探究电磁感应产生的条件

合集下载

第82讲 磁通量及产生电磁感应的条件(解析版)

第82讲 磁通量及产生电磁感应的条件(解析版)

第82讲磁通量及产生电磁感应的条件一.知识回顾1.磁通量(1)定义:匀强磁场中,磁感应强度B与垂直磁场方向的面积S的乘积叫作穿过这个面积的磁通量,简称磁通。

我们可以用穿过这一面积的磁感线条数的多少来形象地理解。

(2)公式:Φ=BS。

(3)公式的适用条件:①匀强磁场;②S是垂直磁场方向的有效面积。

(4)单位:韦伯(Wb),1 Wb=1T·m2。

(5)标量性:磁通量是标量,但有正负之分。

磁通量的正负是这样规定的:任何一个平面都有正、反两面,若规定磁感线从正面穿出时磁通量为正,则磁感线从反面穿出时磁通量为负。

(6)物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:(1)通过矩形abcd的磁通量为BS1cos θ或BS3.(2)通过矩形a′b′cd的磁通量为BS3.(3)通过矩形abb′a′的磁通量为0.2.磁通量的变化量在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。

磁通量变化的常见情况变化情形举例磁通量变化量磁感应强度变化永磁体靠近或远离线圈、电磁铁(螺线管)内电流发生变化ΔΦ=ΔB·S有效面积变化有磁感线穿过的回路面积变化闭合线圈的部分导线做切割磁感线运动,如图ΔΦ=B·ΔS回路平面与磁场夹角变化线圈在磁场中转动,如图磁感应强度和有效面积同时变化弹性线圈在向外拉的过程中,如图ΔΦ=Φ2-Φ1磁通量的变化快慢)磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt。

4.电磁感应现象与感应电流“磁生电”的现象叫电磁感应,产生的电流叫作感应电流。

5.产生感应电流的条件当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。

判断感应电流能否产生的思维导图:6.电磁感应现象的两种典型情况(1)闭合导体回路的一部分做切割磁感线运动。

产生电磁感应的条件是什么

产生电磁感应的条件是什么

产生电磁感应的条件是什么条件如下:1、电路是闭合且流通的。

2、穿过闭合电路的磁通量发生变化。

3、电路的一部分在磁场中做切割磁感线运动。

感应电流产生的微观解释:电路的一部分在做切割磁感线运动时,相当于电路的一部分内的自由电子在磁场中作不沿磁感线方向的运动,故自由电子会受洛伦兹力的作用在导体内定向移动,若电路的一部分处在闭合回路中就会形成感应电流,若不是闭合回路,两端就会积聚电荷产生感应电动势。

电磁感应的本质电磁感应定律是物理学中的基本原理之一,它描述了当一个导线或线圈通过磁场时,会产生电动势,从而产生电流的现象。

这个定律的本质是,磁场的变化会产生电场,电场的变化也会产生磁场,这样一种相互关系。

电磁感应定律是由英国物理学家迈克尔·法拉第在19世纪初发现的。

他通过实验证明,当磁场发生变化时,会在导线或线圈中产生电动势,从而产生电流。

这个定律也可以用向量形式表示,即磁场向量叉乘电场向量不等于零时,就会产生电磁感应。

电磁感应定律的应用非常广泛,可以用来制造发电机、变压器、电动机、感应加热器等多种电器设备。

其中,变压器是电磁感应定律最典型的应用之一。

当一个交流电通过变压器时,磁场会发生变化,从而在变压器线圈中产生电动势,进而产生电流。

在使用电磁感应定律时,需要注意以下几点:1、磁场的变化会产生电场,但电场的变化不会产生磁场。

因此,在计算电磁感应时,只需要考虑磁场的变化。

2、电磁感应定律是一个线性定律,即它与导线的长度、截面积、导线相对磁场的取向以及磁场的强度等因素无关。

因此,只要导线的长度足够长,截面积足够大,就可以获得足够大的电动势和电流。

3、电磁感应定律只适用于封闭电路或线圈中,因为只有封闭电路或线圈才能够产生电动势和电流。

总之,电磁感应定律是物理学中的重要原理之一,它描述了磁场和电场之间的相互作用,具有重要的应用价值。

在使用电磁感应定律时,需要注意它的本质和适用范围,才能正确地应用它来解决实际问题。

电磁感应

电磁感应

二、自感现象
1.自感现象 (1)概念:由于导体本身的电流变化而产生的电磁感应现象称为 自感,由于自感而产生的感应电动势叫做自感电动势,其大 小E= ,L为自感系数.
(2)自感系数:L与线圈的大小、形状、圈数以及是否有铁芯等
因素有关,其单位是亨利,符号是 H.
通电和断电自感比较如下表
通电自感 电 路 图 器 材 要 求 断电自感
(3)若
是Φ-t图象上某点切线的斜率.
所求的感应电动势为整个闭合电路的
恒定,则E不变.用E=n
感应电动势,而不是回路中某部分导体的电动势.
(4)磁通量的变化常由B的变化或S的变化两种情况引起. ①当ΔΦ仅由B的变化引起时,E=nS ②当ΔΦ仅由S的变化引起时,E=nB (5)由E=n . .
计算出的是Δt时间内的平均感应电动势.
二者电流大小和方向都相同.一个矩形闭合金属线圈与A、B在同一平面 内,并且ab边保持与通电导线平行,线圈从图中的位置1匀速向左移动, 经过位置2,最后到位置3,其中位置2恰在A、B的正中间,则下面的说 法中正确的是( ) AD
A.在位置2这一时刻,穿过线圈的磁通量为零 B.在位置2这一时刻,穿过线圈的磁通量的变化率为零 C.从位置1到位置3的整个过程中,线圈内感应电流的方向发 生了变化
a
o
d
b O’
c
P167【例】 (2009·广东,18)如图9-2-3(a)所示,一个电阻值为R,匝数为n的圆
形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1,在线圈中
半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随 时间t变化的关系图线如图9-2-4(b)所示.图线与横、纵轴的截距分别为t0和 B0.导线的电阻不计.求0至t1时间内. (1)通过电阻R1上的电流大小和方向;

高中物理教科版选修32课件:第一章 第1、2节 电磁感应的发现 感应电流产生的条件

高中物理教科版选修32课件:第一章 第1、2节 电磁感应的发现 感应电流产生的条件
[答案] AD
(1)在闭合电路中是否产生感应电流,取决于穿过电路的 磁通量是否发生变化,而不是取决于电路有无磁通量。
(2)闭合电路的部分导体做切割磁感线运 动是引起电路磁通量变化的具体形式之一。但 闭合电路的部分导体做切割磁感线运动时,不 一定总会引起闭合电路的磁通量变化。如图所示,矩形线框 abcd 在范围足够大的匀强磁场中在垂直磁场的平面内向右平 动,虽然 ad、bc 边都切割磁感线,但穿过线框的磁通量没有 变化,因而没有产生感应电流。
(5)只要闭合电路内有磁通量,闭合电路中就有感应电流产生。(×)
(6)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没
有感应电流产生。
(√)
2.合作探究——议一议 (1)很多科学家致力于磁与电的关系的探索,为什么他们在磁生电的
研究中没有成功? 提示:很多科学家在实验中没有注意磁场的变化、导体与磁场 之间的相对运动等环节,只想把导体放入磁场中来获得电流, 这实际上违反了能量转化和守恒定律。 (2)怎样理解“电生磁”? 提示:电流周围存在磁场是无条件的,无论电流是恒定不变的, 还是变化的,只要有电流,它的周围就一定有磁场。
(3)S 内有不同方向的磁场时,应先分别计算不同方向磁场 的磁通量,然后规定从某个面穿入的磁通量为正,从该面穿出 的磁通量为负,最后求代数和。
(4)有多匝线圈时,因为穿过线圈的磁感线的条数不受匝数 影响,故磁通量的计算也与匝数无关。
2.求磁通量的变化的三种方法 方法一:当磁感应强度 B 不变,而磁感线穿过的有效面积 S 变化时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=B·ΔS。 方法二:当磁感应强度 B 变化,而磁感线穿过的有效面积 S 不变时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=ΔB·S。 方法三:若磁感应强度 B 和回路面积 S 同时变化,则穿过 回路的磁通量的变化量 ΔΦ=Φt-Φ0。 注意:此时,ΔΦ=Φt-Φ0≠ΔB·ΔS。

高中物理新教材同步 必修第三册 第13章 3 电磁感应现象及应用

高中物理新教材同步 必修第三册 第13章 3 电磁感应现象及应用

3电磁感应现象及应用[学习目标] 1.知道什么是电磁感应现象.2.通过实验探究感应电流产生的条件.3.了解电磁感应现象的应用.一、划时代的发现1.“电生磁”的发现:1820年,奥斯特发现了电流的磁效应.2.“磁生电”的发现1831年,法拉第发现了电磁感应现象.3.电磁感应:法拉第把他发现的磁生电的现象叫作电磁感应,产生的电流叫作感应电流.二、产生感应电流的条件1.实验:探究感应电流产生的条件探究一:如图甲实验中,让导体棒在磁场中保持相对静止时或者平行于磁场运动时,无论磁场多强,闭合回路中都没有电流,当导体ab做切割磁感线运动时,闭合回路中有电流产生.探究二:如图乙,当线圈A的电流不变时,线圈B所在的回路中没有电流产生;当线圈A 的电流变化时,线圈B所在回路中就有了电流.2.产生感应电流的条件:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流.三、电磁感应现象的应用生产、生活中广泛使用的变压器、电磁炉等都是根据电磁感应制造的.1.判断下列说法的正误.(1)只要闭合电路内有磁通量,闭合电路中就有感应电流产生.(×)(2)穿过闭合线圈的磁通量发生变化时,线圈内部就一定有感应电流产生.(√)(3)闭合电路的一部分导体做切割磁感线运动时,电路中会产生感应电流.(√)(4)不论电路是否闭合,只要电路中磁通量发生变化,电路中就有感应电流.(×)2.如图所示,条形磁体A沿竖直方向插入线圈B的过程中,电流表G的指针(选填“不偏转”或“偏转”);若条形磁体A在线圈B中保持不动,电流表G的指针(选填“不偏转”或“偏转”).答案偏转不偏转一、磁通量的变化磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图(a)所示.(2)面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和面积S都不变,它们之间的夹角发生变化.如图(c)所示.例1(2022·普洱市景东一中高二月考)如图所示,在条形磁体外面套着一圆环,当圆环由磁体N极向下平移到磁体S极的过程中,圆环所在处的磁感应强度和穿过圆环的磁通量变化的情况是()A.磁感应强度和磁通量都逐渐增大B.磁感应强度和磁通量都逐渐减小C.磁感应强度先减弱后增强,磁通量先增大后减小D.磁感应强度先增强后减弱,磁通量先减小后增大答案 C解析当圆环由磁体N极向下平移到磁体S极的过程中,磁感应强度先减弱后增强;磁铁内部磁感线与外部磁感线的总数相等,所以穿过圆环的磁感线条数一定是内部大于外部,则外部磁感线条数越多,总磁通量越小,所以穿过圆环的磁通量先增大后减小.故选C.针对训练1如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.逐渐增大B.逐渐减小C.保持不变D.不能确定答案 B解析线框远离导线时,穿过线框的磁感应强度减小,线框的面积不变,所以穿过线框的磁通量减小.故选B.二、产生感应电流的条件1.实验:探究感应电流产生的条件(1)实验一:如图所示,导体棒AB做切割磁感线运动时,线路中电流产生,而导体棒AB顺着磁感线运动时,线路中电流产生.(均选填“有”或“无”)(2)实验二:如图所示,当条形磁体插入或拔出线圈时,线圈中电流产生,但条形磁体在线圈中静止不动时,线圈中电流产生.(均选填“有”或“无”)(3)实验三:如图所示,将小线圈A插入大线圈B中不动,当开关S闭合或断开时,电流表中电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中电流通过;而开关S一直闭合,滑动变阻器的滑动触头不动时,电流表中电流通过.(均选填“有”或“无”)(4)归纳总结:实验一:导体棒做切割磁感线运动,回路的有效面积发生变化,从而引起了磁通量的变化,产生了感应电流.实验二:磁体插入或拔出线圈时,线圈中的磁场发生变化,从而引起了磁通量的变化,产生了感应电流.实验三:开关闭合、断开或滑动变阻器的滑动触头移动时,小线圈A中电流变化,从而引起穿过大线圈B的磁通量变化,产生了感应电流.三个实验共同特点是:产生感应电流时闭合回路的磁通量都发生了变化.答案(1)有无(2)有无(3)有有无2.感应电流产生条件的理解不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然会产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,且穿过该电路的磁通量也一定发生了变化.例2(多选)(2021·北京四中期中)如图所示,下列情况能产生感应电流的是()A.如图甲所示,导体棒AB顺着磁感线运动B.如图乙所示,条形磁体插入或抽出线圈C.如图丙所示,小螺线管A插入大螺线管B中不动,开关S一直闭合D.如图丙所示,小螺线管A插入大螺线管B中不动,开关S一直闭合,改变滑动变阻器接入电路的阻值答案BD解析导体棒顺着磁感线运动,没有切割磁感线,穿过闭合电路的磁通量没有发生变化,无感应电流,故选项A错误;条形磁体插入线圈时线圈中的磁通量增加,抽出线圈时线圈中的磁通量减少,都产生感应电流,故选项B正确;开关S一直闭合,回路中为恒定电流,螺线管A产生的磁场稳定,螺线管B中的磁通量无变化,线圈中不产生感应电流,故选项C错误;开关S一直闭合,滑动变阻器接入电路的阻值变化,回路中的电流变化,螺线管A产生的磁场发生变化,螺线管B中磁通量发生变化,产生感应电流,故选项D正确.例3(多选)下图中能产生感应电流的是()答案BD解析A选项中,电路没有闭合,无感应电流;B选项中,面积增大,通过闭合电路的磁通量增大,有感应电流;C选项中,穿过圆环的磁感线相互抵消,磁通量恒为零,无感应电流;D选项中,穿过闭合电路的磁通量减小,有感应电流.判断是否产生感应电流的技巧1.电路闭合和磁通量发生变化是产生感应电流的两个条件,二者缺一不可.2.磁通量发生变化,其主要内涵体现在“变化”上,磁通量很大,若没有变化,也不会产生感应电流.若开始时磁通量虽然是零,但是磁通量是变化的,仍然可以产生感应电流.针对训练2(2021·衡水中学期中)如图所示,条形磁体正上方放置一矩形线框,线框平面水平且与条形磁体平行,则线框由N极匀速平移到S极的过程中,线框中的感应电流的情况是()A.线框中始终无感应电流B.线框中始终有感应电流C.线框中开始有感应电流,当线框运动到磁体中部时无感应电流,过中部后又有感应电流D.线框中开始无感应电流,当线框运动到磁体中部时有感应电流,过中部后又无感应电流答案 B解析条形磁体周围的磁感线如图所示,由线框位置可知,线框从N极的正上方向右移动至S极正上方过程中,在N极正上方时,有磁感线穿过线框,在磁体正中间时,穿过线框的磁通量为零,在S极正上方时,又有磁感线穿过线框,所以,在线框向右运动的过程中,磁通量始终在变化,所以线框中始终有感应电流.故选B.考点一电磁感应现象的发现及认识1.(多选)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是()A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.楞次发现了电流的磁效应,拉开了研究电与磁相互关系的序幕C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系答案ACD解析奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系,故A正确,B错误;法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系,故C正确;焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系,故D正确.2.(多选)下面属于电磁感应现象的是()A.闭合电路的一部分导体做切割磁感线运动时,在电路中产生电流的现象B.通电导体周围产生磁场C.变化的磁场使闭合电路中产生电流D.电荷在电场中定向移动形成电流答案AC解析闭合电路的一部分导体做切割磁感线时,在电路中产生电流的现象是电磁感应现象,故A正确;通电导体周围产生磁场属于电流的磁效应,故B错误;变化的磁场使闭合电路中产生电流是因磁通量的变化形成感应电流,属于电磁感应现象,故C正确;电荷在电场中定向移动形成电流不是电磁感应产生的电流,不属于电磁感应现象,故D错误.考点二磁通量变化情况的判断3.(多选)闭合线圈按如图所示的方式在磁场中运动,则穿过闭合线圈的磁通量发生变化的是()答案AB解析A图中,图示状态Φ=0,转动过程中Φ不断变化,因此磁通量发生变化;B图中线圈离直导线越远磁场越弱,磁感线越疏,所以当线圈远离导线时,线圈中磁通量不断变小;C图中线圈中的磁通量为零,在向下移动过程中,线圈的磁通量一直为零,磁通量不变;D 图中,随着线圈的转动,B与S都不变,B又垂直于S,所以Φ=BS始终不变,故A、B正确.4.如图所示,在同一平面内有四根彼此绝缘的直导线,分别通有大小相同、方向如图所示的电流,要使由四根直导线所围成的面积内的磁通量增加,则应切断哪一根导线中的电流()A.切断i1B.切断i2C.切断i3D.切断i4答案 D解析根据安培定则判断出四根通电直导线中电流在所围面积内产生的磁场方向,可知只有i4中电流产生的磁场垂直于纸面向外,则要使磁通量增加,应切断i4,故选D.5.如图所示,一环形线圈沿条形磁铁的轴线,从磁铁N极的左侧A点运动到磁铁S极的右侧B点,A、B两点关于磁铁的中心对称,则在此过程中,穿过环形线圈的磁通量将()A.先增大,后减小B.先减小,后增大C.先增大,后减小、再增大,再减小D.先减小,后增大、再减小,再增大答案 A解析穿过线圈的磁通量应以磁铁内部磁场为主的,而内部的磁感线是一定值,在A、B点时,外部磁感线比较密,即与内部相反的磁感线多,相抵后剩下的内部的磁感线就少;中间位置时,外部磁感线比较疏,即与内部相反的磁感线少,相抵后剩下的内部的磁感线就多.所以两端磁通量小,中间磁通量大,A正确.考点三有无感应电流的判断6.(2021·哈尔滨市宾县月考)法拉第在1831年发现了“磁生电”现象.如图所示,他把两个线圈绕在同一个软铁环上,线圈A和电池连接,线圈B用长直导线连通,在长直导线正下方平行于导线放置一个小磁针,下列有关实验现象的说法中正确的是()A.只要线圈A中电流足够大,小磁针就会发生偏转B.线圈A闭合开关电流稳定后,线圈B匝数较少时小磁针不偏转,匝数足够多时小磁针偏转C.线圈A和电池接通瞬间,小磁针会偏转D.线圈A和电池断开瞬间,小磁针不会偏转答案 C解析小磁针会不会偏转取决于线圈B中有没有电流,而线圈B中有没有电流取决于线圈B 中的磁通量是否发生变化,当线圈A中电流足够大,但不变化时,线圈B中无感应电流,小磁针不会发生偏转,A错误;当线圈A闭合开关电流稳定后,穿过线圈B的磁通量不发生变化,所以小磁针也不会发生偏转,故B错误;线圈A和电池接通或断开的瞬间,穿过线圈B 的磁通量发生变化,所以线圈B中有感应电流,则小磁针会偏转,故C正确,D错误.7.(多选)下列情况中都是线框在磁场中做切割磁感线运动,其中线框中有感应电流的是()答案BC解析A中导体虽然“切割”了磁感线,但穿过闭合线框的磁通量并没有发生变化,没有感应电流.B中线框的一部分导体“切割”了磁感线,穿过线框的磁感线条数越来越少,线框中有感应电流.C中虽然与A近似,但由于是非匀强磁场,运动过程中,穿过线框的磁感线条数增加,线框中有感应电流.D中线框尽管是部分切割,但磁感线条数不变,无感应电流.故选B、C.8.(2021·哈尔滨市南岗区期中)某实验装置如图所示,在铁芯P上绕着两个线圈A和B.如果线圈A中电流i随时间t的关系有如图所示的A、B、C、D四种情况,那么在t1到t2这段时间内,哪种情况线圈B中没有感应电流()答案 A解析通过线圈A的电流发生变化,电流产生的磁感应强度发生变化,穿过线圈B的磁通量发生变化,才能产生感应电流,在t1到t2这段时间内,B、C、D图中线圈A中的电流发生变化,线圈B中会产生感应电流,而A图中电流不变,在线圈B上不产生感应电流,故选A.9.(多选)(2022·贺州市平桂高级中学高二月考)如图所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流产生的是()A.开关S闭合或断开的瞬间B.开关S是闭合的,但滑动触头向左滑C.开关S是闭合的,但滑动触头向右滑D.开关S始终闭合,滑动触头不动答案ABC解析导线cd中有电流产生的原因是回路中的磁通量发生变化,上半部分中的磁场是由导线ab中的电流激发的,如果想让磁感应强度变化,导线ab中的电流应发生变化,开关闭合或断开瞬间,电流从无到有或从有到无,发生了变化;开关闭合,滑动触头向左滑,电流减小;开关闭合,滑动触头右滑,电流变大;开关闭合,滑动触头不变,电流不变.故A、B、C 正确,D错误.10.(多选)(2021·黄冈中学期中)如图所示,是一水平放置的矩形线圈abcd,在细长的磁体的N 极附近竖直下落,整个下落过程中线圈保持水平,由图中的位置A经过位置B到位置C,这三个位置都靠得很近且位置B刚好在条形磁体的中心轴线上.在这个过程中,下列说法正确的是()A.由位置A到位置B,线圈内不产生感应电流B.由位置A到位置B,线圈内产生感应电流C.由位置B到位置C,线圈内产生感应电流D.由位置B到位置C,线圈内不产生感应电流答案BC解析如图所示,作出线圈下落过程示意图,由图可知,从位置A到位置B的过程中,从线圈下面向上穿过线圈的磁通量减少(B位置时,Φ=0);而从位置B到位置C时,从线圈上面向下穿过线圈的磁通量增加,故由位置A到位置B和位置B到位置C的两个过程中,穿过线圈的磁通量都发生变化,线圈中都会产生感应电流,故B、C正确,A、D错误.11.如图所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心线恰好和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有()A.使螺线管在线圈a所在平面内转动B.使螺线管中的电流发生变化C.使线圈a以MN为轴转动D.使线圈a以与MN垂直的直径为轴转动答案 D解析题图所示位置,线圈a所在平面与磁感线平行,穿过线圈的磁通量为零,当按A、B、C所述方式变化时,磁通量不变,不产生感应电流;按D所述方式变化时,由于线圈a与磁场夹角变化引起磁通量变化,能够产生感应电流,故选D.12.(多选)在匀强磁场中有两根平行的金属导轨,磁场方向与导轨平面垂直,导轨上有两根可沿导轨平动的导体棒ab、cd,两根导体棒匀速移动的速度大小分别为v1和v2,如图所示,则下列情况可以使回路中产生感应电流的是()A.ab、cd均向右运动,且v1=v2B.ab、cd均向右运动,且v1>v2C.ab、cd均向左运动,且v1>v2D.ab向右运动,cd向左运动,且v1=v2答案BCD解析ab、cd均向右运动,当v1=v2时,闭合回路的磁通量不变,故无感应电流产生,A项错误;B、D两项所述情况,闭合回路的磁通量增加,C项所述情况,闭合回路的磁通量减少,均有感应电流产生,故B、C、D正确.13.(多选)如图所示,水平面内有两条相互垂直且彼此绝缘的通电长直导线,以它们为坐标轴构成一个平面直角坐标系.四个相同的圆形闭合线圈在四个象限内完全对称地放置,两直导线中的电流大小与变化情况相同,电流方向如图所示,当两直导线中的电流都增大且变化量相同时,四个线圈a 、b 、c 、d 中感应电流的情况是( )A .线圈a 中有感应电流B .线圈b 中有感应电流C .线圈c 中无感应电流D .线圈d 中无感应电流答案 AD解析 由安培定则可判断出两通电直导线产生的磁场在第Ⅰ、Ⅲ象限中方向均相同,当两直导线中的电流都增大时,线圈a 、c 中磁通量增大,产生感应电流,选项A 正确,C 错误;利用对称性和安培定则可判断出两通电直导线产生的磁场在第Ⅱ、Ⅳ象限中方向均相反,且线圈b 、d 中的磁通量为零,当两直导线中的电流都增大且变化量相同时,线圈b 、d 中的磁通量仍为零,线圈b 、d 中无感应电流,选项B 错误,D 正确.14.如图所示,一有界匀强磁场,宽度为d ,使一边长为l 的正方形导线框以速度v 向右匀速通过磁场区域,若d >l ,则导线框通过磁场过程中,导线框中不产生感应电流的时间应等于( )A.d vB.l vC.d -l vD.d -2l v答案 C解析 当导线框刚好完全进入磁场时至导线框刚好要出磁场时,穿过导线框的磁通量不发生变化,导线框中不会产生感应电流,对应的位移为d -l ,所以时间为t =d -l v ,选项C 正确.。

电磁感应知识点总结图

电磁感应知识点总结图

电磁感应知识点总结图
电磁感应现象:当穿过闭合电路的磁通量发生变化时,闭合电路中会产生感应电流。

产生电磁感应现象的条件:
闭合电路。

穿过闭合电路的磁通量发生变化。

磁通量:在匀强磁场中,磁感应强度B与垂直磁场方向的面积S 的乘积,称为穿过该面的磁通量。

感应电动势:在电磁感应现象中产生的电动势,其方向由低电势指向高电势。

产生感应电动势的条件是导体在磁场中做切割磁感线运动,或者磁场在导体内运动导致磁通量变化。

感应电流:在电磁感应现象中产生的电流。

其方向遵循楞次定律,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

右手定则:用于判断导体切割磁感线时产生的感应电流的方向。

将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向。

以上知识点是电磁感应的基本内容,通过理解和应用这些知识点,可以更好地理解和分析电磁感应现象。

如果您需要更详细的图表或示例来解释这些知识点,建议参考相关教科书或在线资源。

电磁感应现象产生的条件

电磁感应现象产生的条件

电磁感应现象产生的条件电磁感应现象是指在导体中或导体周围发生磁场变化时,会在导体中产生感应电流或感应电动势的现象。

要产生电磁感应现象,需要满足以下几个条件。

一、磁场的变化:电磁感应现象的产生必须伴随着磁场的变化。

这种磁场的变化可以是磁场的强度、方向、面积等发生改变,也可以是磁场的源头与导体之间相对运动。

二、导体的运动:电磁感应现象需要导体相对于磁场的源头发生运动。

当导体相对于磁场的源头以一定的速度运动时,就会在导体中产生感应电流或感应电动势。

三、导体与磁场的相互作用:导体与磁场之间必须存在相互作用,即导体必须与磁场的源头有一定的关联。

这种关联可以是导体与磁场的源头直接接触,也可以是通过其他物体传导磁场。

四、导体的性质:导体必须具有一定的导电性质,才能产生感应电流或感应电动势。

导体可以是金属、电解质溶液等,只要能够传导电荷就可以产生电磁感应现象。

五、导体的形状和结构:导体的形状和结构对电磁感应现象也有一定的影响。

导体的形状和结构不同,其感应电流或感应电动势的大小和分布也会有所不同。

通过以上几个条件的满足,就可以产生电磁感应现象。

电磁感应现象在日常生活中有着广泛的应用。

例如,发电机利用电磁感应现象将机械能转化为电能;变压器利用电磁感应现象实现电能的传输和改变电压;感应炉利用电磁感应现象进行加热等等。

在科学研究中,电磁感应现象也被广泛应用。

通过电磁感应现象,可以探测到地球磁场的变化,从而研究地球磁场的性质和变化规律;通过电磁感应现象,可以实现无线电通信和电磁波的产生和接收等等。

电磁感应现象的产生条件是多方面的,需要磁场的变化、导体的运动、导体与磁场的相互作用以及导体的性质等多个方面的因素共同作用。

只有满足这些条件,才能产生电磁感应现象,并且利用电磁感应现象进行各种应用和研究。

电磁感应现象的研究和应用对于推动科学技术的发展和提高人类生活水平起着重要的作用。

电磁感应实验

电磁感应实验

法拉第电磁感应实验案例分析

法拉第电磁感应实验的目的
• 验证法拉第电磁感应定律
• 研究电磁感应现象的规律和特性
法拉第电磁感应实验的方法
• 使用线圈作为导体,通过改变线圈中的电流来产生磁场变化
• 观察线圈产生的感应电流和感应电动势
法拉第电磁感应实验的结论
• 验证了法拉第电磁感应定律的正确性
• 发现了电磁感应现象的逆效应:感应电流的方向与磁场变化产生的副作
• 使用数字化和自动化技术,提高实验的准确性和效率
• 使用超导材料和磁性材料,研究电磁感应现象的新特性
• 采用光纤传感和无线通信技术,实现远程控制和数据处
• 采用激光技术和等离子体技术,研究电磁感应现象的高

能过程
电磁感应实验的改进措施与效果
电磁感应实验的改进措施
• 优化实验装置和实验方法,提高实验的准确性和可靠性
D O C S S M A RT C R E AT E
电磁感应实验
CREATE TOGETHER
DOCS
01
电磁感应实验的基本原理及现象
电磁感应现象的产生条件与原理
电磁感应现象产生的条件
• 变化的磁场
• 导体切割磁场线
• 导体两端产生电动势
电磁感应现象的原理
• 法拉第电磁感应定律:导体切割磁场线时,导体两端产生的电动势与磁通量变化
用相抵消

⌛️
楞次电磁感应实验案例分析
01
楞次电磁感应实验的目的
• 验证楞次定律
• 研究电磁感应现象的方向和大小
02
楞次电磁感应实验的方法
• 使用磁铁产生磁场,通过改变磁铁的电流或磁场方向来
产生磁场变化

电磁感应知识点总结

电磁感应知识点总结

高中物理电磁感应知识点1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路. (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.。

高中物理《电磁感应》核心知识点归纳

高中物理《电磁感应》核心知识点归纳

高中物理《电磁感应》核心知识点归纳高中物理《电磁感应》核心知识点归纳一、电磁感应现象1、产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

2、感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

3、关于磁通量变化在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有:①S、α不变,B改变,这时②B、α不变,S改变,这时③B、S不变,α改变,这时二、楞次定律1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。

(1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。

(2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。

磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。

(3)从“阻碍自身电流变化”的角度来看,就是自感现象。

自感现象中产生的自感电动势总是阻碍自身电流的变化。

2、实质:能量的转化与守恒3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。

“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。

“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。

电磁感应定律实验报告

电磁感应定律实验报告

电磁感应定律实验报告一、实验目的1、探究电磁感应现象的产生条件。

2、观察磁通量变化与感应电动势之间的关系。

3、理解电磁感应定律的基本原理。

二、实验原理电磁感应定律指出:当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势。

感应电动势的大小与磁通量的变化率成正比。

即:$E = n\frac{\Delta\Phi}{\Delta t}$其中,$E$为感应电动势,$n$为线圈匝数,$\Delta\Phi$为磁通量的变化量,$\Delta t$为变化所用的时间。

三、实验器材1、蹄形磁铁2、线圈3、灵敏电流计4、导线若干5、开关6、滑动变阻器四、实验步骤1、按图连接好电路,将线圈与灵敏电流计串联,滑动变阻器接入电路。

2、使磁铁的 N 极快速插入线圈,观察灵敏电流计的指针偏转情况。

3、使磁铁的 N 极在线圈中静止不动,观察灵敏电流计的指针。

4、使磁铁的 N 极从线圈中快速抽出,观察灵敏电流计的指针偏转情况。

5、改变磁铁插入线圈的速度,观察灵敏电流计指针的偏转幅度。

6、改变线圈的匝数,重复上述实验步骤。

7、在线圈中插入不同强度的磁铁,观察灵敏电流计的指针偏转情况。

五、实验现象及数据记录1、当磁铁的 N 极快速插入线圈时,灵敏电流计的指针发生明显的偏转,表明产生了感应电流。

2、当磁铁的 N 极在线圈中静止不动时,灵敏电流计的指针不偏转,说明没有感应电流产生。

3、当磁铁的 N 极从线圈中快速抽出时,灵敏电流计的指针反向偏转,产生了反向的感应电流。

4、加快磁铁插入线圈的速度,灵敏电流计指针的偏转幅度增大;减慢插入速度,偏转幅度减小。

5、增加线圈的匝数,灵敏电流计指针的偏转幅度增大;减少线圈匝数,偏转幅度减小。

6、插入较强的磁铁,灵敏电流计指针的偏转幅度较大;插入较弱的磁铁,偏转幅度较小。

|实验条件|指针偏转情况|||||磁铁 N 极快速插入|明显偏转||磁铁 N 极静止不动|不偏转||磁铁 N 极快速抽出|反向明显偏转||插入速度加快|偏转幅度增大||插入速度减慢|偏转幅度减小||增加线圈匝数|偏转幅度增大||减少线圈匝数|偏转幅度减小||插入强磁铁|偏转幅度大||插入弱磁铁|偏转幅度小|六、实验结果分析1、当磁铁的 N 极快速插入或抽出线圈时,磁通量发生变化,从而产生感应电动势和感应电流。

磁生电知识

磁生电知识

磁生电知识(总2页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第5节磁生电答案知识点一电磁感应现象一.探究:产生电磁感应现象的条件和规律1.提出问题:如何通过“在磁场中运动的导体”和“运动的磁体”来产生电2.设计实验电路:实验可采用类似于下图所示的电路装置:3.实验过程:(1)线圈的一边在磁场中静止时:①闭合开关后,观察电流表指针是否偏转。

②换用磁性更强的蹄形磁体,闭合开关后,观察电流表指针是否偏转。

③换用匝数更多的线圈,闭合开关后,观察电流表指针是否偏转。

(2)线圈的一边在磁场中运动时:①闭合开关后,让导体在磁场中做水平(即垂直于磁场方向)向左和向右的运动,观察电流表指针是否偏转。

②闭合开关后,让导体在磁场中做垂直(即平行于磁场方向)向上和向下的运动,观察电流表指针是否偏转。

③闭合开关后,让导体在磁场中做斜向上或斜向下的运动,观察电流表指针是否偏转。

(3)导体静止而磁体运动:①闭合开关后,让磁体做水平向左或向右的运动,观察电流表指针是否偏转。

②闭合开关后,让磁体做垂直向上和向下的运动,观察电流表指针是否偏转。

③闭合开关后,让磁体做斜向上或斜向下的运动,观察电流表指针是否偏转。

4.实验结论:①闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流。

②感应电流的方向跟磁场方向和导体的运动方向有关。

二.总结归纳:1.电磁感应现象:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应,产生的电流叫感应电流。

注意:奥斯特实验揭示了电生磁;法拉第实验揭示了磁生电,它们共同反应了电与磁的相互关系。

2.产生感应电流的条件(1)产生感应电流的两个条件缺一不可:①导体为闭合电路的一部分(不是全部);②导体做切割磁感线运动。

(2)如果电路不闭合,当导体做切割磁感线运动时:导体不能产生感应电流,但在导体两端会有感应电压。

《电磁感应》教材分析与教学建议

《电磁感应》教材分析与教学建议
主题班会可爱风模板
单击此处添加副标题
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
第一章 电磁感应 划时代的发现 2 探究电磁感应的产生条件 法拉第电磁感应定律 楞次定律 感生电动势和动生电动势 互感和自感 涡流
2007考试说明 1 电磁感应现象 Ⅰ 2 磁通量 Ⅰ 3 法拉第电磁感应定律 Ⅱ 4 楞次定律 Ⅱ 自感 涡流 Ⅰ
电磁感应的产生条件
1、利用磁场产生电流的现象叫电磁感应, 产生的电流叫感应电流。 2、实验观察 运动的磁铁 变化的电流(电键闭合.断开的瞬间;变阻器滑片移动.) 观察.讨论.归纳 3、结论:无论用什么方法,只要使闭合电路的磁通量发生变化,闭合电流中就会有感应电流产生 4、产生感应电流的条件: (1)电路闭合 (2)磁通量发生变化
一、感应电动势
1、在电磁感应现象中产生的电动势叫感应电动势。 产生感应电动势的那部分导体就相当于电源。
3、磁通量的变化率 表示磁通量的变化快慢
2.感应电动势与什么因素有关?
二、法拉第电磁感应定律:
1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量变化率△Φ/ △t成正比.
问题:公式 ①
与公式 ②
的区别和联系?
1、一般来说, ①求出的是平均感应电动势,E和某段时间或者某个过程对应,而②求出的是瞬时感应电动势,E和某个时刻或者某个位置对应。
2、①求出的是整个回路的感应电动势,而不是回路中某部分导体的电动势。回路中感应电动势为零时,但是回路中某段导体的感应电动势不一定为零。如右图。
如果自己有这样的机会,也会成为一个发现者。
抹去科学学家头上的光环,正确认识失败
正确的指导思想(自然现象的相互联系)加上艰苦探究过程才可取得成功.

电磁感应现象

电磁感应现象

电磁感应现象、楞次定律一.感应电流的产生条件1.电磁感应:利用磁场产生电流的现象叫电磁感应;产生的电流叫感应电流。

2.产生条件:不管是闭合回路的一部分导体做切割磁感线的运动,还是闭合回路中的磁场发生变化,穿过闭合回路的磁感线条数都发生变化,回路中就有感应电流产生—闭合回路中的磁通量发生变化磁通量Φ增加,感应电流的磁场方向与原磁场相反磁通量Φ减少,感应电流的磁场方向与原磁场相同二.判断感应电流方向的原则1.右手定则:当导体在磁场中切割磁感线的运动时,其产生的感应电流的方向可用右手定则判定。

伸出右手,磁感线垂直穿过掌心,大拇指指向为导体的运动方向,四指指向为感应电流的方向2.楞次定律:感应电流的方向总阻碍引起感应电流的磁场的磁通量的变化例:如图所示,矩形线圈abcd在匀强磁场中向左运动,问有无感应电流?分析:(1)∵磁通量不变,所以无感应电流(2)ab、cd同时切割磁感线,由右手定则,电流方向由a→b、由d→c,切割效果抵消,无感应电流。

注意:用两种正确的观点分析同一事物,结论应该是一致的,除非分析过程有错。

严格地讲,对于任一个电磁感应现象,这两个原则都适用,且能判断出一致的结果。

但却不一定很方便,例如:右手定则对直导线在磁场中运动这一过程就比较方便。

大家在应用时对这两种方法都要达到熟练,且从中摸索简单适用的方法。

3.步骤(1)先判断原磁场的方向(2)判断闭合回路的磁通量的变化情况(3)判断感应磁场的方向(4)由感应磁场方向判断感应电流的方向三.楞次定律的理解和应用楞次定律的主要内容是研究引起感应电流的磁场即原磁场和感应电流的磁场二者之间的关系1.当闭合电路所围面积的磁通量增加时,感应电流的磁场方向与原磁场方向相反;当闭合电路的磁通量减少时,感应电流的磁场方向与原磁场方向相同例1.两平行长直导线都通以相同电流,线圈abcd与导线共面,当它从左到右在两导线之间移动时,其感应电流的方向是?分析:线圈所在空间内的磁场分布如图,当线圈从左往右运动时,穿过它的磁通量先减小,原磁场方向为垂直纸面向里,所以感应磁场方向为垂直纸面向里,由右手定则可知,感应电流方向为顺时针方向;后来磁通量又逐渐增大,原磁场方向为垂直纸面向外,所以感应磁场方向为垂直纸面向里,由右手定则可知,感应电流方向为顺时针方向。

高中物理教学论文 电磁感应现象及产生条件

高中物理教学论文 电磁感应现象及产生条件

一电磁感应现象及产生条件(一)电磁感应现象穿过闭合回路的磁通量发生变化时,在闭合回路中产生感应电流的现象叫电磁感应现象。

(二)产生感应电流的条件穿过闭合回路的磁通量发生变化,应注意的是若电路不闭合,只产生感应电动势不产生感应电流。

(三)产生感应电流几种情况1、闭合电路的一部分导体在磁场中做切割磁感线运动。

2、磁场的磁感强度发生变化导致磁通量发生了变化。

3、闭合回路的面积发生了变化导致磁通量发生了变化。

例1、如图1所示,两个同心放置的同平面的金属圆环,条形磁铁穿过圆心且与两环平面垂直,则通过两圆环的磁通量Φa,Φb比较()。

A、Φa>ΦbB、Φa<ΦbC、Φa=ΦbD、无法确定例2、如图2所示,矩形线圈在通电长直导线的磁场中运动:A向右平动,B向下平动,C 绕轴转动(ad边向外),D从纸面向纸外作平动,E向上平动(E线圈有个缺口),判断线圈中有没有感应电流。

例3、如图3所示,是同一矩形线圈在U形磁铁上(或附近)的四个位置。

在U形磁铁两个磁极间区域可认为是匀强磁场;当矩形线圈发生下列运动时,能产生感应电流的是()A、将线圈由位置1移至2的过程中。

B、将线圈按图示放置在位置3,并以较小的振幅左右平动。

C、将线圈按图示放置在位置3,并以恒定的角速度绕轴OO'转动。

D、将线圈放在纸面内并按图示由位置3移到4的过程中。

例4:两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环.当A以如图13-36所示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流.则()图13-36A.A可能带正电且转速减小B.A可能带正电且转速增大C.A可能带负电且转速减小D.A可能带负电且转速增大典型习题:1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是 [ ]A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流2.如图2所示,矩形线框abcd的一边ad恰与长直导线重合(互相绝缘).现使线框绕不同的轴转动,能使框中产生感应电流的是 [ ]A.绕ad边为轴转动B.绕oo′为轴转动C.绕bc边为轴转动D.绕ab边为轴转动3垂直恒定的匀强磁场方向放置一个闭合圆线圈,能使线圈中产生感应电流的运动是 [ ]A.线圈沿自身所在的平面匀速运动B.线圈沿自身所在的平面加速运动C.线圈绕任意一条直径匀速转动D.线圈绕任意一条直径变速转动4一均匀扁平条形磁铁与一线圈共面,磁铁中心与圆心O重合(图3).下列运动中能使线圈中产生感应电流的是 [ ]A.N极向外、S极向里绕O点转动B.N极向里、S极向外,绕O点转动C.在线圈平面内磁铁绕O点顺时针向转动D.垂直线圈平面磁铁向纸外运动5如图5所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是 [ ]A.线圈中通以恒定的电流B.通电时,使变阻器的滑片P作匀速移动C.通电时,使变阻器的滑片P作加速移动D.将电键突然断开的瞬间6如图6所示,一有限范围的匀强磁场宽度为d,若将一个边长为l的正方形导线框以速度v匀速地通过磁场区域,已知d>l,则导线框中无感应电流的时间等于 [ ]7闭合铜环与闭合金属框相接触放在匀强磁场中,如图9所示,当铜环向右移动时(金属框不动),下列说法中正确的是 [ ]A.铜环内没有感应电流产生,因为磁通量没有发生变化B.金属框内没有感应电流产生,因为磁通量没有发生变化C.金属框ab边中有感应电流,因为回路abfgea中磁通量增加了D.铜环的半圆egf中有感应电流,因为回路egfcde中的磁通量减少二 法拉第电磁感应定律(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比. (2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.(二)导线切割磁感线的感应电动势 1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况. (2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.例1 如下图所示,长为L 的铜杆OA 以O 为轴在垂直于匀强磁场的平面内以角速度 匀速转动,磁场的磁感应强度为B ,求杆OA 两端的电势差.例2 如下图所示,半径为r的金属环绕通过某直径的轴以角速度作匀速转动,匀强磁场的磁感应强度为B,从金属环面与磁场方向重合时开始计时,则在金属环转过30°角的过程中,环中产生的电动势的平均值是多大?例3如图1所示把线框abcd从磁感应强度为的匀强磁场中匀速拉出,速度方向与ab边垂直向右,速度的大小为,线圈的边长为,每边的电阻为,问,线圈在运动过程中,ab两点的电势差为多少?例4图13各情况中,电阻R=0.lΩ,运动导线的长度都为l=0.05m,作匀速运动的速度都为v=10m/s.除电阻R外,其余各部分电阻均不计.匀强磁场的磁感强度B=0.3T.试计算各情况中通过每个电阻R的电流大小和方向.例5 如图所示,在一均匀磁场中有一矩形导线框abcd,线框处于水平平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动典型习题:1.某单匝线圈电阻是1 Ω,当穿过它的磁通量始终以2 Wb/s速率减小时,则A.线圈中感应电动势一定每秒降低2 VB.线圈中感应电动势一定是2 VC.线圈中感应电流一定每秒减少2 AD.线圈中感应电流一定是2 A2关于感应电动势大小的下列说法中,正确的是 [ ]A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大3.如图2,垂直矩形金属框的匀强磁场磁感强度为B。

探究感应电流的产生条件 说课稿 教案 教学设计

探究感应电流的产生条件  说课稿  教案  教学设计

探究电磁感应的产生条件一、教材内容分析学生通过上一章的学习,认识了磁体磁场、各种电流磁场磁感线的分布规律,理解了磁通量和磁通量变化的概念;在本章第一节《划时代的发现》的资料中,又了解了法拉第通过十年的艰苦努力,发现了电磁感应现象,自然会激发起同学们继续探究电磁感应产生的条件兴趣和热情,而且同学们目前已经有一定的电学实验操作基础。

对本节课中设计“研究电磁感应产生条件”的相关实验经教师指导和小组合作,大部分学生应该能够顺利完成,教学的关键是要以“切割”为基石,以“磁通量”为跳板,找到“闭合电路内磁通量变化”这一电磁感应产生的根本条件。

本节教学中要激励学生主动参与意识,引导学生通过实验探究寻找物理规律。

在提出问题---动手设计---观察描述---归纳总结---实践应用等小组实验探究活动过程中,体验亲自动手设计获得实验成功的乐趣,感受小组合作的力量,激发学习物理的兴趣。

培养细致观察、严密推理、科学描述的科研能力,提升科学研究的综合素养。

二、教学目标1.知识与技能:①理解电磁感应产生的条件②会用电磁感应产生的条件解答有关问题③通过实验的探索,培养学生的实验操作、收集、处理信息能力2.过程与方法:①经历科学探究过程,尝试应用科学探究的方法研究物理问题。

②通过科学探究之后,使学生学会依照物理事实,运用逻辑判断来确立物理量之间的因果关系,树立把物理事实作为依据的观念,形成根据证据、逻辑和现有知识进行科学解释的思维方法,培养学生自主学习和合作探究的能力。

3.情感态度与价值观:激发学生对科学实验的探究热情,使学生具有勇于创新和实事求是的科学态度。

在粗略了解从电磁感应到发电机再到今天的电气化时代的发展过程中,认识科学对社会进步的价值。

三、教学重点:电磁感应产生的条件的得出突出重点的方法让学生经历自主探究“电磁感应产生的条件”的完全过程。

提出问题---大胆猜想---设计实验---采集数据---分析归纳---交流反馈---形成理论---实践应用。

《电磁感应现象及应用》PPT优质课件

《电磁感应现象及应用》PPT优质课件
电磁感应现象及应用
01 电磁感应的探索历程 02 探究感应电流的产生条件
1、磁感应强度的定义及理解. 公式:
2.磁感应强度的大小及方向的判定. 3.对磁通量的理解与计算. 公式:Φ=BS
电磁感应的探索历程
1.“电生磁”的发现
1820年,丹麦物理学家奥斯特发现了电流的磁 效应. 2.“磁生电”的发现
到 B2,则线圈内的磁通量的变化量 ΔΦ 为( )
A.n(B2-B1)S
B.n(B2+B1)S
C.(B2-B1)S
D.(B2+B1)S
D [末状态的磁通量 Φ2=B2S,初状态的磁通量 Φ1=-B1S,则 线圈内的磁通量的变化量 ΔΦ=(B2+B1)S,故 D 正确,A、B、C 错 误。]
感应电流的产生
【例 2】 线圈在长直导线电流的磁场中做如图所示的运动: A.向右平动,B.向下平动,C.绕轴转动(ad 边向里),D.从纸面向纸外 做平动,E.向上平动(E 线圈有个缺口),判断线圈中有没有感应电流?
A
B
C
D
E
思路点拨:根据导线周围的磁感线分布以及产生感应电流的条 件即可判断各图中感应电流的有无。
【例 1】 如图所示,一水平放置的矩形闭合线圈 abcd 在细长 磁铁 N 极附近下落,保持 bc 边在纸外,ad 边在纸内,由图中的位置 Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过 程中,线圈中的磁通量( )
A.是增加的 C.先增加,后减少
B.是减少的 D.先减少,后增加
思路点拨:解此题的关键是正确把握条形磁铁的磁场分布情况, 并结合磁通量的概念分析。
D [要知道线圈在下落过程中磁通量的变化情况,就必须知道 条形磁铁在磁极附近磁感线的分布情况,条形磁铁在 N 极附近的分 布情况如图所示,由图可知线圈中磁通量是先减少,后增加。D 选 项正确。]

产生电磁感应现象的条件和规律实验

产生电磁感应现象的条件和规律实验

产生电磁感应现象的条件和规律实验电磁感应现象的产生条件电磁感应现象是指导体在变化的磁场中会产生电动势和感应电流的现象。

产生电磁感应现象的条件是:导体:感应电流只能在导体中产生。

变化的磁场:导体必须处于变化的磁场中。

磁场可以由磁铁、通电线圈或其他导电体的电流变化产生。

导体与磁场的相对运动:导体可以相对静止,而磁场移动,也可以导体移动,而磁场静止。

但是,导体和磁场之间必须存在相对运动才能产生电磁感应。

电磁感应定律法拉第电磁感应定律描述了电磁感应中产生的电动势和感应电流。

定律指出:回路中感应电动势的大小等于磁通量随时间的变化率。

磁通量是穿过回路面积的磁场强度与面积的乘积。

根据数学公式表示为:```ε = -dΦ/dt```其中:ε 是感应电动势Φ 是磁通量t 是时间负号表示感应电动势会阻碍磁通量的变化。

楞次定律楞次定律描述了感应电流的方向:感应电流的方向总是与引起它的磁通量变化的方向相对抗。

例如,如果磁场强度增加,感应电流会产生一个磁场来抵消磁场强度的增加。

电磁感应实验一个简单的电磁感应实验可以证明电磁感应现象。

实验步骤如下:1. 将一根线圈连接到灵敏电流计上。

2. 将一个条形磁铁穿过线圈。

3. 当磁铁穿过线圈时,电流计会偏转,指示有感应电流产生。

4. 当磁铁停止运动时,电流计会恢复到零。

5. 当磁铁以相反方向穿过线圈时,电流计会偏转到相反方向。

实验结果实验结果验证了电磁感应定律和楞次定律。

当磁场穿过线圈时,会有感应电动势产生,当磁通量变化时,感应电动势的大小会发生变化。

感应电流的方向与磁通量变化的方向相反,以抵消磁通量变化。

应用电磁感应现象在许多技术应用中发挥着至关重要的作用,包括:发电机和电动机变压器电感线圈天线传感器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
上一页
目录
下一页
2020/5/2
目录 下一页
2020/5/2
第二节 探究电磁感应的产生条件
S
当AB棒在导轨上向右运动时,虽然磁场强弱没有变化,但 是导体棒切割磁感线运动使闭合回路包围的面积在变化
11
上一页
目录
下一页
2020/5/2
第二节 探究电磁感应的产生条件
归纳结论:
磁通量 Φ = BSsinα
只要穿过闭合电路的磁通量发生 变化,闭合电路中就有感应电流 产生
磁现象之间存在某种联系。
3
上一页
目录
下一页
2020/5/2
第一节 划时代的发现
电流的磁效应引发的对称性思考:
电流能够引起磁针的转动,为什么不能用磁铁使导线中 产生电流呢
1822年
1822年12月 1825年11月 1828年 4月 1831年 8月
法拉第在一篇日记中留下了“由磁产生电”这样的思想
试图使用恒定电流产生的磁场来产生感应电流,结 果:实验失败 发现电磁感应现象
做一做: 摇绳能发电吗,如果能,沿哪个方向站立时,发电
的可能性比较大?
12
上一页
目录
下一页
2020/5/2
第二节 探究电磁感应的产生条件
练习与巩固:
1、 如图所示匀强磁场中有一个矩形闭合导线框。在下列几种 情况下,线圈中 是否产生感应电流?
(1)保持线框平面始终与磁感线垂直,现况在磁场中上下运动(图甲) (2)保持线框平面始终与磁感线垂直,现况在磁场中左右运动(图乙) (3)线框绕轴线AB转动(图丙)。
19世纪20年代前 电和磁的研究始终独立发展着
18世纪中叶
人们发现磁化现象,但物理学家们仍认为电和磁互
不相关
18世纪末
康德提出“各种自然现象之间相互联系相互转化”的 思想, 奥斯特相信电和磁之间存在某种关系
1803年 1820年
奥斯特提出要把宇宙纳在一个体系中,实验失败 奥斯特发现“电流磁的效应”
电流的磁效应显示了载流导体对磁针的作用力,揭示了电现象和
当闭合回路的一部分导体做切割磁感线的运动时,电路中会产生感应 电流
所谓切割即是指导 体运动方向与磁感 线方向不平行
6
上一页
目录
下一页
2020/5/2
第二节 探究电磁感应的产生条件
还有哪些情况可以产生感应电流?
变化的磁场
7
变化的电流
上一页
目录
下一页
2020/5/2
第二节 探究电磁感应的产生条件
实验:
开关闭合时,滑动变阻器不动
静止
开关闭合时,迅速移动滑动变阻器的滑片
摆动
9
上一页
目录
下一页
2020/5/2
第二节 探究电磁感应的产生条件
分析论证:
A B
10
实验一:
磁铁插入线圈时磁场有弱变强;磁 铁从线圈中抽出时,磁场有强变弱
B
上一页
实验二:
线圈A中电流迅速变化,产生的磁 场强弱也在迅速变化,由于两个线 圈套在一起,所以通过线圈B的磁 场强弱也在迅速变化
目录
下一页
2020/5/2
第二节 探究电磁感应的产生条件
2、模仿法拉第实验
由开关或变阻器控制一个线圈的电流, 能够在另一个线圈中产生感应电流吗?
归纳以上四项实验观察结果,你能得出什么结论?
开关闭合瞬间
摆动
在闭合回路所处的磁场中,磁感应强度发生变 开关断化开时瞬间,那么这个回路中就能产生感应电摆流动
第四章 电磁感应
1 划时代的发现 2 探究电磁感应的条件 3 楞次定律 4 法拉第电磁感应定律 5 电磁感应规律的应用 6 互感和自感 7 涡流 电磁阻尼和电磁驱动
1
A
2020/5/2
电厂中发电机如何发电?电网中高压低压跟什么因素有 关,如何控制?
2
上一页
目录
下一页
2020/5/2
第一节 划时代的发现
4
上一页
目录
下一页
2020/5/2
第一节 划时代的发现
磁生电是一种在变化、运动过程中才能出现的效应
法拉第把引起电流的原因概括为5大类:
变化的磁场 变化的电流 运动的恒定电流 运动的磁铁 在磁场中运动的导体
现象:
电磁感应现象
产生的电流: 感应电流
5
上一页
目录
下一页
2020/5/2
第二节 探究电磁感应的产生条件
1、向线圈中插入磁铁,把磁铁从线圈中抽出
我们可以得到什么结论?
磁铁的动作
表针的摆动情 磁铁的动作
当磁铁与线圈间发况生相对运动时,闭合导体
N回极路插中入产线生圈了感应电偏流 转
S极插入线圈
表针的摆动情 况
偏转
N极停在线圈中 不偏转
S极停在线圈中 不偏转
N极从线圈中抽 出
偏转
S极从线圈中抽
相关文档
最新文档