________(等式性质)∥BE//CF(____________)题组C 培优拔尖练1.已知:如图,直线AB,CD被直线GH所截,∥1=112°,∥2=68°,求证:AB//CD.完成下面的证明.证明:∥AB被直线GH所截,∥1=112°,∥∥1=∥=112°∥∥2=68°,∥∥2+∥3=,∥AB//()(填推理的依据)2.已知:如图:∥1=∥2,∥3+∥4= 180°;确定直线a,c的位置关系,并说明理由;解:a c;理由:∥∥1=∥2(),∥ a // ( );∥ ∥3+∥4= 180°(),∥ c // ( );∥ a // ,c // ,∥ // ( );3.如图,已知CD∥DA,DA∥AB,∥1=∥4.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∥_________(___________)∥∥CDA=90°,∥DAB=90°(_________).∥∥4+∥3=90°,∥2+∥1=90°.又∥∥1=∥4,∥_____(_____),∥DF∥AE(______).4.如图,已知BC平分∥ACD,且∥1=∥2,求证:AB∥CD.5.如图,已知∥A =∥EDF ,∥C =∥F .求证:BC ∥EF .6.已知:如图,1C ∠=∠,2∠和D ∠互余,1∠和D ∠互余,求证://AB CD .7.已知:如图,在∥ABC 中,CD ∥AB 于点D ,E 是AC 上一点且∥1+∥2=90°.求证:DE ∥BC .。

人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件

人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件
置关系,而平行线的性质是根据两条直线的位置关系得 到两角的数量关系; (2)平行线的判定的条件是平行线的性质的结论,而平行线 的判定的结论是平行线的性质的条件.
感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定(提高)知识讲解
【学习目标】
1.熟练掌握平行线的画法;
2.掌握平行公理及其推论;
3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】
要点一、平行线的画法及平行公理
1.平行线的画法
用直尺和三角板作平行线的步骤:
①落:用三角板的一条斜边与已知直线重合.
②靠:用直尺紧靠三角板一条直角边.
③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.
④画:沿着这条斜边画一条直线,所画直线与已知直线平行.
2.平行公理及推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
要点诠释:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
(2)公理中“有”说明存在;“只有”说明唯一.
(3)“平行公理的推论”也叫平行线的传递性.
要点二、平行线的判定
判定方法1:同位角相等,两直线平行.如上图,几何语言:
∵∠3=∠2
∴AB∥CD(同位角相等,两直线平行)
判定方法2:内错角相等,两直线平行.如上图,几何语言:
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
判定方法3:同旁内角互补,两直线平行.如上图,几何语言:
∵∠4+∠2=180°
∴AB∥CD(同旁内角互补,两直线平行)
要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.
【典型例题】
类型一、平行公理及推论
1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .
A.1个B.2个C.3个D.4个
【答案】B
【解析】正确的是:(1)(3).
【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.
举一反三:
【变式】下列说法正确的个数是() .
(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.
(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.
(3)两条直线被第三条直线所截,同位角相等.
(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.
A.1个 B .2个C.3个D.4个
【答案】B
2.证明:平行于同一直线的两条直线平行.
【答案与解析】
已知:如图,a//c,b//c.求证:a//b.
证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.
Q,
a//c,b//c
则过直线c外一点A有两条直线a、b与直线c平行,
这与平行公理矛盾,所以假设不成立.

a//b
【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立.
类型二、平行线的判定
3. 如图,给出下列四个条件:(1)AC=BD;(2)∠DAC=∠BCA;(3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有().
A.(1)(2)B.(3)(4)C.(2)(4)D.(1)(3)(4)
【思路点拨】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件.
【答案】C
【解析】从分解图形入手,即寻找AD、BC的截线.
【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.
举一反三:
【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A.第一次向左拐30°,第二次向右拐30°
B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130°
D.第一次向左拐50°,第二次向左拐130°
【答案】A
提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.
图B显然不同向,因为路线不平行.
图C中,∠1=180°-130°=50°,路线平行但不同向.
图D中,∠1=180°-130°=50°,路线平行但不同向.
只有图A路线平行且同向,故应选A.
4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.
【思路点拨】利用辅助线把AB、EF联系起来.
【答案与解析】
解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.
∵∠B=25°,∠E=10°(已知),
∴∠B=∠BCM,∠E=∠EDN(等量代换).
∴AB∥CM,EF∥DN(内错角相等,两直线平行).
又∵∠BCD=45°,∠CDE=30°(已知),
∴∠DCM=20°,∠CDN=20°(等式性质).
∴∠DCM=∠CDN(等量代换).
∴CM∥DN(内错角相等,两直线平行).
∵AB∥CM,EF∥DN(已证),
∴AB∥EF(平行线的传递性).
解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.
∵∠BCD=45°,∴∠NCB=135°.
∵∠B=25°,
∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).
又∵∠CDE=30°,∴∠EDM=150°.
又∵∠E=10°,
∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).
∴∠CNB=∠EMD(等量代换).
所以AB∥EF(内错角相等,两直线平行).
【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.
举一反三:
【高清课堂:平行线及判定403102经典例题2】
【变式】已知,如图,BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB、CD的位置关系,请说明理由.
【答案】
解:AB∥CD,理由如下:
∵BE平分∠ABD,DE平分∠CDB,
∴∠ABD=2∠1,∠CDB=2∠2.
又∵∠1+∠2=90°,
∴∠ABD+∠CDB=180°.
∴AB∥CD(同旁内角互补,两直线平行).。

相关文档
最新文档