15.1分式教案

合集下载

人教版八年级上册15.1.1 从分数到分式 教案

人教版八年级上册15.1.1 从分数到分式 教案

从分数到分式【教学目标】:1、了解分式的概念,理解并掌握分式的有意义、无意义、值为零的条件。

2、类比用数字表示实际问题的数量关系到用字母表示实际问题的数量关系,加强学生用类比转化的思想方法研究解决问题。

3、体会从特殊到一般的数学思想方法,培养学生的推理能力,构建代数模型。

【教学重难点】重点:了解分式的概念,理解分式有意义的条件及值为零的条件.难点:能熟练的求出分式有意义的条件及值为零的条件.【教学过程】一、导入新课、明确目标已知篮球场的面积为450 2m ;长为28m,则宽为____m ;若长方形的面积为S ,长为z,则宽为___ cm ;已知比赛三天共打16场比赛,因赛制不同每队打了m 场比赛,则共有____队;; 教练开车从家到三中,行驶路程为akm ,平均时间为b h ,则他的平均速度为___h km /;若遇大雾天气,在路程不变的情况下,行驶时间增加了m 小时,则他的平均速度为___h km /.二、自主学习、精讲点拨 思考:28450,z S ,m 16,b a ,mb a + 问题1:你能判断出哪些是分数哪些不是分数吗?问题2:这些式子与分数相比有什么相同点?问题3:这些式子与分数相比有什么不同点?分式定义:一般地,如果A,B 表示两个整式,并且B 中含有字母, 那么式子B A 叫做分式. 分式BA 中,A 叫做分子,B 叫做分母. 练习:判断下列式子是否为分式?πa x n m n m x x x x ab x x 2,1,,1212,352,534,31223-++-++-+, 重点:1.判断分式时关键要看分母中是否含有字母.2.判断分式时是从形式上看,即不能约分.3.π表示的是一个具体的数,它不是字母.拼一拼:你能任选两个式子,分别拖到分子 、分母的位置,并使它是分式吗? x ,x -2,π,4,0,2+x ,42-x在分数中,0不能做除数,那在分式中呢?分式的分母能不能为0?请大家阅读书128页思考中的问题及第二自然段。

人教版八年级数学上册15.1分式教案

人教版八年级数学上册15.1分式教案

15.1 分 式第1课时 从分数到分式教学目标1.了解分式的概念,知道分式与整式的区别和联系.2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件.3.理解分式的值为零、为正、为负时,分子分母应具备的条件.教学重点分式的意义.教学难点准确理解分式的意义,明确分母不得为零.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标一艘轮船在静水中的最大航速是20 km/h ,它沿江以最大船速顺流航行100 km 所用时间,与以最大航速逆流航行60 km 所用的时间相等.江水的流速是多少?提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速. ●自主学习 指向目标1.自学教材第127至128页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 分式的概念活动一:阅读教材思考问题:式子S a ,V S 以及式子10020+v 和6020-v有什么共同特点?它们与分数有什么相同点和不同点?展示点评:如果A ,B 表示两个________(整式),并且B 中含有________(字母),那么式子A B叫做分式. 小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?反思小结:判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母,分式与整式的区别在于:分式的分母中含有字母,而整式的分母中不含字母.针对训练:见《学生用书》相应部分探究点二 分式有意义的条件活动二:(1)当x ≠0时,分式23x有意义; (2)当x ≠1时,分式x x -1有意义; (3)当b ≠53时,分式15-3b有意义; (4)x ,y 满足__x≠y __时,分式x +y x -y有意义. 展示点评:教师示范解答的一般步骤,强调分母不为零.小组讨论:归纳分式有意义的条件.反思小结:对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)学习了分式,知道了分式与分数的区别.(2)知道了分式有意义和值为零的条件.2.思想方法小结——类比、转化等数学思想.五、达标检测,反思目标1.下列各式①2x ,②x +y 5,③12-a ,④x π-1中,是分式的有( C ) A .①② B .③④ C .①③ D .①②③④2.当x 为任意实数时,下列分式中,一定有意义的是( C )A.x -1x 2B.x +1x 2-1C.x -1x 2+1D.x -1x +23.某食堂有煤m t ,原计划每天烧煤a t ,现每天节约用煤b(b<a) t ,则这批煤可比原计划多烧__mb a (a -b )__天. 4.如果分式|x|-1x 2+x -2的值为0,那么x 的值是__-1__. 5.当x 取何值时,下列分式有意义?(1)3x -62x +5; (2)5x x 2-9. 解:(1)2x +5≠0 ∴x≠-52(2)x 2-9≠0 ∴x≠±36.求分式x +82x 2-1的值,其中x =-12.解:当x =-12 原式=(-12+8)2×14-1=-15 ●布置作业,巩固目标教学难点1.上交作业 课本第133页1-3.2.课后作业 见《学生用书》.第2课时 分式的基本性质(一)教学目标1.理解并掌握分式的基本性质,并能运用这些性质对分式进行变形.2.体会类比转化的数学思想方法.教学重点理解并掌握分式的基本性质.教学难点运用分式的基本性质进行分式化简.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标分数的基本性质是什么?你能用字母来表示分数的基本性质吗?二、自主学习,指向目标1.自学教材第129页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 分式的基本性质 活动一:类比分数的基本性质,你能想出分式有什么性质吗?例1 (1)x 3xy =( )y ;3x 2+3xy 6x 2=x +y ( )(2)1ab =( )a 2b ;2a -b a 2=( )a 2b展示点评:学生说出填空的思考过程.小组讨论:运用分式的基本性质应注意什么问题?分数的基本性质与分式的基本性质有什么区别?反思小结:运用分式的基本性质应注意:(1)分子、分母必须是同乘以或除以同一个整式.(2)分子、分母同乘(或除以)的式子不能为零.它们的区别在于:分数的分子、分母同乘(或除)一个不为零的数,而分式的分子、分母同乘(或除)一个不为零的整式,体现了由数到式的深化.针对训练:见《学生用书》相应部分探究点二 分式基本性质的应用活动二:不改变分式的值,把下列各式中分子、分母各项系数化为整数.(1)a +12b 34a -b (2)12a -0.2b 0.5b -14a 展示点评:(1)4a +2b 3a -4b ;(2)10a -4b 10b -5a.小组讨论:把分式中的分子、分母各项系数化成整数的依据是什么?反思小结:要根据分子和分母中的数字系数特点,运用分式的基本性质变形. 针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)理解并掌握分式的基本性质,并能运用这些性质对分式进行变形.2.思想方法小结——类比、转化等数学思想.五、达标检测,反思目标1.把分式2x2x -3y 中的x 和y 都扩大5倍,那么这个分式的值( B )A .扩大为原来的5倍B .不变C .缩小到原来的15D .扩大为原来的52倍2.对于分式1x +1的变形一定成立的是( C )A.1x +1=2x +2 B.1x +1=x -1x 2-1C.1x +1=x+1(x +1)2 D.1x +1=-1x -13.不改变分式的值,使分式的分子与分母都不含负号:①--5x 2y =__5x2y __; ②--a -3b =__-a3b __.4.当2x -1xy =(2x -1)kx 2y 3时,k 代表的代数式是__xy 2__.5.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:①13x -12y x +16y ②0.2x -12y13x +14解:①2x -3y 6x +y ②12x -30y20x +156.不改变分式的值,使分式的分子.分母中的首项的系数都不含“-”号: ①-2x -3y ②-x 2+2x -1x -2解:①2x 3y ②-x 2-2x +1x -2●布置作业,巩固目标教学难点1.上交作业 课本第133页第5题.2.课后作业 见《学生用书》.第3课时 分式的基本性质(二)教学目标1.理解并掌握分式的基本性质,运用分式的基本性质进行分式的约分和通分.2.通过分式的约分和通分体会类比的思想.教学重点分式的基本性质.教学难点运用分式的基本性质进行分式的约分和通分.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标想一想对分数812怎样化简? 你认为分式a 2a 与12相等吗?n 2mn 与n m呢? 二、自主学习,指向目标1.自学教材第130至第132页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 约分活动一:1.阅读教材思考问题:类比分数的约分,思考什么叫分式约分?什么叫最简分式?2.例1 约分:(1)-25a 2bc 315ab 2c解:-5ac 23b(2)x 2-9x 2+6x +9解:x -3x +3(3)6x 2-12xy +6y 23x -3y解:2x -2y展示点评:分式的约分类似于分数的约分,结果都是最简分式.小组讨论:分式约分的一般步骤是什么?反思小结:若分式的分子和分母是单项式,约分时先确定公因式,再约分;若分子,分母是多项式,约分时先对分子分母分解因式,再约分成最简分式.针对训练:见《学生用书》相应部分探究点二 通分活动二:1.阅读教材思考问题:类比分数的通分,思考如何对分式进行通分?什么叫最简公分母?例2 通分(1)32a 2b 与a -b ab 2c (2)2x x -5与3x x +5展示点评:(1)32a 2b =3bc 2a 2b 2c a -b ab 2c =2a 2-2ab 2a 2b 2c(2)2x x -5=2x 2+10x (x +5)(x -5) 3x x +5=3x 2-15x (x -5)(x +5)小组讨论:分式通分的关键是什么?反思小结:通分的关键是找准最简公分母.若各项是多项式,应先分解因式,再确定最简公分母.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)约分的步骤及最简分式;(2)通分的步骤及最简公分母.2.思想方法小结——渗透类比转化的数学思想方法.五、达标检测,反思目标1.下列分式12b 2c 4a 、5(x +y )2y +x 、a 2+b 23(a +b )、4a 2-b 22a -b 、a -b b -a中,最简分式的个数是( A ) A .1个 B .2个 C .3个 D .4个2.化简m 2-3m 9-m 2的结果是( B ) A.m m +3 B .-m m +3 C.m m -3 D.m 3-m 3.分式y 5x 2和y 2x 5的最简公分母是( C ) A .10x 7 B .7x 10 C .10x 5 D .7x 74.分式1(x +5)(5-x )2和1(5+x )2(x -5)的最简公分母是( B ) A .(x +5)3(5-x)3 B .(x +5)2(x -5)2C .(x +5)3(x -5)2D .(x +5)2(x -5)35.通分:(1)y 2x 2,56xy 2z ,4c 3xy ; 解:y 2x 2=3y 3z 6x 2y 2z56xy 2z =5x 6x 2y 2z4c 3xy =4c·2xyz 3xy·2xyz =8xyzc 6x 2y 2z(2)1x +2,4x x 2-4,22-x. 解:1x +2=x -2(x +2)(x -2) 4xx 2-4=4x (x +2)(x -2)22-x =-2(x +2)(x -2)(x +2)=-2x +4(x +2)(x -2)6.约分:(1)-36xy 2z 36yz 2 (2)2x 2y -2xy2x 2-2xy +y 2 解:(1)原式=-6xyz(2)原式=2xy (x -y )(x -y )2=2xyx -y●布置作业,巩固目标教学难点1.上交作业 课本第133页第6、7题.2.课后作业 见《学生用书》.。

15.1.1 从分数到分式 教学设计

15.1.1 从分数到分式  教学设计

15.1.1 从分数到分式教学设计一、教学目标:1.了解分式的概念.2.理解分式有意义的条件及分式值为零、为正、为负的条件.二、教学重、难点:重点:了解分式的概念,确定分式有意义的条件.难点:确定分式有意义的条件,分式的值为零的条件.三、教学过程:复习回顾1.下列两个整数相除如何表示成分数的形式:3÷4= 10÷3= 12÷11= -7÷2=2.在代数式中,整式的除法是否也能类似地表示?试用类似分数的形式表示下列整式的除法:(1) 90÷x 可以用式子( )来表示;60÷(x -6)可以用式子( )来表示.(2) n 公顷麦田共收小麦 m 吨,平均每公顷产量可以用式子 ( )吨来表示. 知识精讲思考:填空:(1)长方形的面积为10cm 2,长为7cm ,则宽为________cm ;长方形的面积为S ,长为a ,宽应为________.(2)把体积为200cm 3的水倒入底面积为33cm 2的圆柱形容器中,则水面高度为________cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,则水面高度为_________.思考:式子aS ,S V ,n m ,x 90,6060-x ,v +3090,v -3060,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子与分数一样都是BA (即A ÷B )的形式. 分数的分子 A 与分母 B 都是整数,而这些式子中的 A , B 都是整式,并且 B 中都含有字母. 分式:一般地,如果 A ,B 表示两个整式,并且 B 中含有字母,那么式子BA 叫做分式. 分式B A 中,A 叫做分子,B 叫做分母. (1)分式是不同于整式的另一类式子.(2)分母中含有字母是分式的一大特点.(3)分式比分数更具有一般性. 例如,分数32仅表示2÷3的商,而分式yx 既可以表示2÷3,又可以表示(-5)÷2,8÷(-9)等.典例解析例1.下列各式中,哪些是整式?哪些是分式?5x -7,3x 2-1,123+-a b ,7)(p n m +,-5,1222-+-x y xy x ,72,c b +54 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓整式 整式 分式 整式 整式 分式 整式 分式3π是分式吗? 11+a 是分式吗? 【点睛】1.判断时,注意含有π的式子,π是常数. 2.式子中含有多项时,若其中有一项分母含有字母,则该式也为分式,如:11+a思考:我们知道,要使分数有意义,分数中的分母不能为0.要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当 B ≠0时,分式BA 才有意义. 例2.下列分式中的字母满足什么条件时分式有意义? (1) x 32 (2) 1-x x (3) b 351- (4) y x y x -+ 解:(1)要使分式x 32有意义,则分母3x ≠0,即x ≠0; (2)要使分式1-x x 有意义,则分母x -1≠0,即x ≠1; (3)要使分式b 351-有意义,则分母5-3b ≠0,即b ≠35; (4)要使分式yx y x -+有意义,则分母x -y ≠0,即x ≠y .如无特别声明,本章出现的分式都有意义.例3.已知分式1(1)(2)x x x ---有意义,则x 应满足的条件是 ( C ) A.x ≠1 B .x ≠2 C.x ≠1且x ≠2 D.以上结果都不对【点睛】分式有意义的条件是分母不为零.如果分母是几个因式乘积的形式,则每个因式都不为零.【针对练习】下列分式中的字母满足什么条件时分式有意义? (1) a 2(2) 11-+x x (3) 232+m m(4) y x -1 (3) b a ba -+32(4) 122-x 解:(1)当分母a ≠0时,分式a 2有意义;(2)当分母x -1≠0,即x ≠1时,分式11-+x x 有意义;(3)当分母3m +2≠0,即m ≠- 时,分式232+m m有意义;(4)当分母x -y ≠0,即x ≠y 时,分式y x -1有意义;(5)当分母3a -b ≠0,即b ≠3a 时,分式b a ba -+32有意义;(6)当分母x 2-1≠0,即x ≠±1时,分式122-x 有意义.例4.当x 为何值时,分式211x x -+的值为零?解:当分子等于零而分母不等于零时,分式的值为零.则x 2-1=0,∴x =±1,而x +1≠0,∴x ≠-1.∴当x =1时分式211x x -+的值为零.【针对练习】1.当 时,分式22x x -+的值为零.2.若2||323x x x ---的值为零,则x = .三、课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

数学人教版八年级上册15.1.1从分数到分式教案

数学人教版八年级上册15.1.1从分数到分式教案
实践活动和小组讨论环节,学生们表现出较高的热情。他们积极参与讨论,互相交流想法,共同解决问题。这使我意识到,小组合作学习不仅能提高学生的团队协作能力,还能激发他们的思维,促进对知识的深入理解。
然而,我也发现了一些不足之处。在实践活动过程中,部分学生对于如何将实际问题转化为分式模型感到困惑。这说明我在教学中需要更多关注学生的问题解决能力,培养他们从实际问题中提炼数学模型的能力。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从分数到分式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过分母为零的情况?”(如:在平均分配物品时,若物品总数为零,该如何表示每个人得到的数量?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
本节课将结合实际例题,让学生在实际操作中掌握分式的概念和性质,为后续学习分式的运算打下基础。
二、核心素养目标
1.培养学生的逻辑推理能力:通过从分数到分式的过渡,引导学生理解分式概念的内涵和外延,培养学生的抽象逻辑思维,提高其逻辑推理能力。
2.增强学生的数学运算能力:让学生掌握分式的性质,并运用这些性质简化分式,解决实际问题,提高学生的数学运算能力。
数学人教版八年级上册15.1.1从分数到分式教案
一、教学内容
本节课选自数学人教版八年级上册第15章《分式》中的第1节“从分数到分式”。教学内容主要包括以下两部分:
1.分式的概念:通过回顾分数的定义,引导学生理解分式的概念,即分母不为零的表达式称为分式。列举一些具体实例,让学生观察并总结分式的特点。
2.分式的性质:探讨分式的分子、分母与分式值之间的关系,引入分式的基本性质,如分子分母同乘(除)一个非零数,分式的值不变。结合实际例题,让学生运用这些性质简化分式,并解决相关问题。同时,强调分母不为零的重要性。

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计 (新版)新人教版

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计 (新版)新人教版

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计(新版)新人教版一. 教材分析《八年级数学上册》第15.1节主要介绍分式的概念。

通过这一节的学习,学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。

本节内容是整个分式部分的基础,对于学生来说具有重要的意义。

二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除等运算也有一定的了解。

但是,学生对于分数与分式的区别和联系可能还不是很清楚,对于分式的运算也可能会感到困惑。

因此,在教学过程中,需要引导学生理解分数与分式的关系,并通过具体的例子让学生掌握分式的运算方法。

三. 教学目标1.知识与技能:学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。

2.过程与方法:学生通过观察、思考、操作等活动,培养自己的观察能力、思维能力和动手能力。

3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的抽象思维能力。

四. 教学重难点1.重点:分数与分式的联系,分式的基本性质,分式的运算方法。

2.难点:分式的运算规律,分式方程的解法。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题引导学生思考,通过具体的案例让学生理解分式的概念和运算方法,通过小组合作让学生互相交流和探讨,提高学生的学习效果。

六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解分式的概念和运算方法。

2.教学案例:准备一些具体的案例,让学生通过观察和操作来理解分式的运算方法。

3.练习题:准备一些练习题,让学生在课堂上进行练习,巩固所学知识。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的基本知识,如分数的定义、分数的加减乘除等。

然后引导学生思考分数与分式的关系,引出分式的概念。

2.呈现(15分钟)利用教学课件呈现分式的定义和基本性质,让学生直观地理解分式的概念。

数学八年级上册第15章分式 教案 新人教版

数学八年级上册第15章分式 教案 新人教版
2.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.
【预习速填】
第十五章 分式
15.1 分式
1.分式的概念.分式有三个要素:①形如 的式子;②A,B 都是 ;③分母 B 中含有 .满足 这三个条件的式子即为分式.区别整式和分式的唯一标准是看分母中是否含有字母,若分母 中含有字母,则式子就是分式,若分母中字母,则分子是整式.此外,在列分式表示实际问题中 的某个量时,一定要注量关系的转化. 2.分式有(无)意义及分式值为 0 的条件.理解时注意以下几点:①分式的分母表示除数,由于
a,则宽为 (2)把体积为 200 cm3的水倒入底面积为 33 cm2的圆柱形容器中,则水面的高度为
cm;把体积为 V 的水倒入底面积为 S 的圆柱形容器中,则水面的高度为 学生举手回答,教师与学生一起及时纠正学生出现的错误,并将正确答案填入横线中. 然后教师引入本节课题,并板书.
探究 1:分式的定义 让学生观察刚才的四个式子,看它们有什么相同点和不同点?
教师板书(1)(2)的解答过程,学生独立完成(3)(4).
解:(1)要使分式 有意义,则分母 3x≠0,即 x≠0.因此,当 x≠0 时,分式 有意 义.
(2)要使分式
有意义,则分母 x-1≠0,即 x≠1.因此,当 x≠1 时,分式

意义.
(3)要使分式 有意义.
有意义,则分母 5-3b≠0,即 b≠53.因此,当 b≠53 时,分式
教师引导学生总结:①定符号:只把负号留给分式;②定分子与分母的公因式:各项系 数的最大公因数和相同因式的最低次幂的积;③分式约分的最后结果应为最简分式或整式, 即分子、分母没有公因式.
学生先练习,教师再根据情况指导.
教师总结方法:如果分子或分母是多项式,要先分解因式,再找出分子、分母的公因式, 最后根据分式的基本性质进行约分.

人教版八年级上册数学教案:15.1.1分式的概念

人教版八年级上册数学教案:15.1.1分式的概念
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式的基本概念。分式是由两个整式相除得到的一种数学表达形式,其中上面的整式叫做分子,下面的整式叫做分母。分式在解决比例问题和各类比例关系中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有3个苹果和2个橙子,我们如何表示每个水果的平均数量?通过分式3/5,我们可以表示每个水果的平均数量是3个苹果分给5个水果。
2.多设计一些与实际生活相关的案例和实践活动,提高学生们应用分式解决问题的能力。
3.对于约分和通分这两个难点,可以通过课后辅导、小组讨论等形式,帮助学生们更好地突破。
4.鼓励学生们提问,培养他们的探究精神和独立思考能力。
五、教学反思
在今天的课堂中,我们探讨了分式的概念及其在实际生活中的应用。整个教学过程下来,我发现学生们对于分式的定义和基本性质掌握得还不错,但在具体的运算和应用过程中,还存在一些问题。
首先,约分和通分这两个环节是学生们普遍觉得有难度的部分。在讲解时,我尽量通过具体的例子和步骤来阐述,但可能还需要在课后加强个别辅导,让学生们更加熟练地掌握这一技巧。同时,我注意到有的学生在分式运算时容易混淆运算法则,这说明我在教学中还需要进一步强化对运算规则的解释和练习。
4.培养学生的数学运算能力:通过分式的运算练习,提高学生准确、熟练地进行分式计算的能力,增强数学运算技巧。
5.培养学生的数学应用意识:使学生能够将所学分式知识应用于实际情境,体会数学在生活中的广泛应用,增强数学应用意识。
三、教学难点与重点
1.教学重点
(1)分式的概念:理解分式的定义,掌握分子、分母、分数线的组成,明确分式的性质。
-难点解析:学生在面对复杂的分式运算时,容易混淆运算顺序和法则。

人教版数学八年级上册教学设计15.1《分式》

人教版数学八年级上册教学设计15.1《分式》

人教版数学八年级上册教学设计15.1《分式》一. 教材分析人教版数学八年级上册第15.1节《分式》是初中数学的重要内容,主要让学生了解分式的概念、性质和分式的运算。

本节内容为后续的分式方程和不等式的学习打下基础。

教材通过丰富的实例引入分式,让学生在具体的情境中感受分式的意义,进而总结出分式的概念。

本节课的内容包括分式的定义、分式的基本性质、分式的运算以及分式的化简。

二. 学情分析八年级的学生已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维能力和抽象思维能力。

但是,对于分式的理解还需要通过具体的实例来帮助学生建立直观的认识。

学生在学习过程中可能对分式的运算规则和分式的化简部分存在一定的困难,因此需要教师在教学过程中进行详细的讲解和引导。

三. 教学目标1.知识与技能:让学生掌握分式的概念、性质和分式的运算方法,能够正确进行分式的化简。

2.过程与方法:通过实例引入分式,让学生在具体的情境中感受分式的意义,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生能够自主探究、合作交流。

四. 教学重难点1.重点:分式的概念、性质和分式的运算。

2.难点:分式的化简以及分式运算的灵活运用。

五. 教学方法1.情境教学法:通过具体的实例引入分式,让学生在实际情境中感受分式的意义。

2.启发式教学法:引导学生主动探究分式的性质和运算规律,培养学生的抽象思维能力。

3.小组合作学习:学生进行小组讨论,培养学生的团队合作精神,提高学生的交流能力。

六. 教学准备1.准备相关的实例和图片,用于引入分式和解释分式的概念。

2.准备分式的运算练习题,用于巩固学生的运算能力。

3.准备分式的化简示例,用于引导学生掌握分式的化简方法。

七. 教学过程1.导入(5分钟)利用实例引入分式,如“一块土地的长是宽的2倍,若长方形土地的面积为36平方米,求这块土地的宽是多少米?”让学生在具体的情境中感受分式的意义。

分式 第一课时教案-人教版初二数学第十五章15.1

分式 第一课时教案-人教版初二数学第十五章15.1
(2)分式无意义的条件:分母等于零。
3、注意两点
(1)在确定分式有无意义时,不能对分式进行约分(即化简),若约分,则会扩大字母的取值范围。
(2)如果没有特殊说明,我们所遇到的分式都是有意义的,如 y=1/中就隐含着≠0的条件存在。
【师】对分式概念的详解:
(1)分式是两个整式相除的商,其中分子为被除式,分母为除式,分数线起除号的作用;
(2)分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。
(3)分式的定义方式是从式子的形式出发,判断一个式子是不是分式关键看形式而不是看式子变形后的结果。
同学们要特别记住分式成立的这三个条件。
【板演/PPT】教师演示分式概念的。
【师】同学们,下面我们看一个例题
【例1】在下列式子中哪些是整式,哪些是分式?
, , , , , , , , , , ,
答案:整式: , , , , , ,
分式: , , , , ,
【师】根据这个例题我们可以得出几个结论:
(1)判断整式与分式的依据是它们的定义,应根据定义进行判断。
2.(1)判断整式与分式的依据是它们的定义,应根据定义进行判断。
(2)整式与分式的判断是针对式子的形式,而不是运算后的结果
二、分式有意义的条件
1.思考: 分式中的分母应满足什么条件?
分母不能为0,即B不能为0
∴当 B≠0 时,分式 才有意义。
2.分式有意义和无意义的条件
(1)分式有意义的条件:分母不等于零。
6.分式 ,当x 时,分式有意义;当x 时,分式的值为零
7.有理式① ,② ,③ ,④ 中,是分式的有(A)
A.①②B.③④C.①③D.①②③④
8.分式 中,当x=-a时,下列结论正确的是(A)

八年级数学上册 15.1 分式教案 (新版)新人教版

八年级数学上册 15.1 分式教案 (新版)新人教版

15.1分式15.1.1从分数到分式教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.重点难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.一、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060. 3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?二、例题讲解P128例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1三、随堂练习1.判断下列各式哪些是整式,哪些是分式?1-m m 32+-m m 112+-m m9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3)四、布置作业课本P133习题15.1第1、2、3题4522--x x x x 235-+23+x x x 57+x x 3217-xx x --22115.1.2分式的基本性质教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.重点难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.一、例、习题的意图分析1.P129的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P131、132的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P133习题15.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.二、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.三、例题讲解P129例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P131例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P132例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂4320152498343201524983的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--, y x 3-, n m --2, n m 67--, yx 43---。

人教版八年级数学上册第十五章《分式》教案

人教版八年级数学上册第十五章《分式》教案

第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。

八年级上册数学(人教):第十五章 分式教案.DOC

八年级上册数学(人教):第十五章 分式教案.DOC

第十五章 分式 15.1 分 式 15.1.1 从分数到分式1.以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.2.能够通过分式的定义理解和掌握分式有意义的条件.重点理解分式有意义的条件及分式的值为零的条件. 难点能熟练地求出分式有意义的条件及分式的值为零的条件.一、复习引入1.什么是整式?什么是单项式?什么是多项式? 2.判断下列各式中,哪些是整式?哪些不是整式?①8m +n 3;②1+x +y 2;③a 2b +ab 23;④a +b 2;⑤2x 2+2x +1;⑥3a 2+b 2;⑦3x 2-42x .二、探究新知 1.分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时.轮船顺流航行90千米所用的时间为9030+v 小时,逆流航行60千米所用时间为6030-v 小时,所以9030+v =6030-v.(2)学生完成教材第127页“思考”中的题.观察:以上的式子9030+v ,6030-v ,S a ,Vs ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是AB (即A÷B)的形式.分数的分子A 与分母B 都是整数,而这些式子中的A ,B 都是整式,并且B 中都含有字母.归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.巩固练习:教材第129页练习第2题.2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式AB才有意义.学生自学例1.例1下列分式中的字母满足什么条件时分式有意义?(1)23x;(2)xx-1;(3)15-3b;(4)x+yx-y.解:(1)要使分式23x有意义,则分母3x≠0,即x≠0;(2)要使分式xx-1有意义,则分母x-1≠0,即x≠1;(3)要使分式15-3b有意义,则分母5-3b≠0,即b≠53;(4)要使分式x+yx-y有意义,则分母x-y≠0,即x≠y.思考:如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?巩固练习:教材第129页练习第3题.3.补充例题:当m为何值时,分式的值为0?(1)mm-1;(2)m-2m+3;(3)m2-1m+1.思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零.答案:(1)m=0;(2)m=2;(3)m=1.三、归纳总结1.分式的概念.2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义.3.分式的值为零的条件:(1)分母不能为零;(2)分子为零.四、布置作业教材第133页习题15.1第2,3题.在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.15.1.2分式的基本性质(2课时)第1课时分式的基本性质1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形.2.会用分式的基本性质求分式变形中的符号法则.重点理解并掌握分式的基本性质.难点灵活运用分式的基本性质进行分式变形.一、类比引新 1.计算: (1)56×215;(2)45÷815. 思考:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基本性质. 2.你能说出分数的基本性质吗?分数的分子与分母都乘(或除以)同一个不为零的数,分数的值不变. 3.尝试用字母表示分数的基本性质:小组讨论交流如何用字母表示分数的基本性质,然后写出分数的基本性质的字母表达式. a b =a·c b·c ,a b =a÷cb÷c.(其中a ,b ,c 是实数,且c ≠0) 二、探究新知1.分式与分数也有类似的性质,你能说出分式的基本性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不为零的整式,分式的值不变. 你能用式子表示这个性质吗?A B =A·C B·C ,A B =A÷C B÷C .(其中A ,B ,C 是整式,且C ≠0) 如x 2x =12,b a =aba2,你还能举几个例子吗? 回顾分数的基本性质,让学生类比写出分式的基本性质,这是从具体到抽象的过程. 学生尝试着用式子表示分式的性质,加强对学生的抽象表达能力的培养. 2.想一想下列等式成立吗?为什么? -a -b =a b ;-a b =a -b=-a b .教师出示问题.学生小组讨论、交流、总结.例1 不改变分式的值,使下列分式的分子与分母都不含“-”号: (1)-2a -3a;(2)-3x 2y ;(3)--x 2y .例2 不改变分式的值,使下列分式的分子与分母的最高次项的系数都化为正数: (1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x +1. 引导学生在完成习题的基础上进行归纳,使学生掌握分式的变号法则. 例3 填空:(1)x 3xy =( )y ,3x 2+3xy6x 2=x +y ( ); (2)1ab =( )a 2b ,2a -b a 2=( )a 2b.(b ≠0) 解:(1)因为x 3xy 的分母xy 除以x 才能化为y ,为保证分式的值不变,根据分式的基本性质,分子也需除以x ,即x 3xy =x 3÷x xy ÷x =x 2y. 同样地,因为3x 2+3xy6x 2的分子3x 2+3xy 除以3x 才能化为x +y ,所以分母也需除以3x ,即3x 2+3xy 6x 2=(3x 2+3xy )÷(3x )6x 2÷(3x )=x +y2x . 所以,括号中应分别填入x 2和2x.(2)因为1ab 的分母ab 乘a 才能化为a 2b ,为保证分式的值不变,根据分式的基本性质,分子也需乘a ,即1ab =1·a ab·a =a a 2b. 同样地,因为2a -ba 2的分母a 2乘b 才能化为a 2b ,所以分子也需乘b ,即2a -b a 2=(2a -b )·b a 2·b=2ab -b 2a 2b . 所以,括号中应分别填a 和2ab -b 2.在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化.三、课堂小结1.分式的基本性质是什么? 2.分式的变号法则是什么?3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业教材第133页习题15.1第4,5题.通过算数中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但要重点强调分子分母同乘(或除)的整式不能为零,让学生养成严谨的态度和习惯.第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9;(3)6x 2-12xy +6y 23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac 23b ;(2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3; (3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198.学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母. 解:(1)最简公分母是2a 2b 2c . 32a 2b =3·bc 2a 2b ·bc =3bc 2a 2b 2c , a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c . (2)最简公分母是(x -5)(x +5). 2xx -5=2x (x +5)(x -5)(x +5)=2x 2+10x x 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习: 通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分? 什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑? 四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.15.2 分式的运算 15.2.1 分式的乘除(2课时) 第1课时 分式的乘除法1.理解并掌握分式的乘除法则.2.运用法则进行运算,能解决一些与分式有关的实际问题.重点掌握分式的乘除运算. 难点分子、分母为多项式的分式乘除法运算.一、复习导入1.分数的乘除法的法则是什么? 2.计算:35×1512;35÷152.由分数的运算法则知35×1512=3×155×12;35÷152=35×215=3×25×15.3.什么是倒数?我们在小学学习了分数的乘除法,对于分式如何进行计算呢?这就是我们这节要学习的内容.二、探究新知问题1:一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b 时,当容器的水占容积的mn时,水面的高度是多少?问题2:大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm 2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?问题1求容积的高V ab ·m n ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的a m ÷bn 倍.根据上面的计算,请同学们总结一下对分式的乘除法的法则是什么?分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. a b ·c d =a·c b·d ;a b ÷c d =a b ·d c =a·d b·c . 三、举例分析 例1 计算:(1)4x 3y ·y 2x 3;(2)ab 32c 2÷-5a 2b 24cd. 分析:这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.解:(1)4x 3y ·y 2x 3=4xy 6x 3y =23x2;(2)ab 32c 2÷-5a 2b 24cd =ab 32c 2·4cd -5a 2b 2=-4ab 3cd 10a 2b 2c 2=-2bd 5ac . 例2 计算: (1)a 2-4a +4a 2-2a +1·a -1a 2-4; (2)149-m 2÷1m 2-7m.分析:这两题是分子与分母是多项式的情况,首先要因式分解,然后运用法则. 解:(1)原式(a -2)2(a -1)2·a -1(a +2)(a -2)=a -2(a -1)(a +2); (2)原式1(7-m )(7+m )÷1m (m -7)=1(7-m )(7+m )·m (m -7)1=-m m +7.例3 “丰收1号”小麦试验田边长为a 米(a >1)的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍? 分析:本题的实质是分式的乘除法的运用. 解:(1)略.(2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=a +1a -1. “丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a +1a -1倍.四、随堂练习1.计算:(1)c 2ab ·a 2b 2c ;(2)-n 22m ·4m 25n 3;(3)y 7x ÷(-2x );(4)-8xy÷2y5x ;(5)-a 2-4a 2-2a +1·a 2-1a 2+4a +4;(6)y 2-6y +9y +2÷(3-y).答案:(1)abc ;(2)-2m 5n ;(3)-y14;(4)-20x 2;(5)-(a +1)(a -2)(a -1)(a +2);(6)3-y y +2.2.教材第137页练习1,2,3题.五、课堂小结(1)分式的乘除法法则;(2)运用法则时注意符号的变化; (3)因式分解在分式乘除法中的应用;(4)步骤要完整,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也可以写成一个多项式,如(a -1)2a 或a 2-2a +1a.六、布置作业教材第146页习题15.2第1,2题.本节课从两个具有实际背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实际需要产生的,进而激发他们学习的兴趣,接着,从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘法法则.有利于学生接受新知识,而且能体现由数到式的发展过程.第2课时 分式的乘方及乘方与乘除的混合运算1.进一步熟练分式的乘除法法则,会进行分式的乘、除法的混合运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.重点分式的乘方运算,分式的乘除法、乘方混合运算.难点分式的乘除法、乘方混合运算,以及分式乘法、除法、乘方运算中符号的确定.一、复习引入1.分式的乘除法法则.分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义:a n =a·a·a·…·a(n 为正整数). 二、探究新知例1(教材例4) 计算2x 5x -3÷325x 2-9·x5x +3.解:2x 5x -3÷325x 2-9·x 5x +3=2x 5x -3·25x 2-93·x 5x +3(先把除法统一成乘法运算)=2x 23.(约分到最简公式) 分式乘除运算的一般步骤: (1)先把除法统一成乘法运算;(2)分子、分母中能分解因式的多项式分解因式; (3)确定分式的符号,然后约分;(4)结果应是最简分式.1.由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳. (1)(a b )2=a b ·a b =a 2b2; ↑ ↑由乘方的意义 由分式的乘法法则 (2)同理: (a b )3=a b ·a b ·a b =a 3b3; (a b )n =a b ·a b ·…·a b n 个=a ·a ·…·an 个b ·b ·…·bn 个 =a n b n . 2.分式乘方法则: 分式:(a b )n =a nbn .(n 为正整数)文字叙述:分式乘方是把分子、分母分别乘方.3.目前为止,正整数指数幂的运算法则都有什么?(1)a n ·a n =a m +n ;(2)a m ÷a n =a m -n ; (3)(a m )n =a mn ;(4)(ab)n =a n b n ;(5)(a b )n =a n b n . 三、举例分析 例2 计算: (1)(-2a 2b 3c )2;(2)(a 2b -cd 3)3÷2a d 3·(c 2a )2. (3)(-x 2y )2·(-y 2x )3÷(-y x )4;(4)a 2-b 2a 2+b 2÷(a -b a +b)2. 解:(1)原式=(-2a 2b )2(3c )2=4a 4b 29c 2;(2)原式=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b 38cd 6;(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(4)原式=(a +b )(a -b )a 2+b 2·(a +b )2(a -b )2=(a +b )3(a -b )(a 2+b 2).学生板演、纠错并及时总结做题方法及应注意的地方:①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘;②做乘方运算要先确定符号.例3 计算: (1)b 3n -1c 2a 2n +1·a 2n -1b3n -2;(2)(xy -x 2)÷x 2-2xy +y 2xy ·x -y x2;(3)(a 2-b 2ab )2÷(a -b a)2.解:(1)原式=b 3n -2·b ·c 2a 2n -1·a 2·a 2n -1b3n -2=bc 2a 2;(2)原式=-x (x -y )1·xy(x -y )2·x -y x 2=-y ; (3)原式=(a +b )2(a -b )2a 2b 2·a 2(a -b )2=a 2+2ab +b 2b 2.本例题是本节课运算题目的拓展,对于(1)指数为字母,不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进一步让学生熟悉运算顺序,注意做题步骤.四、巩固练习教材第139页练习第1,2题. 五、课堂小结1.分式的乘方法则. 2.运算中的注意事项.六、布置作业教材第146页习题15.2第3题.分式的乘方运算这一课的教学先让学生回忆以前学过的分数的乘方的运算方法,然后采用类比的方法让学生得出分式的乘方法则.在讲解例题和练习时充分调动学生的积极性,使大家都参与进来,提高学习效率.15.2.2 分式的加减(2课时)第1课时 分式的加减理解并掌握分式的加减法则,并会运用它们进行分式的加减运算.重点运用分式的加减运算法则进行运算. 难点异分母分式的加减运算.一、复习提问 1.什么叫通分?2.通分的关键是什么? 3.什么叫最简公分母?4.通分的作用是什么?(引出新课) 二、探究新知1.出示教材第139页问题3和问题4. 教材第140页“思考”.分式的加减法与分数的加减法类似,它们的实质相同.观察下列分数加减运算的式子:15+25=35,15-25=-15,12+13=36+26=56,12-13=36-26=16.你能将它们推广,得出分式的加减法法则吗?教师提出问题,让学生列出算式,得到分式的加减法法则. 学生讨论:组内交流,教师点拨. 2.同分母的分式加减法.公式:a c ±b c =a±b c.文字叙述:同分母的分式相加减,分母不变,把分子相加减.3.异分母的分式加减法. 分式:a b ±c d =ad bd ±bc bd =ad±bcbd.文字叙述:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 三、典型例题例1(教材例6) 计算:(1)5x +3y x 2-y 2-2x x 2-y 2;(2)12p +3q +12p -3q.解:(1)5x +3y x 2-y 2-2xx 2-y2=5x +3y -2x x 2-y 2=3x +3y x 2-y 2=3x -y ; (2)12p +3q +12p -3q=2p -3q (2p +3q )(2p -3q )+2p +3q(2p +3q )(2p -3q )=2p -3q +2p +3q (2p +3q )(2p -3q )=4p4p 2-9q 2.小结:(1)注意分数线有括号的作用,分子相加减时,要注意添括号. (2)把分子相加减后,如果所得结果不是最简分式,要约分. 例2 计算: m +2n n -m +n m -n -2mn -m. 分析:(1)分母是否相同?(2)如何把分母化为相同的?(3)注意符号问题. 解:原式=m +2n n -m -n n -m -2mn -m=m +2n -n -2m n -m=n -m n -m=1.四、课堂练习1.教材第141页练习1,2题. 2.计算:(1)56ab -23ac +34abc ;(2)12m 2-9+23-m ; (3)a +2-42-a ;(4)a 2-b 2ab -ab -b 2ab -ab 2.五、课堂小结1.同分母分式相加减,分母不变,只需将分子作加减运算,但注意每个分子是个整体,要适时添上括号.2.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.3.异分母分式的加减运算,首先观察每个公式是否为最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.4.作为最后结果,如果是分式则应该是最简分式.六、布置作业教材第146页习题15.2第4,5题.从直观的分数加减运算开始,先介绍同分母分式的加减运算的具体方法,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系.而后,利用同样的类比方法,安排学习异分母的分式加减运算,这样由简到繁、由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握.第2课时 分式的混合运算1.明确分式混合运算的顺序,熟练地进行分式的混合运算. 2.能灵活运用运算律简便运算.重点熟练地进行分式的混合运算. 难点熟练地进行分式的混合运算.一、复习引入回忆:我们已经学习了分式的哪些运算? 1.分式的乘除运算主要是通过( )进行的,分式的加减运算主要是通过( )进行的.2.分数的混合运算法则是( ),类似的,分式的混合运算法则是先算( ),再算( ),最后算( ),有括号的先算( )里面的.二、探究新知 1.典型例题 例1 计算:(x +2x -2+4x 2-4x +4)÷x x -2. 分析:应先算括号里的. 例2 计算:x +2y +4y 2x -2y -4x 2yx 2-4y 2.分析:(1)本题应采用逐步通分的方法依次进行; (2)x +2y 可以看作x +2y1.例3 计算:12x -1x +y ·(x +y 2x-x -y). 分析:本题可用分配律简便计算.例4 [1(a +b )2-1(a -b )2]÷(1a +b -1a -b). 分析:可先把被除式利用平方差公式分解因式后再约分. 例5(教材例7) 计算(2a b )2·1a -b -a b ÷b 4.解:(2a b )2·1a -b -a b ÷b 4=4a 2b 2·1a -b -a b ·4b=4a 2b 2(a -b )-4a b 2=4a 2b 2(a -b )-4a (a -b )b 2(a -b ) =4a 2-4a 2+4ab b 2(a -b )=4ab b 2(a -b )=4aab -b 2. 点拨:式与数有相同的混合运算顺序:先乘方,再乘除,然后加减. 例6(教材例8) 计算: (1)(m +2+52-m )·2m -43-m; (2)(x +2x 2-2x -x -1x 2-4x +4)÷x -4x .解:(1)(m +2+52-m )·2m -43-m=(m +2)(2-m )+52-m ·2m -43-m=9-m 22-m ·2(m -2)3-m =(3-m )(3+m )2-m ·-2(2-m )3-m=-2(m +3);(2)(x +2x 2-2x -x -1x 2-4x +4)÷x -4x=[x +2x (x -2)-x -1(x -2)2]·xx -4 =(x +2)(x -2)-(x -1)x x (x -2)2·xx -4=x 2-4-x 2+x(x -2)2(x -4) =1(x -2)2.分式的加、减、乘、除混合运算要注意以下几点:(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便.(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时用,可避免运算烦琐.(3)注意括号的“添”或“去”、“变大”与“变小”. (4)结果要化为最简分式.强化练习,引导学生及时纠正在例题中出现的错误,进一步提高运算能力.三、巩固练习1.(1)x 2x -1-x -1;(2)(1-2x +1)2÷x -1x +1;(3)2ab (a -b )(a -c )+2bc (a -b )(c -a ); (4)(1x -y +1x +y )÷xy x 2-y 2.2.教材第142页第1,2题.四、课堂小结1.分式的混合运算法则是先算( ),再算( ),最后算( ),有括号先算( )里的.2.一些题应用运算律、公式能简便运算.五、布置作业1.教材第146页习题15.2第6题.2.先化简再求值1x +1-1x 2-1·x 2-2x +1x +1,其中x =2-1.分式的混合运算是分式这一章的重点和难点,涉及到因式分解和通分这两个较难的知识点,可根据学生的具体情况,适当增加例题、习题,让学生熟练掌握分式的运算法则并提高运算能力.15.2.3 整数指数幂1.知道负整数指数幂a -n =1a n .(a ≠0,n 是正整数)2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于1的数.重点掌握整数指数幂的运算性质,会有科学记数法表示绝对值小于1的数. 难点负整数指数幂的性质的理解和应用.一、复习引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:a m ·a n =a m +n (m ,n 是正整数); (2)幂的乘方:(a m )n =a mn (m ,n 是正整数);(3)积的乘方:(ab)n =a n b n (n 是正整数);(4)同底数的幂的除法:a m ÷a n =a m -n (a ≠0,m ,n 是正整数,m >n); (5)分式的乘方:(a b )n =a nbn (n 是正整数).2.回忆0指数幂的规定,即当a ≠0时,a 0=1. 二、探究新知(一)1.计算当a ≠0时,a 3÷a 5=a 3a 5=a 3a 3·a 2=1a2,再假设正整数指数幂的运算性质a m ÷a n=a m -n (a ≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么a 3÷a 5=a 3-5=a -2.于是得到a -2=1a2(a ≠0).总结:负整数指数幂的运算性质:一般的,我们规定:当n 是正整数时,a -n =1a n (a ≠0).2.练习巩固:填空:(1)-22=________, (2)(-2)2=________, (3)(-2)0=________, (4)20=________,(5)2-3=________, (5)(-2)-3=________. 3.例1 (教材例9) 计算:(1)a -2÷a 5;(2)(b 3a2)-2;(3)(a -1b 2)3;(4)a -2b 2·(a 2b -2)-3.解:(1)a -2÷a 5=a-2-5=a -7=1a7;(2)(b 3a 2)-2=b -6a-4=a 4b -6=a 4b 6;(3)(a -1b 2)3=a -3b 6=b 6a3;(4)a -2b 2·(a 2b -2)-3=a -2b 2·a -6b 6=a -8b 8=b 8a8.[分析] 本例题是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.4.练习:计算:(1)(x 3y -2)2;(2)x 2y -2·(x -2y)3;(3)(3x 2y -2)2÷(x -2y)3.5.例2 判断下列等式是否正确?(1)a m ÷a n =a m ·a -n ;(2)(a b)n =a n b -n .[分析] 类比负数的引入使减法转化为加法,得到负指数幂的引入可以使除法转化为幂的乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断等式是否正确.(二)1.用科学记数法表示值较小的数因为0.1=110=10-1;0.01=________=________;0.001=________=________……所以0.000 025=2.5×0.000 01=2.5×10-5. 我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤|a|<10.2.例3(教材例10) 纳米是非常小的长度单位,1纳米=10-9米,把1纳米的物体放到乒乓球上,就如同把乒乓球放到地球上.1立方毫米的空间可以放多少个1立方纳米的物体?(物体之间的间隙忽略不计)[分析] 这是一个介绍纳米的应用题,是应用科学记数法表示小于1的数. 3.用科学记数法表示下列各数:0.00 04,-0.034,0.000 000 45,0.003 009. 4.计算:(1)(3×10-8)×(4×103);(2)(2×10-3)2÷(10-3)3. 三、课堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立. 2.科学记数法不仅可以表示一个值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a 必须满足1≤|a|<10,其中n 是正整数.四、布置作业教材第147页习题15.2第7,8,9题.本节课教学的主要内容是整数指数幂,将以前所学的有关知识进行了扩充.在本节的教学设计上,教师重点挖掘学生的潜在能力,让学生在课堂上通过观察、验证、探究等活动,加深对新知识的理解.15.3 分式方程(2课时) 第1课时 分式方程的解法1.理解分式方程的意义.2.理解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根方法.重点解分式方程的基本思路和解法. 难点理解解分式方程时可能无解的原因.一、复习引入问题:一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用的时间相等,江水的流速为多少?[分析]设江水的流速为x 千米/时,根据题意,得9030+v =6030-v.① 方程①有何特点?[概括]方程①中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程. 提问:你还能举出一个分式方程的例子吗? 辨析:判断下列各式哪个是分式方程.(1)x +y =5;(2)x +25=2y -z 3;(3)1x ;(4)y x +5=0;(5)1x +2x =5.根据定义可得:(1)(2)是整式方程,(3)是分式,(4)(5)是分式方程. 二、探究新知1.思考:怎样解分式方程呢?为了解决本问题,请同学们先思考并回答以下问题:(1)回顾一下解一元一次方程时是怎么去分母的,从中能否得到一点启发? (2)有没有办法可以去掉分式方程的分母把它转化为整式方程呢? [可先放手让学生自主探索,合作学习并进行总结]方程①可以解答如下:方程两边同乘以(30+v)(30-v),约去分母,得90(30-v)=60(30+v). 解这个整式方程,得v =6.所以江水的流度为6千米/时.[概括]上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.2.例1 解方程:1x -5=10x 2-25.②解:方程两边同乘(x 2-25),约去分母,得x +5=10. 解这个整式方程,得x =5.事实上,当x =5时,原分式方程左边和右边的分母(x -5)与(x 2-25)都是0,方程中出现的两个分式都没有意义,因此,x =5不是分式方程的根,应当舍去,所以原分式方程无解.解分式方程的步骤:在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.3.那么,可能产生“增根”的原因在哪里呢?解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母).方程①两边乘(30+v)(30-v),得到整式方程,它的解v =6.当v =6时,(30+v)(30-v)≠0,这就是说,去分母时,①两边乘了同一个不为0的式子,因此所得整式方程的解与①的解相同.方程②两边乘(x -5)(x +5),得到整式方程,它的解x =5.当x =5时,(x -5)(x +5)=0,这就是说,去分母时,②两边乘了同一个等于0的式子,这时所得整式方程的解使②出现分母为0的现象,因此这样的解不是②的解.4.验根的方法: 解分式方程进行检验的关键是看所求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.如例1中的x =5,代入x 2-25=0,可知x =5是原分式方程的增根.三、举例分析 例2(教材例1) 解方程2x -3=3x. 解:方程两边乘x(x -3),得2x =3x -9. 解得x =9.检验:当x =9时,x(x -3)≠0. 所以,原分式方程的解为x =9. 例3(教材例2) 解方程x x -1-1=3(x -1)(x +2).。

人教版八年级数学上册教学设计15.1 分式

人教版八年级数学上册教学设计15.1  分式

人教版八年级数学上册教学设计15.1 分式一. 教材分析人教版八年级数学上册第15.1节“分式”是学生在掌握了实数、代数式等基础知识后,进一步学习数学的重要内容。

分式是数学中基本的代数表达式,它在生活中、物理、化学等学科中都有广泛的应用。

本节内容主要介绍分式的概念、性质和运算,为学生今后学习函数、方程等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的代数基础,能够进行简单的代数运算。

但是,对于分式的概念和性质,学生可能还比较陌生,需要通过具体的例子和练习来逐步理解和掌握。

同时,学生可能对分式的运算规则感到困惑,需要通过大量的练习来熟练运用。

三. 教学目标1.理解分式的概念,掌握分式的性质。

2.学会分式的基本运算,能够熟练进行分式的化简和求值。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.分式的概念和性质。

2.分式的运算规则。

五. 教学方法采用讲授法、例题演示法、练习法、小组合作法等教学方法。

通过生动的例子和丰富的练习,让学生理解和掌握分式的概念和性质,熟练运用分式的运算规则。

六. 教学准备1.教学PPT。

2.例题和练习题。

3.学生分组合作的学习材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如“某班级有男生和女生共60人,其中男生是女生的2倍,求男生和女生各有多少人?”让学生思考和讨论,引出分式的定义。

2. 呈现(15分钟)讲解分式的概念,通过PPT 展示分式的基本性质,如分式的分子、分母、分式的值等。

同时,给出一些分式的例子,让学生理解和掌握分式的概念和性质。

3.操练(15分钟)让学生进行分式的化简和求值的练习,如“化简分式2x 3x+5”,“求分式x−1x+2的值,当x =3时”。

通过这些练习,让学生熟练运用分式的性质和运算规则。

4. 巩固(10分钟)让学生分组合作,解决一些实际问题,如“某商品的原价是120元,打八折后的价格是多少?”让学生运用分式进行计算和解决实际问题,提高学生的应用能力。

15.1分式教案第一课时

15.1分式教案第一课时

15.1分式教案第一课时15.1分式教案第一课时是高中数学教学中比较重要的一节课程,对于学生来说,这是一次深入学习分式知识的机会。

本文将从分式的定义和性质、分式的化简、分式的乘除法等几个方面来详细介绍这节课的教学内容。

一、分式的定义和性质分式是指分子和分母都是整式的代数式,以横线将分子与分母分开表示。

分式有两种类型:真分式和带分式。

其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于或等于分母次数的分式。

在教学中,我们需要通过实例来让学生了解分式的定义和性质,并且要说明分式是一个有限个有理数的和或差。

可以让学生通过观察分式的形式来判断是否是真分式或者带分式,这样可以帮助学生更好地理解分式的基本概念和性质。

二、分式的化简化简在分式中是非常重要的一步,化简后的分式更加简洁明了,便于计算,所以我们需要重点讲解化简的方法和技巧。

首先,要让学生掌握约分的方法,这是化简分式中非常常见的一种技巧。

其次,还需要教给学生通分的方法,这种方法可以让分子与分母都乘上相应的因式,从而化简分式。

此外,还需要让学生掌握提公因式的方法以及合并同类项的方法,这样才能够更好地应对分式化简中出现的各种情况。

需要注意的是,化简分式时要先将分子与分母进行因式分解,然后再进行约分或通分等操作。

三、分式的乘除法分式的乘除法一般来说对学生来说会比较困难,因为需要掌握一定的运算技巧。

在教学中,我们需要给学生一些实例进行练习,以帮助学生更好地理解分式的乘除法。

乘法的运算首先要将分子与分母分别相乘,然后再将乘积约分;而除法的运算则要将被除式与除式分别乘以除式的倒数,然后再将积约分。

需要注意的是,进行乘除法运算时,一般要先将分式化简,以便更好地进行运算。

四、学生自主学习与作业布置在教学结束后,我们需要给学生一定时间进行自主学习,再根据学生的实际情况来布置相应的作业。

一般来说,可以选取一些习题或者真题进行练习,以锻炼学生运用分式知识进行解题的能力。

人教版八年级数学上册15.1从分数到分式优秀教学案例

人教版八年级数学上册15.1从分数到分式优秀教学案例
5.作业小结:教师设计具有挑战性的作业题目,巩固本节课所学的知识。同时,教师及时批改作业,给予学生评价和反馈,帮助学生调整学习方法,提高学习效果。
本节课的案例亮点体现了以学生为中心的教学理念,注重培养学生的自主学习能力、团队协作能力和解决问题的能力。同时,教师关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。这种教学方法不仅有助于提高学生的学习成绩,还能培养学生的综合素质,符合教育现代化的要求。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算方法。
2.培养学生运用分式解决实际问题的能力,提高学生的数学应用意识。
3.引导学生了解分式在生活中的应用,拓宽学生的知识视野,提高学生的学习兴趣。
4.通过对分式的学习,培养学生逻辑思维能力、创新能力和团队协作能力。
(二)过程与方法
1.采用案例教学法,让学生在具体的情境中感受和理解分式的概念和运算方法。
2.运用探究式学习法,引导学生主动发现分式的规律,提高学生的自主学习能力。
3.利用小组讨论法,培养学生的团队协作精神,提高学生的沟通能力。
4.设计具有挑战性的数学问题,激发学生的思考,培养学生解决问题的能力。
(三)情感态度与价值观
3.采用多元化评价方式,既要关注学生的知识与技能掌握情况,也要关注学生在过程中表现出的态度、情感和价值观。
4.教师要关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入分式的概念,如计时、购物等,让学生感受分式在生活中的应用。
2.展示分式的数学问题,引发学生的思考,激发学生的学习兴趣。
3.回顾已学的分数知识,为学生学习分式打下基础。

15.1分式教案

15.1分式教案

15.1分式教案15.1分式教案一、教学目标1.理解分式的基本概念、定义和性质2.掌握分式的化简、加减、乘除等基本方法3.掌握分式方程的基本解法二、教学重点1.分式的基本概念、定义和性质2.分式的化简、加减、乘除等基本方法3.分式方程的基本解法三、教学难点1.带分数及约分的分式2.分式方程以及方程的解法四、教学过程设计(一)引入1.探究:你们在中学时期已经学了很多知识,并掌握了一些新的知识。

但是,你们是否还记得小学阶段的知识呢?现在是为大家带来小学学习知识的好机会了,不要错过!2.主题介绍:本节课将会带大家一起回忆小学时期的数学学习,着重重点向大家介绍分式的定义、基本性质、化简、运算以及应用。

3.目标确认:你们是否知道分式是什么?你们掌握了分式的一些方法和公式吗?本节课将帮助大家更好地掌握和应用分式知识。

(二)概念讲解1.分式的定义:如果a、b是两个整数,且b≠0,那么a/b 称为分式。

a是分子,b是分母,‘/’是除号,表示a除以b。

2.分式的基本性质:①、分式的分母不为0.②、分式可以带有约分的形式;即分式化简时,通常对分子和分母进行约分操作。

③、分式的大小可以被计算出来,即计算分子和分母的大小,不同的分式可以被进行大小的比较。

④、分式可以被加减乘除。

加减法需要分母相同,乘除法无需分母相同。

(三)例题演示例题1:将a/12和6/a化为同分母。

①、先将a/12化为(6a)/(6×12)②、将6/a化为(12/a)×(6/12)例题2:求分式(a+b)/(a-b)的值解题思路:a+b/(a-b)可以化为((a-b)+2b)/(a-b)=1+2b/(a-b),所以(a+b)/(a-b)的值为1+2b/(a-b)。

(四)练习1.化简下列各式子:(1)(6x+4y)/(2x+3y)(2)(3a-b)/(2a-3b)2.解分式方程:(1)4/x=3/x+2(2)(a-5)/2+(2a-1)/3=a+63.思考题:从一个装有药品的药瓶里,倒出1/5的药液后,剩余的部分再倒出其中的1/3。

人教版初中数学八年级上册15.1.1从分数到分式(教案)

人教版初中数学八年级上册15.1.1从分数到分式(教案)
-分式的简单运算:讲解如何进行分式的加减乘除,例如$\frac{2x}{3y} + \frac{5x}{6y} = \frac{4x+5x}{6y} = \frac{9x}{6y}$。
2.教学难点
-分式的概念理解:学生可能难以理解从具体的分数到抽象的分式的过渡,特别是分母含有字母时的情况。
-分式的约分与通分:学生在约分和通分时容易出错,如忽略掉分子分母的公因数,或在通分时计算错误。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-分式的性质:掌握分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变;分子分母互换,分式的值取倒数等。
-分式的约分与通分:学会对分式进行约分和通分,掌握其基本方法。
-分式的简单运算:掌握分式的加、减、乘、除等基本运算,并能够熟练运用。
举例解释:
-分式的定义及其结构:例如,分式$\frac{2x}{3y}$,重点讲解分子$2x$、分母$3y$的意义以及分式有意义的条件(分母不为零)。
4.增强数学运算和数据分析能力:在分式的约分、通分等运算过程中,培养学生的数学运算技能,提高数据处理和分析能力。
5.培养数学交流与合作能力:鼓励学生在学习过程中进行讨论、交流,共同解决分式相关问题,提升合作学习能力。
三、教学难点与重点
1.教学重点
-分式的定义及其结构:理解分式的分子、分母以及分式有意义的条件,掌握分式的表示方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时、从分数到分式【教学内容】从分数到分式【教学目标】知识与技能:掌握分式的概念,明确分母不得为零是分式概念的组成部分。

能够求出分式有意义的条件。

过程与方法:能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题。

情感与态度:培养学生严谨的思维能力。

语言积累:用A 、B 表示两个整式,A ÷B 就可以表示成BA 的形式。

如果B 中含有字母,式子B A 就叫做分式。

其中A 叫做分式的分子,B 叫做分式的分母。

【教学重点】准确理解分式的意义,明确分母不得为零。

【教学难点】准确理解分式的意义,明确分母不得为零。

【教学用具】课件。

【教学过程】一、提出问题,创设情境:1、问题导入:一艘轮船在静水中的最大航速是20千米/时,它沿江以最大船速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用的时间相等。

江水的流速是多少?请同学们跟着教师一起设未知数,列方程。

设江水的流速为x 千米/时。

轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060。

方法:课件出示题目;指名回答,教师小结。

2、提问置疑: 教师:以上式子里的v +20100、v-2060有什么共同点?它们与分数有什么相同点和不同点?二、合作探究,学习新知识:(1)长方形的面积为10cm ²,长为7cm 。

宽应为______cm ;长方形的面积为S ,长为a ,宽应为______;(2)把体积为200cm ³的水倒入底面积为33cm ²的圆柱形容器中,水面高度为____cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为_____;思考:请观察上面的式子,他们与分数有什么相同点和不同点?分式的定义是什么?1、由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:用A 、B 表示两个整式,A ÷B 就可以表示成BA 的形式。

如果B 中含有字母,式子BA 就叫做分式。

其中A 叫做分式的分子,B 叫做分式的分母。

2、由学生举几个分式的例子。

3、学生小结分式的概念中应注意的问题。

(1)分母中含有字母。

(2)如同分数一样,分式的分母不能为零。

4、思考:当B A=0时分子和分母应满足什么条件?方法:课件出示题目;学生分组讨论,教师巡视。

指名回答,集体订正。

5、概念巩固:下面的式子哪些是分式?s b -2、 72、 π3y x +、 1222-+-x y xy x 、 cb +54、5- 5122+x 、 32S 、 SV 、 132-x 、 75-x方法:课件出示题目;指名回答,集体订正。

三、知识应用,巩固深化:1、例题1:当x 为何值时,分式x 32有意义;当x 为何值时,分式1-x x有意义;当x 为何值时,分式b351-有意义; 当x 、y 满足什么关系时,分式y x y x -+有意义。

方法:课件出示题目;小组合作完成;教师巡视集体订正,教师小结。

分析:已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围。

2、练习1:已知分式242+-x x , (1)当x 为何值时,分式有意义; (2)当x 为何值时,分式无意义;(3)当x 为何值时,分式的值为0;(4)当3-=x 时,分式的值为多少? 方法:课件出示题目;小组合作,教师巡视;指名回答,集体订正。

3、练习2:(1)式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④(2)分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义C. 若31-≠a 时,分式的值为零D. 若31≠a 时,分式的值为零 (3)若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±(4)如果分式x211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x (5)使分式x ++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x方法:课件出示题目;指名回答,集体订正。

4、课堂小结:教师:通过今天的学习,同学们有什么收获?学生自由发言,教师小结。

四、布置作业:课本P4练习1,2,3题、课本P8习题16.1第1,2,3题。

五、板书设计:第二课时、分式的基本性质(一)【教学内容】分式的基本性质(一)【教学目标】知识与技能:使学生理解并掌握分式的基本性质,并能运用这些性质进行分式的约分化简。

过程与方法:通过分式的化简提高学生的运算能力。

情感与态度:渗透类比转化的数学思想方法。

语言积累:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

【教学重点】使学生理解并掌握分式的基本性质。

【教学难点】灵活运用分式的基本性质进行分式化简。

【教学用具】课件。

【教学过程】一、创设情境,导入新知:1、数学小笑话:从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”2、提问:这个富家子弟为什么会犯这样的错误?3、分数约分的方法及依据是什么?(1)2163=的依据是什么?431612=呢?(2)你认为分式a a 2与21相等吗?mn n 2与m n 呢?二、新授:1、类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:(其中M 是不等于零的整式)。

2、加深对分式基本性质的理解:例题:下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c ≠0?解:∵c ≠0,学生口答,教师设疑:为什么题目未给x ≠0的条件?引导学生学会分析题目中的隐含条件。

方法:课件出示题目;小组合作,教师巡视;集体订正,教师小结。

三、随堂练习,巩固练习:1、例2:填空。

(1)()222-=-x x x x , ()y x x xy x +=+22633, (2)()b a ab b a 2=+, ())0(222≠=-b ba ab a 方法:课件出示题目;学生独立计算,教师巡视;集体订正,教师小结。

2、约分:(1)db ac b a 42342135-, (2)23)(4)(2x y y y x x -- , (3)2222)()(z y x z y x -+--. 分析:第(1)小题分子、分母的最高公因式是327b a ,分子或分母的系数是负数时,一般应把负号提到分式的前面;第(2)小题分子分母的最高公因式是2)(2y x -,要会把互为相反数因式进行变形,如22)()(y x x y -=-,n y x x y n n ,)()(22-=-为整数n y x x y n n ,)()(1212----=-为整数;第(3)小题分子、分母是多项式时,应先分解因式,再约分。

解:(1)bd c a bdb ac a b ad b a c b a 35375721352322324234-=⋅⋅-=-. (2)y y x x yy x y x x y x y x y y x x x y y y x x 2)(2)(2)()(2)(4)(2)(4)(2222323-=⋅--⋅-=--=--. (3)zy x z y x z y x z y x z y x z y x z y x z y x +++-=-++++--+=-+--))(())(()()(2222 方法:课件出示题目;学生独立计算,教师巡视;集体订正,教师小结。

3、基本练习:(1)对于分式11-x ,永远成立的是( ) A .1211+=-x x B. 11112-+=-x x x C. 2)1(111--=-x x x D. 3111--=-x x (2)下列各分式正确的是( )A.22a b a b =B. b a ba b a +=++22 C. a a a a -=-+-11122 D. x x xy y x 2168432=-- (3)若)0(54≠=y y x ,则222yy x -的值等于________。

(4)化简分式xx ---112的结果是________。

(5)将分式的分子与分母中各项系数化为整数,则b a b a 213231++=__________。

方法:课件出示题目;学生独立计算,教师巡视;集体订正,教师小结。

4课堂小结:教师:通过今天的学习,同学们有什么收获?学生自由发言,教师小结。

四、布置作业:1、课本P8练习1题,习题16.1第4题,课本P9习题16.1第5、6题。

2、练习册。

五、板书设计:第三课时、分式的基本性质(二)【教学内容】分式的基本性质(二)【教学目标】知识与能力:理解并掌握分式的基本性质,并能类比分数的通分,运用分式的基本性质进行分式的通分。

过程与方法:通过分式的通分提高学生的运算能力。

情感与态度:渗透类比转化的数学思想方法。

语言积累:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

【教学重点】使学生理解并掌握分式的基本性质。

【教学难点】灵活运用分式的基本性质进行分式的约分和通分。

【教学用具】课件。

【教学过程】一、提出问题,创设情境:1、计算:把1/2与2/3通分,其方法是什么?方法:课件出示题目。

指名回答,集体订正。

2、置疑:与分数的通分类似,如何把分式 ab b a +与 22a ba - 化成分母相同的分式?3、引入课题:教师:今天,我们一起来研究分式的通分。

二、探究学习,应用所学:1、类比分数的通分,利用分式的基本性质,将以上两个分式化成分母相同的分式。

例:通分(1)y x y x xy 32391,21,31 (2)2223,2,)(1b a b a b a -+-+ 方法:课件出示题目;小组合作,教师巡视;集体订正,教师小结。

分析:第(1)题因为分母系数的最小公倍数是18,字母因式x 、y 的最高次幂是x 3、y 3,所以最简公分母是3318y x 。

第(2)小题,因为)(b a b a --=+-,))((22b a b a b a -+=-,所以最简公分母是2))((b a b a +-。

解(1)∵最简公分母是3318y x∴332232318663631y x x x xy x xy =⋅=332222218992921y x xy xy y x xy y x =⋅=332232318229291y x y y y x y y x =⋅=(2)∵最简公分母是2))((b a b a +-∴)()()(122b a b a ba b a -+-=+2、知识应用:通分:(1)b a 223与c ab ba 2- (2)52-x x 与53+x x方法:课件出示题目;小组合作,教师巡视;集体订正,教师小结。

相关文档
最新文档