九年级数学初中常见几何模型汇总(图片版)

合集下载

初中数学几何模型

初中数学几何模型

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。

E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。

初中数学63个几何模型

初中数学63个几何模型

初中数学63个几何模型
1. 点
2. 直线
3. 射线
4. 线段
5. 角
6. 直角
7. 钝角
8. 锐角
9. 平角
10. 三角形
11. 直角三角形
12. 等腰三角形
13. 等边三角形
14. 直线角平分线
15. 外角
16. 内角
17. 同位角
18. 对顶角
19. 同旁内角
20. 同旁外角
21. 三线合一定理
22. 利用同旁内角、三线合一求外角
23. 利用对顶角求角度
24. 正方形
25. 矩形
26. 平行四边形
27. 菱形
28. 梯形
29. 等腰梯形
30. 同底同高面积公式
31. 全等三角形
32. 相似三角形
33. 欧拉线
34. 垂线
35. 点到直线距离公式
36. 垂线段定理
37. 中线
38. 角平分线
39. 中垂线
40. 外心
41. 垂心
42. 重心
43. 内切圆
44. 外切圆
45. 位似比
46. 「半周角」公式
47. 内角和公式
48. 细分
49. 长度单位转换
50. 平面直角坐标系
51. 平移变换
52. 旋转变换
53. 对称变换
54. 条件语句
55. 循环语句
56. 取模 %
57. 迭代过程
58. Turtle库
59. 折线
60. 多边形
61. 圆
62. 起重机问题
63. 网格问题。

初中数学九大几何模型

初中数学九大几何模型

初中数学九大几何模型一、手拉手模型----旋转型全等D (1)等边三角形OOCDEECA B图1A B图2【条件】:△OAB和△OCD均为等边三角形;【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AEDD(2)等腰直角三角形DOOCEECA B图1A B图2【条件】:△OAB和△OCD均为等腰直角三角形;【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AEDD (3)顶角相等的两任意等腰三角形OOC【条件】:△OAB和△OCD均为等腰三角形;DE且∠COD=∠AOBE 【结论】:①△OAC≌△OBD;C②∠AEB=∠AOB;③OE平分∠AED A BA B图1图2OO二、模型二:手拉手模型 ----旋转型相似(1)一般情况D【条件】:CD ∥AB , CDEC将△ OCD 旋转至右图的位置ABABD 【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOAOOC(2)特殊情况【条件】:CD AB AOB=90 ∥ ,∠ °CDE将△ OCD 旋转至右图的位置ABAB【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ; ③ B DACOD OC OB OAtan ∠OCD ;④ BD ⊥AC ;1 2⑤连接A D 、BC ,必有222BC AB CDAD ;⑥ SAC BD△BCD2AC三、模型三、对角互补模型D (1)全等型-90 °【条件】:①∠ AOB=∠DCE=90°;② OC 平分∠ AOBOEB1【结论】:① CD=CE ;② OD+OE= 2 OC ;③2SSS△DCEOC△OCD△OCE2A证明提示:CM①作垂直,如图 2,证明△ CDM ≌ △ CEND图 1②过点 C 作 CF ⊥ OC ,如图 3,证明△ ODC ≌ △ FECONEB ※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4):图 2A 以上三个结论:① CD=CE ;② OE-OD=2 OC ;③1S△OCESOC△OCD2ACMC2D O BNED 图4O E F B图3(2)全等型-120 °【条件】:①∠AOB=2∠DCE=120°;②OC平分∠AOB3【结论】:①CD=CE;②OD+OE=O;C③ 2S△DCE S S OC△OCD △OCE4证明提示:①可参考“全等型-90 °”证法一;②如右下图:在OB上取一点F,使OF=OC,证明△OCF为等边三角形。

初中数学9大几何模型(证明结论及推导)

初中数学9大几何模型(证明结论及推导)

初中数学9大几何模型(证明结论及推导)一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OACDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CDO ABCDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

初中数学100个几何模型汇总

初中数学100个几何模型汇总

初中数学100个几何模型汇总汇总一下系列文章(收藏本篇胜过一百篇)各个是精品。

(欢迎大家分享,转发,收藏)(点击各个目录查看详情)(点击阅读原文获取部分文件)欲获取全部动态GGB源文件请加QQ群646808121几何模型经典系列20个系列,可以同步讲也可以初三复习。

源自于课本,高出于课本01、线段和角认识,八大模型02、平行线拐点(以及加平分线)模型的探究(含演示文件共享)03、三角形的基本模型,角平分线所成角(三兄弟)04、三角形再认识“十大模型”,可谓十全十美05、初学全等的12个全等小模型06、SSA,AAA为什么不能判断全等?HL怎么理解?被冤枉多年的SSA07、学完全等后的经典模型,八个模型08、角平分线相关模型,策略简介09、轴对称的相关模型:将军喝水(以及引申),矩形折叠10、等腰三角形相关模型11、等边三角形的相关模型12、直角三角形的性质及其证明(含勾股定理)13、等腰直角三角形模型,含45度(或等直)处理策略14、平行四边形的相关模型和解题策略15、特殊的平四:矩形,菱形,正方形相关模型16、圆,十大(基础)模型,解圆秘籍大公开17、圆的各种进阶模型,肯定有你没听说过的。

18、相似的基本模型,初三基础19、相似三角形的经典模型上看:01、手拉手模型全解02、捆绑旋转和瓜豆原理以及旋转放缩(手拉手)相似的关联03、特殊三角形系列三边比模型04、12345的推广和证明,与矩形大法的联系/05、胡不归(乌鸦坐飞机)问题与折射原理光行最速。

06、动图图解三角形费马点加权费马点问题07、几个线段倒数和模型,以及倒数和的策略/08、一个隐藏很深的圆中倒数和模型09、一次函数的几何性质,以及延伸10、反比例函数的几何性质模型,及其探究证明11、二次函数图像的几何性质12、定弦定角(都知道)和动弦定角(没听过)13、慎入模型多的数不过来,定弦定角,角分互补,相对运动多模型慎入14、阿波罗尼斯圆介绍以及与角平分线15、阿波罗圆的初中应用(新增,未完待续……)16、逆应用瓜豆原理,解决加权线段和最值问题17、天津三年填空压轴题,格点作图,独立的体系,18、四点共圆(圆内接四边形)与手拉手,两个模型的联系和练习题模型新补15个系列:点击:模型新补15个系列汇总,已完结解题策略系列:01、几何动点,路径最短问题(线段(和)最短)策略02、函数几何综合-存在性问题:面积,等腰,直角,菱形,矩形,相似,全等03、角平分线的处理策略04、垂直(直角)相关问题和条件的处理策略05、中点的解题策略06、正方形圆中滚动,轨迹的重要性,交互式,作图方法简介07、倍半角处理策略,依山势建城堡,含例题分析08、又考阿圆?阿圆特例模型的用法,用相似倒相似,就是这么神奇啊?09、求长度策略,求长度的三种方法(含瓜豆原理)10、旋转策略,从简单到不简单11、学会看透题目包装,发现条件本质,含包装的两个例题。

初中数学九大几何模型-初中几何九大模型-初中九大几何模型之欧阳美创编

初中数学九大几何模型-初中几何九大模型-初中九大几何模型之欧阳美创编

初中数学九大几何模型一、二、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC≌△OBD; ②∠AEB=∠AOB; ③OE 平分∠AED二、模型二:手拉手模型----旋转型相似OAB CDE图 1OAB CD E图 2OABCDE 图 1OABCDE图 2OABC DEOCD E图 1图 2OO(1)一般情况【条件】:CD∥AB,将△OCD 旋转至右图的位置【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;②延长AC 交BD 于点E ,必有∠BEC=∠BOA(2)特殊情况【条件】:CD∥AB,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA; ③===OAOBOC OD AC BD tan∠OC D ;④BD⊥AC; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:OB CDEOCDAOBCDE 图 1ACM①作垂直,如图2,证明△CDM≌△CEN②过点C 作CF⊥OC,如图3,证明△ODC≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE;②OE -OD=2OC ;③2△OCD △OCEOC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE;②OD+OE=OC;③2△OCE △OCD △DCEOC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

初中几何十大模型 无水印

初中几何十大模型 无水印

初中几何十大模型模型,可理解为数学定理(培训辅导机构总结归纳出来的定理)。

但是不是课本上出现的定理,故不能在证明题中直接使用其结论(需要证明一遍)。

模型主要作用还是简化图形,为证明或者添加辅助线提供思路。

一、 中位线模型 多个中点构造中位线【例】①在Rt △ABC 中,F 为斜边AB 的中点,D 、E 分别在边CA 、CB 上,且满足∠DFE=90°,AD=3,BE=4,求线段DE 长度.②如图,在五边形ABCDE 中,90ABC AED ∠=∠=°,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA二、 角平分线模型角平分线+垂线=等腰三角形角平分线+垂线=等腰三角形【例】如图所示,△ABC 中,∠A=60°,BD 、CE 是△ABC 的角平分线,交于F 点,求证:DF=EF三、 三垂直模型与弦图【例】在平面直角坐标系中,A (0,3),点B 的纵坐标为2,点C 的纵坐标为0,当A 、B 、C 三点围成的等腰直角三角形时,求B 、C 坐标。

四、 手拉手模型【例】在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。

(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC五、 倍长中线与婆罗摩笈多模型倍长中线、倍长类中线、中点遇平行延长相交条件:1、两个等腰三角形2、顶角相等3、顶点重合结论:1、手相等2、三角形全等3、手的夹角相等4、顶点连手的交点得平分D【例】如图,向ABC ∆的外侧作正方形ABDE 、ACFG .AD 为ABC ∆中线.求证:AD EG ⊥.六、 弦图与婆罗摩笈多模型【例】如图,向ABC ∆的外侧作正方形ABDE 、ACFG .过A 作AH BC ⊥于H,AH 与EG 交于P .求证:①EP PG =,②2BC AP =.七、 将军饮马模型费马点“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

初中数学30种模型汇总(最全几何知识点)

初中数学30种模型汇总(最全几何知识点)

10.等面积模型:D是BC的中点
20.平移构造全等
30.二次函数中平行四边形存在性模型
01.三线八角
同位角:找F型
内错角:找Z型
同旁内角:找U型
02.拐角模型
一.锯齿型
1
1
3
2
2
3
4
∠1+∠3=∠2
∠1+∠2=∠3 +∠4
左和=右和
二.鹰嘴型
1
1
2
3
3
2
∠1+∠3=∠2
∠1+∠3=∠2
鹰嘴+小=大
一.大小等边三角形
虚线相等,且夹角为60°
(全等,八字形)
四.大小等腰三角形(顶角为α)
结论:虚线相等,且夹角为α
(全等,八字形)
三. 大小等腰直角三角形
结论:虚线相等,且夹角为90°
(全等,八字形)
二.大小正方形
结论:虚线相等,且夹角为90°
(全等,八字形)
15.半角模型
条件:正方形ABCD
∠EDF=45°
证:EF=AE+CF
条件:CD=AD,∠ADC=90°
∠EDF=45°
∠A+∠C=180°
证明:EF=AE+CF
条件:AB=AD
∠B+∠D=180°
∠EAF=1 ∠BAD
2
证明:EF=BE+DF
条件:AB=AC,∠BAC=90°
∠DAE=45°
证明:DE2=BD2+CE2
△CEF为直角三角形
初中数学30种模型汇总
(最全几何知识点)
01.三线八角
02.拐角模型
03.等积变换模型

初中数学必学48个几何模型

初中数学必学48个几何模型

初中数学必学48个几何模型
1. 直线和线段
2. 射线
3. 角
4. 直角
5. 锐角和钝角
6. 平行线
7. 等腰三角形
8. 等边三角形
9. 直角三角形
10. 直角坐标系
11. 等比例线段
12. 外接圆和内切圆
13. 弧和扇形
14. 正方形
15. 长方形
16. 平行四边形
17. 梯形
18. 圆
19. 半圆
20. 圆周角
21. 正多边形
22. 立方体
23. 长方体
24. 正方体
25. 球体
26. 圆锥
27. 圆柱
28. 右锥和右圆锥
29. 高锥和高圆锥
30. 正棱柱
31. 正棱锥
32. 正六面体
33. 正八面体
34. 正十二面体
35. 菱形
36. 菱形组合
37. 等角三角形
38. 曲线
39. 等腰梯形
40. 对称图形
41. 平行四边形法则
42. 夹角
43. 三角形中位线定理
44. 三角形中心
45. 三角形外角和
46. 面积公式
47. 三分点
48. 垂线定理。

初中数学九大几何模型-初中几何九大模型-初中九大几何模型之欧阳学创编

初中数学九大几何模型-初中几何九大模型-初中九大几何模型之欧阳学创编

初中数学九大几何模型一、二、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ;OAB CDE 图 1OAB CD E图 2OABC DE图 1OACDE图 2OABC DEOCD E图 1图 2③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB ,将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB→→→△OAC ∽△OBD ;②延长AC 交BD 于点E ,必有∠BEC=∠BOA(2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB→→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=OBCOA B CDEO BCDEOCDACD三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE△OCD △DCEOC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ;③2△OCD △OCEOC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE;②OD+OE=OC ;③2△OCE △OCD △DCEOC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCFA OBCDE M N 图 2A O BCDE F 图 3A OBCDEMN图 4为等边三角形。

初中几何常考模型汇总(完整版)

初中几何常考模型汇总(完整版)

第Ol讲8字模型与飞镖模型模型1角的“8”字模型如图所示,AB、CD相交于点O,连接AD、BC O 结论:ZA+ZD=ZB+ZCo模型分析8字模型往往在几何综合题目中推导角度时用到O模型实例观察下列图形,计算角度:(1)如图①,ZA+ZB+ZC+ZD+ZE= ________________ :(2)如图②,ZA+ZB+ZC+ZD+ZE+ZF= _________________热搜梢练1.(1)如图①,求ZCAD+ZB+ZC+ZD+ZE= _________________ :(2)如图②,求Z C A D+ Z B + Z AC E+ Z D+ Z E= ___2. ________________________________________________ 如图,求ZA+ZB+ZC+ZD+ZE+ZF+ZG+ZH= _______________________________图②模型2角的飞镖模型如图所示,有结论:ZD=ZA+ZB+ZCo模型分析飞镖模型往往在几何综合题目中推导角度时用到a模型实例如图,在四边形ABCD中,AM、CM分别平分ZDAB和ZDCB, AM与CM交于W 探究ZAMC与ZB、ZD间的数量关系。

热搜精练1._________________________________________如图,ΛRZA+ZB+ZC+ZD+ZE+ZF=2.__________________________________ 如图,求ZA+ZB+ZC+ZD=C F模型3边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC O 结论:AC+BD>AD+BCoD模型实例如图,四边形ABCD的对角线AC、BD相交于点0。

求证:(1) AB+BC+CD+AD>AC+BD:(2) AB+BC+CD+AD<2AC+2BD.模型4边的飞镖模型如图所示有结论:AB+AC>BD+CD.模型实例如图,点O为三角形内部一点。

初中数学九大几何模型

初中数学九大几何模型

初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OACDE图 2OABC DEOCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB BC AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO CDEOB CDEOC DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

初中数学九大几何模型

初中数学九大几何模型

初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OACDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OCO CDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

初中数学九大几何模型

初中数学九大几何模型

初中数学九大几何模型一、手拉手模型 ----旋转型全等D(1)等边三角形OOC ECA图 1BA图 2【条件】:△ OAB 和△ OCD 均为等边三角形;【结论】:①△ OAC ≌△ OBD ;②∠ AEB=60°;③ OE 均分∠ AEDD(2)等腰直角三角形OCEABA图 1D EBDOECB图 2【条件】:△ OAB 和△ OCD 均为等腰直角三角形;【结论】:①△ OAC ≌△ OBD ;②∠ AEB=90°;③ OE 均分∠ AED(3)顶角相等的两随意等腰三角形DOOC【条件】:△ OAB 和△ OCD 均为等腰三角形;DE且∠ COD=∠AOBE【结论】:①△ OAC ≌△ OBD ; C②∠ AEB=∠AOB ;③OE 均分∠ AEDA 图 1BA图 2 BO O二、模型二:手拉手模型----旋转型相像(1)一般状况D【条件】: CD ∥ AB ,CD将△ OCD 旋转至右图的地点A B 【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;②延伸 AC 交 BD 于点 E ,必有∠ BEC=∠ BOAO(2)特别状况C D【条件】:CD ∥ AB ,∠ AOB=90°将△ OCD 旋转至右图的地点A B【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延伸 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ;③ BDOD OB tan ∠ OCD ;④ BD ⊥AC ; ACOC OA⑤连结 AD 、 BC ,必有 AD 2BC222;⑥ S △BCDABCD三、模型三、对角互补模型(1)全等型 -90 °【条件】:①∠ AOB=∠ DCE=90°;② OC 均分∠ AOBECABDOCEA B1AC BD 2 ACDOE B图 1【结论】:① CD=CE ;② OD+OE= 2 OC ;③ S △DCES△OCDS△OCE1 OC 2A2证明提示:CM①作垂直,如图 2,证明△ CDM ≌△ CEND②过点 C 作 CF ⊥ OC ,如图 3,证明△ ODC ≌△ FEC※当∠ DCE 的一边交 AO 的延伸线于 D 时(如图 4):ON EB图 2以上三个结论:① CD=CE ;② OE-OD= 2 OC ;A1OC 2AMC③S△OCES△OCD2CDONBEO图 3 EF BD图 4(2)全等型 -120 °【条件】:①∠ AOB=2∠ DCE=120°;② OC均分∠ AOB【结论】:① CD=CE;② OD+OE=OC;③S△DCE S△OCD S△OCE 3 OC24证明提示:①可参照“全等型-90 °”证法一;②如右下列图:在OB上取一点F,使 OF=OC,证明△ OCF为等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中常见几何模型汇总
全等变换
平移:平行等线段(平行四边形)
对称:角平分线或垂直或半角
旋转:相邻等线段绕公共顶点旋转
对称全等模型
说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型
说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型
半角:有一个角含1/2角及相邻线段
自旋转:有一对相邻等线段,需要构造旋转全等
共旋转:有两对相邻等线段,直接寻找旋转全等
中点旋转:倍长中点相关线段转换成旋转全等问题
旋转半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型
构造方法:
遇60度旋60度,造等边三角形
遇90度旋90度,造等腰直角
遇等腰旋顶点,造旋转全等
遇中点旋180度,造中心对称
共旋转模型
说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变换
说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三
角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

几何最终模型
对称最值(两点间线段最短)
对称最值(点到直线垂线段最短)
说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。

旋转最值(共线有最值)
说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

剪拼模型
三角形→四边形
四边形→四边形
说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。

矩形→正方形
说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变
正方形+等腰直角三角形→正方形
面积等分
旋转相似模型
说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。

推广:两个任意相似三角形旋转成一定角度,成旋转相似。

第三边所成夹角符合旋转“8”字的规律。

相似模型
说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来构造相似三角形的作用。

说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多。

(2)内外角平分线定理到射影定理的演变,注意之间的相同与不同之处。

另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论。

相关文档
最新文档