磁场知识点汇总

合集下载

高中物理磁场知识点(详细总结)

高中物理磁场知识点(详细总结)

磁场基本性质一、磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.二、磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.1.疏密表示磁场的强弱.2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。

4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线:【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A)A.带负电;B.带正电;C.不带电;D.不能确定解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A.三、磁感应强度1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。

2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.①表示磁场强弱的物理量.是矢量.②大小:B=F/Il(电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.【例2】如图所示,正四棱柱abed一a'b'c'd'的中心轴线00'处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是(AC)A.同一条侧棱上各点的磁感应强度都相等B.四条侧棱上的磁感应强度都相同C.在直线ab上,从a到b,磁感应强度是先增大后减小D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大解析:因通电直导线的磁场分布规律是B∝1/r,故A,C正确,D错误.四条侧棱上的磁感应强度大小相等,但不同侧棱上的点的磁感应强度方向不同,故B错误.【例3】如图所示,两根导线a、b中电流强度相同.方向如图所示,则离两导线等距离的P点,磁场方向如何?解析:由P点分别向a、b作连线Pa、Pb.然后过P点分别做Pa、Pb垂线,根据安培定则知这两条垂线用PM、PN就是两导线中电流在P点产生磁感应强度的方向,两导线中的电流在P处产生的磁感应强度大小相同,然后按照矢量的合成法则就可知道合磁感应强度的方向竖直向上,如图所示,这也就是该处磁场的方向.答案:竖直向上【例4】六根导线互相绝缘,所通电流都是I,排成如图10一5所示的形状,区域A、B、C、D均为相等的正方形,则平均磁感应强度最大的区域是哪些区域?该区域的磁场方向如何?解析:由于电流相同,方格对称,从每方格中心处的磁场来定性比较即可,如I1在任方格中产生的磁感应强度均为B,方向由安培定则可知是向里,在A、D方格内产生的磁感应强度均为B/,方向仍向里,把各自导线产生的磁感应强度及方向均画在四个方格中,可以看出在B、D区域内方向向里的磁场与方向向外的磁场等同,叠加后磁场削弱.答案:在A、C区域平均磁感应强度最大,在A区磁场方向向里.C区磁场方向向外.【例5】一小段通电直导线长1cm,电流强度为5A,把它放入磁场中某点时所受磁场力大小为0.1N,则该点的磁感强度为()A.B=2T;B.B≥2T;C、B≤2T ;D.以上三种情况均有可能解析:由B=F/IL可知F/IL=2(T)当小段直导线垂直于磁场B时,受力最大,因而此时可能导线与B 不垂直,即Bsinθ=2T,因而B≥2T。

磁学知识点总结大学

磁学知识点总结大学

磁学知识点总结大学1. 磁场的基本概念磁场是指周围空间中存在磁力的区域。

磁场具有方向和大小,通常用磁感应强度表示。

磁场由磁性物质产生,其作用范围称为磁场区域。

磁场的方向可以用磁力线表示,磁力线是磁场中任意点的切线方向。

在磁场中,物体会受到磁力的作用。

磁场通常由磁铁或电流产生,磁场的强弱取决于磁体的大小和形状,以及电流的大小和方向。

2. 磁场的性质磁场具有一些特殊的性质,主要包括磁场的方向性、磁场的非平衡性和磁场的相互作用性。

磁场的方向性指的是磁场具有方向性,即具有南北极之分,磁场线从磁北极指向磁南极。

磁场的非平衡性指的是磁场能够将磁性物质排列成不同的磁态,表现出磁性。

磁性物质在外磁场的作用下会受到磁化,形成磁矩,具有磁性。

磁场的相互作用性指的是磁场可以相互作用,并对相互作用的物体产生一定影响。

3. 电磁感应电磁感应是指磁场和电场相互作用产生电流的现象。

电磁感应根据磁场的变化形式可以分为恒定磁场中的电磁感应和变化磁场中的电磁感应。

恒定磁场中的电磁感应主要是指在磁场中运动的导体上会感应出感应电动势,从而产生感应电流。

变化磁场中的电磁感应是指当磁场的磁感应强度发生变化时,也会感应出感应电动势,从而产生感应电流。

4. 电磁感应现象的应用电磁感应现象在现实生活和工业生产中有着广泛的应用。

例如,变压器就是利用电磁感应现象实现电能的传输和功率的调整。

电磁感应现象还用于发电机的工作原理中,通过电磁感应产生电流,从而实现能量的转化。

电磁感应现象还广泛应用于感应炉、电磁制动器、电磁铁等工业设备中。

5. 磁性材料的特性磁性材料是指在外磁场的作用下,能够形成磁化和显示磁性的物质。

根据磁性材料的不同性质,可以将其分为铁磁材料、铁氧体材料和顺磁材料三类。

铁磁材料是指在外磁场的作用下,能够产生较强的磁化和显示出较强的磁性,例如铁、镍、钴等。

铁氧体材料是指在外磁场的作用下,可以产生磁化和显示出磁性,但磁性较弱,如铁氧体、铁氧氧石、铁氧氢石等。

大物知识点总结磁场

大物知识点总结磁场

大物知识点总结磁场一、磁场的产生1. 电流产生的磁场安培环路定理用来计算电流在产生磁场方面的物理定律。

在一根直导线周围产生的磁场可以使用右手定则确定磁场的方向。

2. 磁性材料产生的磁场磁性物质内部原子和分子的磁矩导致了磁性物质产生的磁场。

这种磁场可以用磁化强度和磁化率描述。

3. 等效电流产生的磁场电流在弯曲闭合导线中产生的总的磁场可以用安培环路定理求和。

这种方法用于计算磁场的大小和方向。

二、磁场的性质1. 磁现象和磁性材料的分类永磁体和电磁体是两种主要的磁性材料类型。

永磁体可以自发地产生磁场,而电磁体需要外部电流或磁场来产生磁效应。

2. 磁场的作用力磁场对带电粒子或者电流产生的作用力可以用洛伦兹力定律计算。

3. 磁场的磁感应强度磁感应强度描述了磁场的强度以及方向,可以用来计算磁场对带电粒子或者磁性物质产生的作用力。

三、磁场的应用1. 磁场在电机中的应用电动机的工作原理基于磁场和电流相互作用产生运动力。

不同类型的电机使用不同的磁场产生方式。

2. 磁场在变压器中的应用变压器工作原理基于电流通过涡流产生的磁场。

变压器可以用来改变电压大小和方向。

3. 磁场在磁共振成像中的应用磁共振成像利用磁场对核磁共振现象进行成像。

磁场对磁共振信号的强度和方向产生影响,从而得到人体组织的影像。

四、磁场的测量和计算1. 磁场的测量方法磁通计量法、霍尔效应、磁力计量法等是常用的磁场测量方法。

2. 磁场的数学描述麦克斯韦方程组用来描述电磁场,磁场可以用磁感应强度、磁场强度和磁化强度等物理量来描述和计算。

总之,磁场是物质周围的一个物理场,它对带电粒子和磁性物质产生作用。

磁场的产生与磁现象、磁性材料的分类有关,其性质包括磁场的作用力和磁感应强度等,而磁场的应用包括在电机、变压器和磁共振成像等方面。

同时,磁场的测量和计算是磁场研究的重要内容,麦克斯韦方程组是描述和计算磁场的重要工具。

最全面高中物理磁场超详细知识点归纳

最全面高中物理磁场超详细知识点归纳

最全面高中物理磁场超详细知识点归纳磁场是具有定向性,包括空间和时间变化,能引起磁铁活动的物理场。

它是磁体能量的形式和载体,将磁体电能量转化为机械能量,并使运动电子排斥或吸引,具有实用的技术价值。

研究磁场的目的是为了获取磁体的数量、性质和应用,以及地震研究、宇宙物理以及其他领域的大自然科学研究。

一、磁场的定义磁场是正弦波的集合,它以矢量形式或张量形式表示为一个函数,在空间和时间上发生变化,能在不同地点和时刻诱发磁体。

它代表磁体能量的数量、性质和形式。

二、磁场的特征(1)磁场有方向性。

磁矢之差表示强度方向,负责变化的函数表示磁场方向,比如在一定点上磁矢向x轴正方向指向,说明磁场方向为x轴正方向。

(2)磁场有梯度。

它指磁场力的梯度,使得磁矢在空间上的变化率越快,磁场的梯度越大。

(3)磁场有时间变化特性。

它指磁场在给定时间内的变化,磁场的时间变化通常由自身本身的产生原理决定。

三、磁场的质点理论磁场的质点理论认为磁场是由新创造的质点或“磁子”所组成的,它们是由偶极子(正极子和负极子)构成的,正极子与正电荷相关联,而负极子与负电荷相关联,质点之间通过磁场力相互作用,产生电流。

四、磁场的力学表达式磁力的大小决定于两个电流之间的距离,它是由电磁学发明者麦克斯韦提出的现象表达出来的,用力学方程式表示为:B=μI/2πr,其中,B是磁场强度,μ是真空磁导率,I是电流,r是电流线段之间的距离。

五、磁场的流动磁场的流动可概括为常规流动和衍射流动,常规流动指电流通过磁体,磁场形成一系列正弦流动,衍射流动是指磁场强度发生变化,在新的空间处产生新的正弦流动,其流动方向与磁场强度梯度的相反方向。

六、磁场的应用(1)地震研究:在地震学中,磁场可以用于测量地球内部的结构和活动,了解地壳构造以及地球核心的状态。

(2)磁导航:在航空航天科学领域,磁场是航空器定位、导航和控制的基础,只要探测到本地磁场,就可以确立航空器当时的位置。

(3)一般工程应用:磁场也是电力传输、无线电广播以及其他工程领域中物理现象、感应元件和线圈的载体。

磁力学知识点总结

磁力学知识点总结

磁力学知识点总结一、磁场的产生1. 磁场的概念磁场是指磁力的作用范围,在磁场当中,磁体、载流体和磁场之间存在相互作用。

在磁场中,磁体会受到磁力的作用,而载流体也会在磁场中受到洛伦兹力的作用。

2. 磁场的产生磁场是由电荷运动产生的。

根据安培法则,电流元所产生的磁场方向垂直于电流元所在的平面,并且方向由右手定则决定。

同时,根据比奥-萨伐尔定律,通过通电螺线管所产生的磁场与电流方向有一定的关系。

二、磁场的性质1. 磁感应强度磁感应强度是指单位磁极的力矩和磁极之间距离的比值,一般用字母B表示。

磁感应强度的方向是从磁南极指向磁北极。

在同一磁场中,磁感应强度的大小是一定的,与磁体的形状、大小无关。

2. 磁场力磁场中的物体受到的力称为磁场力。

磁场力的大小和方向由磁场强度、电荷速度和电荷的正负决定。

三、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律指出,当导体中的磁通量发生变化时,导体中产生感应电动势。

这种感应电动势的大小与磁场强度的变化率成正比,与导体长度无关。

2. 楞次定律楞次定律指出,在导体中产生的感应电动势会引起感应电流,其方向使产生感应电动势的磁通量产生的磁场强度所产生的磁场的方向相互抵消。

四、磁场的应用1. 磁场在生活中的应用磁场在生活中有很多应用,如磁铁、电磁铁等。

此外,磁场还可以被用于医学领域,磁共振成像技术就是利用磁场对人体进行成像的一种方法。

2. 磁场在工业中的应用磁场在工业中的应用也非常广泛,如在电机、发电机、变压器中均有磁场的应用。

总结:磁力学是物理学的一个重要分支,它研究磁场及其相互作用的规律。

磁场的产生主要是由电流产生的,磁场的性质包括磁感应强度和磁场力。

电磁感应是磁场中的一个重要现象,法拉第电磁感应定律和楞次定律是电磁感应的基本规律。

此外,磁场在生活和工业中有着广泛的应用,如磁铁、发电机、变压器、磁共振成像技术等。

通过本文的总结,我们可以对磁力学有一个更加全面的了解,为我们进一步学习和应用磁力学知识奠定了基础。

磁场归纳总结

磁场归纳总结

磁场归纳总结磁场是物理学中的一个重要概念,用于描述物质周围的磁性效应。

自从磁场的概念被提出以来,人们对它进行了广泛的研究,并逐渐形成了一套完整的理论体系。

本文将对磁场的基本概念、性质、应用以及相关实验进行归纳总结。

一、磁场的基本概念磁场是由物质中的磁性粒子所产生的一种力场。

磁场可分为静磁场和动磁场两种形式,静磁场是指物体在静止状态下所产生的磁场,动磁场则是指物体在运动状态下所产生的磁场。

二、磁场的性质1. 磁场的磁力线:磁场的存在可以用磁力线来描述,磁力线是磁场力线方向的图形表示。

磁力线的性质包括:(1)磁力线总是从磁北极沿着闭合曲线流向磁南极;(2)磁力线在空间中不会交叉,且趋于是光滑的曲线;(3)磁力线离开磁体时,方向总是垂直于磁体表面。

2. 磁场的磁通量:磁通量是描述磁场穿过某个曲面的情况,它的大小与曲面和磁场的夹角有关。

磁通量的性质包括:(1)磁通量与磁力线互相垂直;(2)磁通量穿过面积较大的曲面时,磁感应强度较小;穿过面积较小的曲面时,磁感应强度较大。

三、磁场的应用磁场在日常生活和科学研究中有着广泛的应用,以下是其中几个常见的应用场景:1. 电动机:电动机是利用磁场产生力来完成能量转换的机械设备。

通过在磁场中通电,可以产生力矩使电动机工作。

2. 磁共振成像:磁共振成像是一种医学影像技术,利用磁场和射频场作用于人体组织,通过记录产生的信号来获取图像。

3. 磁储存设备:磁存储设备,如硬盘驱动器,利用磁场来读取和写入数据,通过调整磁场的方向来存储信息。

4. 磁选工艺:磁选工艺是一种利用磁场处理矿石的工艺,通过调节磁场参数来实现矿石的分离和提纯。

四、磁场相关实验1. 安培环路实验:通过测量电流通过电线所产生的磁场来验证安培环路定理,即电流的环路积分等于磁通量的变化率。

2. 法拉第电磁感应实验:通过改变磁场强度或电路的状况,测量感应电动势的大小和方向,来验证法拉第电磁感应定律,即磁通量的变化引起感应电动势。

高中物理磁场知识点总结

高中物理磁场知识点总结

高中物理磁场知识点总结
磁场的基本概念:磁场是指物体周围存在的一种物理现象,具有磁性的物体会在其周围形成磁场。

磁场的表示:磁场可以用磁力线来表示,磁力线是从磁南极指向磁北极的曲线。

磁场的性质:
磁场是无源的,即不存在磁单极子。

磁场是有方向的,磁力线的方向表示磁场的方向。

磁场是矢量量,具有大小和方向。

磁场的产生:
电流产生磁场:通过电流流过导线时,会在导线周围产生磁场,其方向由右手螺旋定则确定。

磁化产生磁场:某些物质在外磁场的作用下可以磁化,形成磁体,产生磁场。

磁场的力学效应:
洛伦兹力:磁场中的带电粒子受到洛伦兹力的作用,其大小和方向由洛伦兹力公式确定。

磁场对导线的作用力:当导线中有电流通过时,会受到磁场的作用力,其大小和方向由洛伦兹力公式确定。

磁场的应用:
电磁感应:磁场的变化可以引起电磁感应现象,如发电机、变压器等。

磁共振:磁场的作用可以使原子核发生共振现象,应用于核磁共振成像(MRI)等医学技术。

磁力对物体的作用:磁场可以对磁性物体产生吸引或排斥力,应用于电磁铁、磁悬浮等技术。

磁场知识点总结

磁场知识点总结

磁场知识点总结磁场是物理学中一个重要的概念,用来描述磁性物体所产生的力和影响。

本文将对磁场的基本概念、磁场的性质、磁场的作用以及磁场的应用进行总结。

1. 磁场的基本概念:磁场是物质周围的一种物理现象,是一种力的表现形式。

它是通过电流或磁石等磁性物体所产生的,并且可以在空间中传递力和能量。

磁场可以用磁感线来表示,磁感线是垂直于磁场方向的曲线,它们趋向于从磁南极到磁北极。

2. 磁场的性质:磁场具有以下几个重要的性质:(1) 磁场是无源场,即不存在磁单极子。

每个磁体都有一个南极和一个北极,它们总是以成对的形式出现。

(2) 磁场是矢量场,具有大小、方向和方向性。

磁场的大小可以通过磁感应强度来表示,方向则由南极指向北极。

(3) 磁场具有叠加性,在空间中的磁场可以由多个独立的磁场叠加而成。

这意味着可以通过相应的磁体或电流分布来产生所需的磁场。

3. 磁场的作用:磁场对电荷、电流和磁性物体都有作用,主要表现为以下几个方面:(1) 对电荷和电流的作用:磁场可以对运动中的电荷和电流产生力的作用,这种力称为洛伦兹力。

电子在磁场中会受到洛伦兹力的作用,产生磁场力线。

洛伦兹力是电流表面电流的基础。

(2) 对电流的作用:磁场可以通过电流产生力矩的作用,使得电流线产生扭转。

这种受力矩的现象称为磁力偶,并且是电动力学中的基本原理之一。

(3) 对磁性物体的作用:磁场可以对磁性物体产生力的作用,使磁性物体受到吸引或排斥。

当一个磁性物体进入一个磁场时,它会受到一个力的作用,这种力称为磁场力。

4. 磁场的应用:磁场的应用广泛,不仅在日常生活中有很多应用,还在科学研究和工程技术领域发挥着重要的作用。

(1) 电磁感应和发电:磁场和电磁感应的理论基础上建立了电动机、发电机和变压器等电气设备,这些设备在我们的生活中起着重要的作用。

(2) 磁共振成像:核磁共振成像是一种医学成像技术,利用磁场对人体内部的水分子核磁共振进行成像,用于检查和诊断人体的疾病。

磁场和磁路知识点总结

磁场和磁路知识点总结

磁场和磁路知识点总结一、磁场基础概念1. 磁场的概念磁场是物质周围或者物质内部存在的空间,该空间内每一点都存在着磁力的作用,通常用B表示。

磁场是物质所具有的最基本的物理性质之一。

在物质中,由于电子自身的自转产生了绕轨道上前进的电流,而电流则产生磁场。

这就是原子、分子和物质微观结构形成的原因,说明了磁场的实质。

2. 磁感线磁感线是用来表示磁场的一种图示法,即表现磁场的方向、强度和区域的一种方法。

3. 磁场强度磁场强度,通常由H表示,是磁场介质内任一点单位长度磁体磁化,产生的磁场强度。

二、磁路的概念1. 磁路的概念磁路是由磁路主体和磁路气隙两个组成部分构成的。

它是闭合的,但绕封闭轮廓的电动机是有励磁的,则没有完全闭合磁路。

在不同的电供电压下,发生不同的电磁能量转化,是电机工作的基础。

2. 磁路设计的基本要求磁路设计是指设计电磁设备的磁路结构,又称磁路设计。

磁路设计的基本要求有很多,包括各种要素的选择及组合。

磁路设计应该是可以促进和推动电机效果,使电机保持最高效率的设计。

3. 磁路的分析磁路分析是为了定量计算磁路中各种参数的影响,及时发现磁路中可能存在的问题,进行技术分析和处理。

三、磁场与磁路的关系1. 磁场与磁路之间的联系磁场与磁路是相互联系的,磁场的产生、存在和变化,必然需要磁路作为周围环境。

反之,磁路中磁通的变化也必然会引起周围磁场的变化。

这种联系是磁场和磁路的关系。

2. 磁路与效应磁场与磁路的关系,不仅是在实际电磁设备中产生电机效应,磁路中的参数对于电磁设备的性能起着至关重要的作用。

任意一点的磁场强度、磁感应强度、磁通、磁势等都至关重要,同时又与磁路中各种参数有关。

不同的磁路、磁场产生和变化的结果,最终会在转换和作用电机效果过程中得到充分的体现,所以这点和电磁学颇为类似。

四、磁路的基本参数1. 磁路的导磁系数磁路的导磁系数,是磁路中的物质对磁通的相对通过能力。

磁路中磁通的大小是取决于磁路导磁系数的。

史上最全磁场知识点总结

史上最全磁场知识点总结

史上最全磁场知识点总结一、磁场的产生1. 磁场的产生基础磁场产生的基础是电流。

当电流通过一根直导线时,就会在它周围产生一个磁场。

这个磁场的特点是,它具有方向性,即有一个方向是“南”极,一个方向是“北”极。

并且,根据安培右手定则,可以确定电流方向与磁场方向之间的关系。

2. 磁场的产生方式除了电流产生磁场外,磁铁也能产生磁场。

在一个磁铁中,由于内部的微观磁矩的排列,就会在其周围产生一个磁场。

这种磁场是不依赖于外界条件而产生的,故而它也可以被用来作为一种磁石来应用。

二、磁场的性质1. 磁场的基本性质磁场有许多基本性质,例如,磁场是一种物质周围的力场,它具有方向性和大小的概念;磁场中有磁感应强度、磁场强度等物理量,它们可以用来描述磁场的性质;而且,磁场是一种场,它有空间分布的特性。

2. 磁场的作用磁场对于磁性物质有着磁化的作用,使得它们变得具有一定的磁性。

而且,在静电学中,我们也学到了,磁场对于运动带电粒子同样有作用,这就是洛伦兹力的作用。

这些作用是磁场在自然界中的重要表现。

三、磁场与电场的关系1. 麦克斯韦方程组麦克斯韦通过他对电磁学理论的研究,得到了著名的麦克斯韦方程组。

这个方程组很好地描述了磁场和电场之间的关系,它们通过麦克斯韦方程组联系在了一起,从而形成了电磁学理论体系。

2. 磁场与电场的作用磁场与电场之间有着多种作用,例如,它们之间的相互感应作用是电磁感应现象的基础,这种感应作用通过法拉第电磁感应定律得到了描述;而且,磁场还对于电场中的电荷有相互作用,这就是洛伦兹力的作用。

三、磁场的应用1. 磁场在物质中的应用磁场在物质中有着多种应用,例如,磁铁在物质分离、传感器、电机等方面都有着广泛的应用,它们通过磁场对于磁性物质的吸引或者排斥来达到物质分离或运动的目的。

2. 磁场在科学研究中的应用磁场不仅在物质中有着广泛的应用,而且在科学研究中也发挥了重要的作用。

例如,核磁共振成像技术就是利用了核磁共振现象对物质进行成像的技术,它在医学成像、生物物理学等方面都具有重要的应用。

有关磁场的知识点总结

有关磁场的知识点总结

有关磁场的知识点总结
1. 磁场的起源和性质
磁场的起源主要来自于电流和磁化的物质。

当电流在导体中流动时,会产生磁场。

这种磁场被称为安培磁场。

另外,磁化的物质也可以产生磁场。

这种磁场被称为磁化磁场。

磁场有许多重要的性质,比如磁场的方向总是沿着磁力线方向,磁场的强度在空间中是不均匀的,磁场具有叠加原理等。

2. 磁场的测量和单位
磁场的测量通常采用磁通量密度(也称为磁感应强度)来表示。

磁通量密度的单位是特斯拉(T)。

通常,我们使用磁场计来测量磁场强度。

同时,我们还可以借助霍尔效应和法拉第电磁感应定律来测量磁场。

3. 磁场的应用
磁场在现实生活中有许多重要的应用。

在电力工程中,磁场被用来制造电动机、变压器等设备。

在通信领域,磁场被用来制造扬声器、麦克风等设备。

在医学领域,磁场被用来制造核磁共振成像(MRI)仪器。

此外,磁场还有许多其他的应用,比如在航天、航海、矿业、材料加工等领域中都有着重要的应用。

总的来说,磁场是自然界中一种重要的场,它具有许多重要的性质和应用。

通过对磁场的深入研究,我们可以更好地理解自然界中的现象,并且可以开发出更多的技术应用。

希望这篇文章能给大家带来对磁场的更深刻的理解。

物理磁场知识点总结

物理磁场知识点总结

物理磁场知识点总结物理磁场是研究物体间相互作用的力场。

以下是关于物理磁场的一些重要知识点总结:1. 磁性物质:铁、镍、钴等某些物质具有磁性。

这些物质内部存在微小的磁偶极子,可以产生磁场。

在外磁场的作用下,磁性物质可以被磁化,形成磁铁等。

2. 磁场的来源与表示:磁场可以通过电流在导线中产生,也可以通过磁体产生。

磁场是一个矢量场,可以使用磁感应强度(B)来表示,单位为特斯拉(T)。

3. 磁场的性质:磁场具有磁力线、磁通量和磁力的性质。

磁力线指示磁场的方向和强度,是垂直于磁场方向的连续曲线。

磁通量是磁力线的数量,用Φ来表示,单位为韦伯(Wb)。

4. 磁场的力学效应:根据洛伦兹力定律,磁场和运动带电粒子之间存在相互作用力。

运动带电粒子在磁场中会受到力的作用,并且力与速度方向垂直。

被称为洛伦兹力,用F表示。

5. 磁感应强度:磁感应强度(B)是表示磁场强度的物理量,与磁力线的密度成正比。

它可以通过洛伦兹力计算得到。

6. 磁场的磁场与电流的相互作用:电流在磁场中会受到力的作用。

如果电流和磁场方向相同,则出现吸引力;如果方向相反,则出现斥力。

根据安培定律,电流元所产生的磁感应强度在距离电流元位置的空间中受到电流元法向位置的矢量与距离的乘积的影响。

7. 磁场中的电磁感应定律:磁场变化会产生电场。

根据法拉第电磁感应定律,当电磁感应变化时,会在导体中产生感应电流。

感应电流的大小与导体的速度和磁场的变化率有关。

8. 磁场的磁感线:磁感线是表示磁场方向和强度的曲线。

磁感线是闭合曲线,无始无终。

磁感线通过磁场中的所有点,磁场的强弱通过磁感线的曲线的密集程度体现。

9. 磁感应强度的计算:根据比奥-萨伐尔定律,磁感应强度的大小与电流和距离之间的乘积成正比。

B(磁感应强度)=μ0(真空中的磁导率) × I(电流量)/ 2πr(距离)。

10. 磁场的高斯定理:磁场的高斯定理表明,在任何闭合曲面上,磁感应强度的散度等于零。

磁场知识总结

磁场知识总结

磁场盘州市第七中学王富瑾一、磁场1、磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场。

2、基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。

3、安培分子电流假说:安培提出:在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。

若这些微小磁铁排列有序,则该物体有磁性。

二、磁感应强度B1、定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。

2、单位T(特斯拉),1T=1N/(A·m)。

3、标矢性:矢量。

通过该点的磁感线的切线方向,也是该点小磁针的北极(N)指向。

4、磁场中某位置的磁感应强度的大小及方向是客观存在的(仅取决于磁场本身),与放入的导线电流I的大小、导线的长短L无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

5、若空间中存在多个磁场,则某位置的磁感应强度为各分磁场的磁感应强度的矢量和(平行四边形定则)。

三、磁感线1、在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。

2、磁感线是闭合曲线:磁铁外部从N极出来,进入S极;在磁铁内部,由S极到N极。

3、磁感线永不相交4、磁感线的疏密表示磁场的强弱,即磁感应强度B的大小。

5、磁感线的切线方向即为磁感应强度B的反向,也是小磁针的北极指向(小磁针的北极要转向与磁感线切线一致的方向)6、常见磁场的磁感线的分布:7、地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近。

(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。

物理磁场知识点总结

物理磁场知识点总结

物理磁场知识点总结一、磁场的基本概念和性质磁场是一个矢量场,具有方向性,方向由被测点附近正常情况下运动带电荷子的方向决定。

磁场具有强度,其强度由磁场中的磁通量密度决定,磁通量密度单位为特斯拉(Tesla)。

磁场是连续的,磁通量在磁场中连续流动,遵循磁场规律。

二、磁场的产生和影响因素磁场是由运动的带电粒子(主要是电子)产生的。

当电流通过导线时,会在导线周围产生磁场。

电流的方向、大小和导线的形状会影响磁场的分布。

自旋磁矩和轨道磁矩也会产生磁场。

带电粒子(如电子)具有固有的自旋磁矩,当粒子的自旋磁矩与周围的磁场相互作用时,会产生局部磁场。

此外,带电粒子在原子核周围运动会产生轨道磁矩,轨道磁矩与自旋磁矩相互作用,可以导致磁场的产生。

影响磁场强弱的因素包括电流的大小、线圈匝数以及线圈中是否有铁芯等。

电流越大、线圈匝数越多、有铁芯,则产生的磁场就越强,反之则越弱。

三、磁极和磁相互作用磁体各部分磁性强弱不同,磁性最强的区域叫磁极。

任何磁体都有两个磁极:南极(S极)和北极(N极)。

同名磁极相互排斥,异名磁极相互吸引。

磁极间的相互作用是以磁场作为媒介的,因此两磁体不用在物理层面接触就能发生作用。

四、磁化和去磁使原来没有磁性的物体获得磁性的过程叫做磁化。

磁化后的物体失去磁性的过程叫做退磁或去磁。

五、磁场的应用磁场的应用范围广泛,涉及到电磁感应、磁性材料应用、医学影像诊断、磁悬浮和地磁导航等领域。

例如,磁悬浮列车利用磁力驱动实现高速悬浮行驶;磁共振成像(MRI)利用磁场进行人体内部结构成像诊断;磁体治疗仪利用磁场的生物效应进行治疗;磁控靶向给药系统通过磁场引导药物到达特定部位等。

总之,物理磁场是一个复杂而重要的物理概念,掌握其基本概念、性质、产生和应用等方面的知识点对于深入理解电磁现象和应用电磁技术具有重要意义。

物理磁场知识点梳理总结

物理磁场知识点梳理总结

物理磁场知识点梳理总结磁场是物理学中一个重要的概念,它描述了空间中存在的磁力的分布和性质。

磁场是由运动电荷产生的,也可以通过电流或者磁铁来产生。

磁场对于人类生活和科学研究都有极其重要的意义,例如在电力工程中的应用、电子设备的工作原理等许多方面都离不开磁场的作用。

因此,了解磁场的基本概念和性质对于物理学的学习和实际应用都是十分重要的。

1. 磁场的基本概念磁场是一种物质中不存在的力场,它在周围产生磁力以及磁感应强度,是物质受到磁力作用的区域。

在空间中任意点的磁场可以用矢量表示,通常用B来表示,其大小和方向分别表示磁感应强度的大小和方向。

磁感应强度的方向由磁力线标示,磁力线始于磁北极,终于磁南极,磁力线与磁场的方向相同。

2. 磁场的产生和性质磁场是由电荷运动产生的,即运动电荷都会在其周围产生磁场。

而且,电流也会产生磁场。

在物质中,原子和分子中的电子自转和公转产生微观电流。

此外,磁体也能产生磁场。

磁场有许多性质,例如磁场的超导性、磁场的变化会产生感应电动势、磁场对物质的影响等。

3. 磁场的作用磁场有许多重要的作用,例如磁场对电流的作用、磁场对磁性材料的作用、电磁感应等。

其中最重要的即为磁场对电流的作用,这一作用是电动机、磁铁、变压器等许多电气设备的基础。

4. 磁场的测量磁场的测量通常采用磁感应强度计来测量,磁感应强度计是利用电磁感应原理制成的电磁式感应仪器。

磁感应强度计可以根据安培定则来测定磁场的强度。

5. 磁场的数学描述磁场可以用磁感应强度B来描述,其大小和方向分别表示磁感应强度的大小和方向。

磁场的数学描述与电场的数学描述类似,可以通过旋度来描述磁场的性质和变化规律。

6. 磁场与电场磁场和电场是紧密相关的两个物理概念,它们都属于场这一概念的范畴。

磁场和电场都有相似的数学描述,而且它们之间也存在相互作用和相互转换的关系。

例如电磁感应现象就揭示了磁场与电场之间的相互转换关系。

7. 磁场的应用磁场在生活和科学研究中有着许多重要的应用,例如在电力工程中的应用、电子设备的工作原理等许多方面都离不开磁场的作用。

磁场知识点总结

磁场知识点总结

磁场知识点总结磁场是物理学中一个重要的概念,涉及到电磁现象和磁性材料的研究。

磁场可以通过磁力线的分布来描述,它是由磁荷产生的,类似于电场是由电荷产生的。

磁场有一些基本的性质和规律,下面将对一些常见的磁场知识点进行总结。

1. 磁场的定义磁场是指物质周围的一种特殊空间,存在磁场的区域被称为磁场区域。

磁场可以通过磁力线的分布来描述,磁力线是一种用于表示磁场强度和方向的虚拟线条。

2. 磁场的产生磁场是由磁荷产生的,磁荷分为单极磁荷和双极磁荷。

目前还没有发现单极磁荷的存在,因此磁场主要是由双极磁荷(即磁偶极子)产生的。

磁偶极子由两个相等大小、反向排列的磁荷构成,其磁场强度与距离的平方成反比。

3. 磁场的单位和测量磁场的单位是特斯拉(T),国际单位制中也可以用韦伯/平方米(Wb/m^2)来表示。

磁场可以通过磁感应强度来测量,磁感应强度是磁场对单位面积上垂直于磁力线的力的大小。

磁感应强度的测量可以使用霍尔效应、法拉第电磁感应等方法。

4. 磁场的特性磁场具有一些特性,如磁场的方向是从南极指向北极,磁场线是闭合曲线,磁场线之间不会相交等。

在磁场中的物体会受到磁力的作用,磁力的大小与物体的磁性、磁场强度和物体在磁场中的位置有关。

5. 磁场与电流的关系电流也会产生磁场,这是由于电流中带有的移动电荷形成的磁偶极子。

根据右手定则,电流方向垂直于电流方向和磁场方向的平面上,指向与磁场方向相同的方向。

这一定律可以用来确定电流所产生的磁场方向。

6. 磁场的应用磁场在生活中有着广泛的应用,如电磁铁、电动机、发电机、磁共振成像等。

磁共振成像利用磁场对人体内部的水分子进行激发和检测,从而得到人体的影像。

磁场是物理学中的一个重要概念,涉及到电磁现象和磁性材料的研究。

磁场的产生与磁荷和电流有关,磁场的特性包括方向、闭合性等。

磁场在生活中有着广泛的应用,对人类的生活和科学研究起着重要的作用。

磁场知识点汇总.

磁场知识点汇总.

磁场知识点汇总一、磁场⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。

⒉磁场(磁感应强度)的方向规定为磁场中小磁针N 极的受力方向(磁感线的切线方向)。

⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。

二、磁感线⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。

⒉磁感线是闭合曲线⎩⎨⎧→→极极磁体的内部极极磁体的外部N S S N⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。

⒋任何两条磁感线都不会相交,也不能相切。

三、安培定则是用来确定电流方向与磁场方向关系的法则弯曲的四指代表⎩⎨⎧)()(环形电流或通电螺线管电流的方向直线电流磁感线的环绕方向四、安培分子电流假说揭示了磁现象的电本质,即磁体的磁场和电流的磁场一样,都是由电荷的运动产生的。

五、几种常见磁场⒈直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱⒉通电螺线管的磁场:管外磁感线分布与条形磁铁类似,管内为匀强磁场。

⒊地磁场(与条形磁铁磁场类似)⑴地磁场N 极在地球南极附近,S 极在地球北极附近。

地磁场B 的水平分量总是从地球南极指向北极,而竖直分量南北相反,在南半球垂直地面向上,在北半球垂直地面向下⑵在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。

六、磁感应强度:⑴定义式LIF B =(定义B 时,B I ⊥)⑵B 为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则。

七、磁通量⒈定义一:φ=BS ,S 是与磁场方向垂直的面积,即φ=B ⊥S ,如果平面与磁场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积⊥S⒉定义二:表示穿过某一面积磁感线条数磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或穿出。

当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф1-ф2(ф1为正向磁感线条数,ф2为反向磁感线条数。

磁场知识点汇总.

磁场知识点汇总.

磁场知识点汇总.一、磁场的基本概念1、磁场:磁体或电流周围存在的一种特殊物质,能够对放入其中的磁体或电流产生力的作用。

磁场的物质性:磁场是客观存在的,虽然看不见、摸不着,但可以通过它对其他磁体或电流的作用来感知和研究。

2、磁感应强度:描述磁场强弱和方向的物理量,符号为 B。

定义:在磁场中垂直于磁场方向的通电导线,所受的安培力 F 跟电流 I 和导线长度 L 的乘积 IL 的比值叫做磁感应强度。

单位:特斯拉(T)。

方向:小磁针静止时 N 极所指的方向。

3、磁感线定义:在磁场中画出一些有方向的曲线,曲线上每一点的切线方向都跟该点的磁感应强度方向一致。

特点1、磁感线是闭合曲线,在磁体外部,磁感线从 N 极出发,回到 S 极;在磁体内部,磁感线从 S 极指向 N 极。

2、磁感线的疏密程度表示磁场的强弱,磁感线越密的地方,磁感应强度越大。

3、磁感线上某点的切线方向表示该点的磁场方向。

二、常见磁场的分布1、条形磁铁的磁场外部磁场:从 N 极指向 S 极。

内部磁场:从 S 极指向 N 极。

2、蹄形磁铁的磁场外部磁场:从 N 极指向 S 极。

内部磁场:从 S 极指向 N 极。

3、通电直导线周围的磁场安培定则(右手螺旋定则):用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,那么弯曲的四指所指的方向就是磁感线的环绕方向。

磁场分布特点:离导线越近,磁场越强;磁感线是以导线为圆心的同心圆。

4、环形电流的磁场安培定则:让右手弯曲的四指与环形电流的方向一致,那么伸直的大拇指所指的方向就是环形电流中心轴线上磁感线的方向。

磁场分布特点:环形电流的磁场类似于条形磁铁的磁场。

5、通电螺线管的磁场安培定则:用右手握住螺线管,让弯曲的四指所指的方向跟电流的方向一致,那么大拇指所指的方向就是螺线管内部磁感线的方向,也就是螺线管的 N 极。

磁场分布特点:通电螺线管的磁场与条形磁铁的磁场相似,管内为匀强磁场,管外为非匀强磁场。

三、安培力1、定义:通电导线在磁场中受到的力。

高中物理磁场知识点总结

高中物理磁场知识点总结

高中物理磁场知识点总结一、磁场的概念1. 磁场定义:磁场是磁体周围存在的特殊形态的物质,它是一种力场。

2. 磁场的描述:磁场的强弱和方向可以通过磁力线来描述。

3. 磁场的来源:永久磁铁、电流、运动电荷等。

二、磁场的基本性质1. 磁场对磁体的作用:磁体在磁场中会受到磁力的作用。

2. 磁场对电流的作用:电流在磁场中会受到安培力的作用。

3. 磁通量:通过某一面积的磁力线的总数,表示磁场的强度和面积的乘积。

三、磁场的测量1. 磁感应强度(B):描述磁场强度的物理量,单位是特斯拉(T)。

2. 磁场强度(H):与磁感应强度有关,但受到介质磁化率的影响。

3. 测量工具:磁力计、霍尔效应传感器等。

四、磁场的计算1. 毕奥-萨伐尔定律:计算由电流产生的磁场的基本定律。

2. 磁场的叠加原理:多个磁场源产生的磁场可以通过矢量叠加得到。

3. 磁矩:描述磁体磁性质的物理量,与磁场的关系。

五、磁场的应用1. 电动机和发电机:利用磁场与电流的相互作用原理。

2. 磁悬浮列车:利用磁场的排斥和吸引力实现悬浮。

3. 磁共振成像(MRI):利用磁场和射频脉冲产生身体内部的图像。

六、磁场的分类1. 恒定磁场:磁场随时间不变。

2. 交变磁场:磁场随时间周期性变化。

3. 非均匀磁场:磁场强度在空间中不均匀分布。

七、磁场的安全与防护1. 磁场对人体的影响:强磁场可能对人体产生影响,需采取防护措施。

2. 磁场对电子设备的影响:强磁场可能干扰电子设备的正常工作。

3. 磁场屏蔽:使用磁性材料来减少外部磁场的影响。

八、磁场的前沿研究1. 超导磁体:利用超导材料产生强磁场。

2. 磁制冷:利用磁性材料的磁热效应进行制冷。

3. 量子磁学:研究量子层面上的磁性现象。

请将以上内容复制到Word文档中,并根据需要调整格式和样式。

您可以添加页眉、页脚、目录和其他文档元素以提高专业性和可读性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场知识点汇总一、磁场⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。

⒉磁场(磁感应强度)的方向规定为磁场中小磁针N 极的受力方向(磁感线的切线方向)。

⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。

二、磁感线⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。

⒉磁感线是闭合曲线⎩⎨⎧→→极极磁体的内部极极磁体的外部N S S N⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。

⒋任何两条磁感线都不会相交,也不能相切。

三、安培定则是用来确定电流方向与磁场方向关系的法则弯曲的四指代表⎩⎨⎧)()(环形电流或通电螺线管电流的方向直线电流磁感线的环绕方向四、安培分子电流假说揭示了磁现象的电本质,即磁体的磁场和电流的磁场一样,都是由电荷的运动产生的。

五、几种常见磁场⒈直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱⒉通电螺线管的磁场:管外磁感线分布与条形磁铁类似,管内为匀强磁场。

⒊地磁场(与条形磁铁磁场类似)⑴地磁场N 极在地球南极附近,S 极在地球北极附近。

地磁场B 的水平分量总是从地球南极指向北极,而竖直分量南北相反,在南半球垂直地面向上,在北半球垂直地面向下⑵在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。

六、磁感应强度:⑴定义式LIF B =(定义B 时,B I ⊥)⑵B 为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则。

七、磁通量⒈定义一:φ=BS ,S 是与磁场方向垂直的面积,即φ=B ⊥S ,如果平面与磁场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积⊥S⒉定义二:表示穿过某一面积磁感线条数磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或穿出。

当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф1-ф2(ф1为正向磁感线条数,ф2为反向磁感线条数。

)八、安培力大小⒈公式BLI F =sin θ(θ为B 与I 夹角)[]BLI F ,0∈⒉通电导线与磁场方向垂直时,安培力最大BIL F =⒊通电导线平行于磁场方向时,安培力0=F⒋B 对放入的通电导线来说是外磁场的磁感应强度⒌式中的L 为导线垂直于磁场方向的有效长度。

例如,半径为r 的半圆形导线与磁场B 垂直放置,导线的的等效长度为2r ,安培力BIr F 2=。

九、安培力的方向⒈方向由左手定则来判断。

⒉安培力总是垂直于磁感应强度B 和电流I 所决定的平面,但B 、I 不一定要垂直。

十、物体在安培力作用下运动方向的判定方法⒈电流元分析法把整段电流等效分成很多电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力的方向,最后确定运动方向,注意一般取对称的电流元分析。

[例题] 如图所示,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是A.沿纸面逆时针转动B.沿纸面顺时针转动C.a 端转向纸外,b 端转向纸里D.a 端转向纸里,b 端转向纸外⒉等效分析法环形电流可以等效为小磁针(或条形磁铁),条形磁铁也可等效成环形电流,通电螺线管可等效为多个环形电流或条形磁铁。

⒊利用结论法⑴两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥。

⑵两电流不平行时,有转动到相互平行且方向相同的趋势。

十一、 洛伦兹力的大小⒈当电荷速度方向与磁场方向垂直时,洛伦兹力的大小qvB F =⒉当0=v 时,0=F ,即磁场对静止的电荷无作用力,磁场只对运动电荷有作用力,这与电场对其中的静止电荷或运动电荷总有电场力的作用是不同的。

⒊当电荷运动方向与磁场方向相同或相反,即v 与B 平行时,0=F 。

⒋当电荷运动方向与磁场方向夹角为θ时,洛伦兹力的大小qvB F = sin θ注意:⑴以上公式中的v 应理解为电荷相对于磁场的运动速度。

⑵会推导洛伦兹力的公式。

十二、 洛伦兹力的方向⒈用左手定则来判断:让磁感线穿过手心,四指指向正电荷运动的方向(或负电荷运动方向的反方向),大拇指指向就是洛伦兹力的方向。

⒉无论v 与B 是否垂直,洛伦兹力总是同时垂直于电荷运动方向与磁场方向。

洛伦兹力的特点洛伦兹力的方向总与粒子运动的方向垂直,洛伦兹力只改变速度的方向,不改变速度的大小,故洛伦兹力永不做功。

B 1 d U O B E 十三、 安培力和洛伦兹力的关系安培力是洛伦兹力的宏观表现,洛伦兹力是安培力的微观实质。

方向都由左手定则判断。

洛伦兹力不做功,安培力可以做功。

十四、 洛伦兹力作用下的运动当带电粒子垂直进入磁场时,洛伦兹力不做功,粒子做匀速圆周运动。

由牛顿第二定律可得:rmv qvB 2=,所以qB mv r =,粒子运动的周期qB m v r T ππ22== [例题] 如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知:A 、粒子带负电B 、粒子运动方向是abcdeC 、粒子运动方向是edcbaD 、粒子在上半周所用时间比下半周所用时间长十五、 带电粒子在相互垂直的电场和磁场中的运动 ⒈速度选择器⑴作用:可以把具有某一特定速度的粒子选择出来。

⑵粒子受力特点:同时受相反方向的电场力和磁场力作用。

⑶粒子匀速通过速度选择器的条件:电场力和洛伦兹力平衡:qvB qE =,即速度大小只有满足BE v =的粒子才能沿直线匀速通过。

⑷速度选择器对正、负电荷均适用, 带电粒子能否匀速通过电、磁场与粒子所带电荷量、电性、粒子的质量无关,仅取决于粒子的速度(不是速率)。

⑸若B E v >或B E v <,粒子都将偏离直线运动。

⑹粒子若从右侧射入,则不可能匀速通过电磁场,这说明速度选择器不仅对速度大小有选择,而且对速度方向也有选择。

⒉磁流体发电机⑴作用:可以把等离子体的内能直接转化为电能。

⑵原理:高速的等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,而从整体来说呈中性)喷射入磁场,在洛伦兹力作用下分别聚集在A 板和B 板,于是在板间形成电场,当板间电场对电荷的作用力等于电荷所受洛伦兹力,两板间形成一定的电势差,合上开关K 后,就能对负载供电。

⑶磁流体发电机的电动势:Bdv E =,推导:当外电路断开时,电源电动势等于路端电压Bdv U E qE qvB Ed U ==⇒⎭⎬⎫==源 带电粒子在有界匀强磁场中的运动三个问题⒈圆心的确定:圆心一定在与速度方向垂直的直线上,根据入射点和出射点的速度方向做出垂线,交点即为圆心。

v A B v R K M N a b c d e B A C⒉半径的计算:一般是利用几何知识解直角三角形。

⒊带电粒子在有界磁场中运动时间的确定:利用圆心角和弦切角的关系或四边形内角和等于360度或速度的偏向角(带电粒子射出磁场的速度方向与射入磁场的速度方向之间的夹角)等于圆弧轨道所对的圆心角,再由公式T t πθ2=求运动时间。

十六、 质谱仪质谱仪主要用于分析同位素,测定其质量、荷质比.下图为一种常见的质谱仪,由粒子源、加速电场(U)、速度选择器(E 、B 1)和偏转磁场(B 2)组成.若测得粒子在回旋中的轨道直径为d ,求粒子的荷质比.(dB B E m q 212=) [例题] 如图15-6所示为质谱仪测定带电粒子质量的装置的示意图.速度选择器(也称滤速器)中场强E 的方向竖直向下,磁感应强度B 1的方向垂直纸面向里,分离器中磁感应强度B 2的方向垂直纸面向外.在S 处有甲、乙、丙、丁四个一价正离子垂直于E 和B 1入射到速度选择器中,若丁丙乙甲m m m m =<=,丁丙乙甲v v v v <=<,在不计重力的情况下,则分别打在P 1、P 2、P 3、P 4四点的离子分别是 ( )A .甲乙丙丁B .甲丁乙丙C .丙丁乙甲D .甲乙丁丙十七、 回旋加速器⒈工作原理磁场的作用:带电粒子以某一速度垂直磁场方向进入磁场后,并在洛伦兹力作用下做匀速圆周运动,其周期和速率、半径均无关(qBm T π2=),带电粒子每次进入D 形盒都运动相等的时间(半个周期)后平行电场方向进入电场中加速。

交流电压:为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个周期与带电粒子在D 形盒中运动周期相同的交变电压。

⒉带电粒子的最终能量 当带电粒子的速度最大时,其运动半径也最大,由qB mv r =,得mqBr v =。

若D 形盒的半径为R ,则带电粒子的最终动能mR B q E m 2222= 注意:⑴ 带电粒子的最终能量与加速电压无关,只与磁感应强度B 和D 形盒半径有关。

⑵带电粒子在电场中加速时间可忽略不计,两D 形盒间电势差正、负变化的周期应和粒子圆周运动的周期相同。

十八、十九、图15-6 S二十、(专业文档资料素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)二十一、二十二、二十三、。

相关文档
最新文档