信息光学实验指导书

合集下载

信息光学 全息实验

信息光学 全息实验

全息光学实验[实验目的]1、学习和掌握全息照相的基本原理;2、掌握全息照相的实验技术;3、了解全息图的基本性质、观察并总结全息照相的特点。

[实验原理]普通照相是把从物体表面上各点发出的光(反射光或散射光)的强弱变化经照相物镜成像,并记录在感光底片上,这只记录了物光波的光强(振幅)信息,而失去了描述光波的另一个重要因素——位相信息,于是在照相底片上能显示的只是物体的二维平面像。

全息照相则不仅可以把物光波的强度分布信息记录在感光底片上,而且可以把物波光的位相分布信息记录下来,即把物体的全部光学信息完全地记录下来,然后通过一定方法重现原始物光波既再现三维物体的原像。

这就是全息照相的基本原则,由三维物体所构成的全息图能够再现三维物体的原像。

全息照相的基本原理是利用相干性好的参考光束R 和物光束O 的干涉和衍射,将物光波的振幅和位相信息“冻结”在感光底片上,即以干涉条纹的形式记录下来。

在底片上所记录的干涉图样的微观细节与发自物体上各点的光束对应,不同的物光束(物体)将产生不同的干涉图样。

因此全息图上只有密密麻麻的干涉条纹,相当于一块复杂的光栅,当用与记录时的参考光完全相同的光以同样的角度照射全息图时,就能在这“光栅”的衍射光波中得到原来的物光波,被“冻结”在全息片的物光波就能“复活”,通过全息图片就能看见一个逼真的虚像在原来放置物体的地方(尽管原物体已不存在),这就是全息图的物光波前再现。

全息照相分两步,第一步是波前记录。

设x-y 平面为全息干板记录平面,底片上一点(x,y )处物光束O 和参考光束R 的复振幅分布分别为O o (x,y)和R o (x,y):)],(exp[),(),()],(exp[),(),(y x j y x R y x R y x j y x O y x O R o O o ϕϕ==(1)由于它们系相干光束,所以物光和参考光在底片上相干迭加后的光强分布为:),(),(),(),(),(),(),(),(),(222y x R y x O y x R y x O y x R y x O y x R y x O y x I ∗∗+++=+=(2)若全息干板的曝光和冲洗都控制在振幅透过率t 随曝光量E[E=(光强)×(曝光时间)]变化曲线的线性部分,则全息干板的透射系数t(x,y)与光强I(x,y)呈线性关系,即t(x,y)=t o +βI(x,y)(3)其中t o 为底片的灰雾度,β为比例常数,对于负片β<0,这就是全息图的记录过程。

光电信息技术实验指导书word资料13页

光电信息技术实验指导书word资料13页

光电信息技术实验指导书光通信系2019年8月实验一光纤活动连接器插入损耗及回波损耗测试实验一、实验目的1、认知光纤活动连接器(法兰盘)。

2、了解光纤活动连接器在光纤通信系统中的作用。

二、实验内容1、认识和了解光纤活动连接器及其作用。

2、测量光纤活动连接器的插入损耗。

三、实验器材1、主控&信号源、25号模块各1块2、23号模块(光功率计)1块3、连接线若干4、光纤跳线2根5、光纤活动连接器(法兰盘)1个6、Y型分路器1个四、实验原理光纤活动连接器即光纤适配器,又叫法兰盘,是光纤传输系统中光通路的基础部件,是光纤系统中必不可少的光无源器件。

它能实现系统中设备之间、设备与仪表之间,设备与光纤之间以及光纤与光纤之间的活动连接,以便于系统接续、测试、维护。

它用于光纤与光纤之间进行可拆卸(活动)连接的器件。

它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小。

目前,光纤通信对活动连接器的基本要求是:插入损耗小,受周围环境变化的影响小;易于连接和拆卸;重复性、互换性好;可靠性高,价格低廉。

光连接器的指标有:插入损耗、回波损耗、重复性和温度范围等。

I、插入损耗测试光纤活动连接器插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的分贝数,计算公式为:IL=10lg(P0/P1)其中P0为输入端的光功率,P1为输出端的光功率,功率单位W。

设备自带的功率计组成架构图插入损耗实验测试框图a插入损耗实验测试框图b光纤活动连接器的插入损耗越小越好。

光纤活动连接器插入损耗测试方法为:如上述实验测试框图所示,(图B)向光发端机的数字驱动电路送入一伪随机信号,保持注入电流恒定。

将活动连接器连接在光发机与光功率计之间,记下此时的光功率P1;(图A)取下活动连接器,再测此时的光功率,记为P0,将P0、P1代入公式即可计算出其插入损耗。

《信息光学》课程实验讲义与教案(0708级)

《信息光学》课程实验讲义与教案(0708级)

六、注意事项
1) 在进行实验过程中,不要振动测量台。 2) 严禁用手触摸各光学元件。 3) 实验结束后注意将激光器电源关闭。
7
θ调制
θ调制技术是阿贝原理的应用。第一步入射光经物平面发生夫琅禾费衍射, 在透镜的后焦面上形成一系列衍射斑(即物的频谱)这一步称“分频” 。第二步 是各衍射斑发出的球面波在像平面上相干叠加,像就是像平面上的干涉场,这一 步称“合频” ,形成物的像。如果用白光光源照明光栅物片,这会在频谱上得到 色散彩色频谱。每个彩色铺板的原色分布都是从外相里按红、橙、黄、绿、蓝、 靛、紫的顺序排列。这是一位光栅的衍射角与入射光的波长有关。红光的波长最 大,衍射角最大,分布在最外面;紫光相反。如果在频谱面上放置一个空间滤波 器,让不同方向的谱斑通过不同的颜色,这在像面上得到彩色像。这是利用不同 方向的光栅对图像进行调制,因此称为θ调制法。又因为它将图像中的不同部位 “编”上不同的颜色,故又称空间假彩色编码。
《信息光学》课程实验讲义与教案
编写者:翁嘉文 参考教材:自编《信息光学讲义》
华南农业大学 应用物理系 2009 年 5 月
目 录
实验一 阿贝成像原理与空间滤波………………………………………………… 2 实验二θ调制 ……………………………………………………………………… 8 实验三 三维形貌测量 …………………………………………………………… 13 实验四 数字全息 ………………………………………………………………… 19 实验 教案 ………………………………………………………………………… 23
一、实验目的
1. 了解信号与频谱的关系以及透镜的傅里叶变换功能。
2. 掌握现代成像原理和空间滤波的基本原理,理解成像过程中“分频”和

信息光学实验讲义(2011年版)

信息光学实验讲义(2011年版)

信息光学实验实验讲义华南师范大学信息光电子科技学院信息光学实验目录实验一、透射型全息图的拍摄与再现....................................... II-3实验二、像全息图的拍摄与再现.............................................. II-9实验三、阿贝—波特成像及空间滤波..................................... II-12实验四、调制实验........................................................... I I-16全息照相又称全息术,是英国科学家Gabor 1947年为提高电子显微镜的分辨率提出并实现的物理思想。

由于需要相干性良好的光源,直至60年代初激光的出现和Leith、Upatnieks提出离轴全息术后,全息术的研究才进入了实用和昌盛的研究阶段,成为现代光学的一个重要分支。

Gabor因提出全息术的思想而获得1971年诺贝尔物理学奖。

全息术是利用光的干涉,将物体发出的光波以干涉条纹的形式记录下来,并在一定条件下,用光的衍射原理使其再现。

由于用干涉方法记录下的是物体明暗、远近和颜色的全部信息,可以形成与原物体逼真的三维图像,因此称为全息术或全息照相。

经过科学家们近40年的努力,全息术在技术和记录材料方面都有了快速的发展。

在应用方面,全息术不仅作为一种显示技术得到了很大的发展,而且在信息存贮和处理、检测、计量、防伪、光学图像实时处理、光学海量存贮、光计算和制作有特殊功能的全息光学元件等方面都有广泛的应用。

实验一、透射型全息图的拍摄与再现一、实验目的1.学习和掌握透射型全息照相的基本原理;2.通过实验了解和掌握透射型全息照相基本技术;3.了解和掌握透射型全息图的激光再现方法;4.通过实验了解全息照相的特点;5.进一步加深对光波复振幅、波前及共轭光波的理解。

信息光学实验报告册

信息光学实验报告册

信 息 光 学 实 验实验报告填写实验报告的要求1.实验前要认真预习实验内容,理解实验的原理。

2.实验过程中要严肃认真地做好实验记录,确认所记录的数据无误后,认真填写实验报告。

3.在试验过程中,对观察到的现象,尽量用图示说明并加以简明的理论分析。

4.对实验原理深入理解,认真回答课后思考题。

5.要求书写整洁,字体端正。

实验1 1 像面全息图像面全息图像面全息图第一部分第一部分::预习(一)实验目的1.掌握像面全息图的记录和再现原理,学会制作像面全息图,为彩虹全息实验打下基础;2.观察像面全息图的再现像,比较其与普通三维全息图的不同之处; 3.分析离焦量对像面全息图再现像清晰度的影响(二) 实验光路La -激光器 BS -分束镜 M1、M2-全反镜 L-成像透镜 Lo1、Lo2-扩束镜 H -全息片(三) 实验原理将物体靠近全息记录介质,或利用成像系统将物体成像在记录介质附近,再引入一束与之相干的参考光束,即可制作像全息图。

当物体紧贴记录介质或物体的像跨立在记录介质表面上时,得到的全息图称为像面全息图。

因此,像面全息图是像全息图的一种特例。

像面全息图的记录光路如图所示。

激光器发出的激光束经反射镜M 1折转后被分束镜分成两束,透过的光束经反射镜射M 2反射后被扩束镜扩束并照明物体,物体被成象透镜成像在全息干板上构成物光;M 3反射的一束光被扩束镜扩束并照明全息干板H ,作为参考光。

由于全息干板位于像面上,故记录的是像面全息图。

像面全息图的特点是可以用宽光源和白光再现。

对于普通的全息图,当用点光源再现时。

物上的一个点的再现像仍是一个像点。

若照明光源的线度增大,像的线度随之增大,从而产生线模糊。

计算表明,记录时物体愈靠近全息图平面,对再现光源的线度要求就愈低。

当物体或物体的像位于全息图平面上时,再观光源的线度将不受限制。

这就是像面全息图可以用宽光源再现的原因。

全息图可以看成是很多基元全息图的叠加,具有光栅结构。

信息光学实验教学大纲

信息光学实验教学大纲

《信息光学实验》教学大纲【课程编号】16314079【英文名称】Information Optics Experiment【课程学时】40学时【适用专业】光信息科学与技术专业一、本实验课程的教学目的和要求(对学生实验技能、创新能力、科研能力及解决实际问题方面的锻炼)信息光学实验是光信息专业学生必修的一门专业实验课程,是把信息光学理论运用于实践解决实际问题培养学生的创新能力、科研能力的一门重要实验课程。

通过教学使学生掌握透射全息图、反射全息图、像面全息图、一步彩虹全息图的制作与再现;理解全息高密度、大容量信息存储的原理,并在实验中实现大容量信息存储的制作与再现;理解全息干涉测量的原理,并用全息干涉法测量微小位移;了解散斑干涉在现代精密测量技术中的应用,通过散斑摄影术实现位相物体厚度的测量。

了解空间滤波与光学信息处理的原理,用光栅法实现图象的相减。

要求学生必须熟悉信息光学的基本理论,了解信息光学理论在现代光学测试技术中的应用,要求学生必须具备一定的实验操作技能,尤其是光学器件及系统调试方法与技巧;具有一定实验数据分析与处理能力。

在掌握全息照相术的全部操作过程与技术后,能够把信息光学的理论与光学器件的特性结合起来,设计正确的光路,达到实验测试的目的,培养学生解决实际问题的能力。

二、本实验课程与其它课程的关系信息光学实验是以《信息光学》理论为基础,学生通过《大学物理实验》、《基础光学实验》、《近代物理实验》训练后,具备一定的实验操作技能与实验数据处理能力,它为学生进行设计性实验、毕业设计打下基础。

三、实验课程理论教学内容安排(包括章节、体系、重点、难点、考核方法、学时安排、实验安排、教材及参考书)绪论:(3学时)1、介绍信息光学实验的目的、要求及操作规范;2、介绍常用光学器件的使用及调整方法;介绍光路系统调节基本要领(等高、共軸、等光程等);3、全息干板的冲洗流程及工艺介绍。

教材:《现代光学实验教程》王仕璠编北京邮电大学出版社参考书:《信息光学》苏显渝编科学技术出版社四、实验内容安排(简要说明实验项目体系的结构、类型[综合型、设计型、验证型、演示型、课外自选型],分项目列出每个实验的目的、要求、内容、方法、时间、参考材料,其它实验(如开放时间的自选实验)选作性实验(6学时)五、实验报告及成绩评定1、必做实验要求每个学生必须完成规范的实验报告。

信息光学实验报告

信息光学实验报告

信息光学实验报告信息光学实验报告引言信息光学是一门研究光学与信息科学交叉的学科,它利用光的特性和技术手段来处理和传输信息。

本实验旨在通过实际操作,探索信息光学的基本原理和应用。

一、光的干涉与衍射光的干涉与衍射是信息光学中重要的现象,本实验使用双缝干涉装置和单缝衍射装置来观察和研究这些现象。

1. 双缝干涉装置实验中使用的双缝干涉装置由一束激光器发出的平行光束照射到一个有两个狭缝的屏上。

通过调节狭缝的间距和光源到屏的距离,我们可以观察到干涉条纹的形成。

实验结果显示,当两个狭缝的间距适当时,干涉条纹清晰可见。

这是因为光波经过两个狭缝后,形成了相干的光波,相干光波的叠加产生了干涉现象。

通过测量干涉条纹的间距,我们可以计算出光的波长。

2. 单缝衍射装置实验中使用的单缝衍射装置由一束激光器发出的平行光束照射到一个有一个狭缝的屏上。

通过调节狭缝的宽度和光源到屏的距离,我们可以观察到衍射现象。

实验结果显示,当狭缝的宽度适当时,我们可以看到在中央明亮的主极大附近有一系列暗纹和亮纹。

这是因为光波经过狭缝后发生衍射,形成了衍射图样。

通过测量衍射图样的角度和宽度,我们可以计算出光的波长和狭缝的宽度。

二、全息术全息术是信息光学中的一项重要技术,它利用光的干涉和衍射原理,将物体的全息图像记录在光敏材料上,并通过光的衍射再现出物体的三维图像。

实验中,我们使用了全息干涉术来记录和再现物体的全息图像。

首先,我们将物体放置在激光器照射下,将物体的全息图像记录在光敏材料上。

然后,我们使用激光束照射光敏材料,通过光的衍射,我们可以再现出物体的三维图像。

实验结果显示,通过全息术记录和再现,我们可以获得物体更加真实和立体的图像。

全息术在三维成像、光学存储和光学计算等领域有着广泛的应用。

三、光纤通信光纤通信是信息光学中的一项重要应用,它利用光的传输特性来实现信息的高速传输。

实验中,我们使用了一根光纤来传输信息。

我们将一束激光束通过光纤发送到接收端,通过调节激光的强度和频率,我们可以实现不同的信号传输。

光学信息处理,实验报告,清华

光学信息处理,实验报告,清华

光学信息处理,实验报告,清华光学信息处理实验报告实验十透镜的FT性质及常用函数与图形的光学频谱分析一、实验目的:1. 了解透镜对入射波前的相位调制原理2. 加深对透镜复振幅传递函数透过率物理意义的认识(参见实验十一实验原理)3. 应用光学频谱分析系统观察常见图形的傅里叶(FT)频谱,加深空间频率域的概念二、实验原理:理论基础:波动方程、复振幅、光学传递函数透镜由于本身厚度变化,使得入射光在通过透镜时,各处走过的光程不同,即所受时间延迟不同,因而具有位相调制能力,下图为简化分析,假设任意点入射的光线在透镜中的传播距离等于该点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生大小正比于透镜各点厚度的位相变化,透镜传递函数记为:t(x,y)=exp[jΦ(x,y)] (1)Φ(x,y)=kL(x,y)L(x,y):表示光程MNL(x,y)=nD(x,y)+[D0-D(x,y)] (2)D0:透镜中心厚度。

D:透镜厚度。

n:透镜折射率。

可见只要知道透镜厚度函数D(x,y)可得出其位相调制,在球面透镜傍轴区域,用抛物面近似球面,可得到球面透镜的厚度函数:D?x,y??D0?12x?y221R?11?(3)R2??R1,R2:构成透镜的两个球面的曲率半径。

因此有111t?x,y??exp?jknD0??exp??jk?n?1?x2?y2RR(4)221?111n?1?引入焦距f,其定义式为??代入(4)得:fRR2??1 k2t?x,y??exp?jknD0?exp??jx?y22f此即透镜位相调制的表达式。

第一项位相因子仅表示透镜对于入射光波的常量位相延迟,不影响位相的空间分布,即波面形状。

第二项起调制作用的因子,它表明光波通过透镜时的位相延迟与该点到透镜中心的距离平方成正比。

而且与透镜的焦距有关。

其物理意义在于,当入射光波ui?x,y??1时分布为u'?x,y??u?x,y?*t?x,y??exp??jk2x?y22f傍轴近似下,这是一个球面波,对于正透镜f0,这是一个向透镜后方距离f处的F会聚的球面波。

信息光学实验一 CAD 实验讲义2-26

信息光学实验一  CAD 实验讲义2-26

实验一、光学CAD实验1、利用光学软件作CAD的初步训练一、实验目的通过对OSLO软件的了解和使用,了解OSLO软件的基本功能并初步掌握模拟、分析和设计光学系统的基本方法,为较专门、高级的光学CAD实验打下基础。

二、实验内容1、熟悉OSLO光学软件。

2、建立光学系统的数据。

3、计算光学系统的像差,分析光学系统的性能[3-5]。

4、研究单透镜的光学和结构参数与像差的关系[3-5]。

5、对简单透镜做优化设计。

三、实验方法与步骤1光学系统数据的输入图11 帮助 9 成像分析 17 点扩散函数分析2 表面数据表格 10 用缺省光线画平面透镜3 总的操作条件表格 11 画立体透镜4 高斯束表格 12 光线像差分析5 表面容差数据表格 13 波前像差分析6 表面数据 14 MTF分析7 傍轴常数 15 MTF通过焦点分析8 光线轨迹分析 16 点列图首先运行《OSLO LT》进入它的主窗口,打开“File”,选“New”,则出现一个子窗口,如图2所示。

选“Custom lens”,并填写表面数,然后“√”,便出现“重建透镜数据表格”。

当发现表面数目不够或多余时,可用鼠标点按表面序号,以便编辑插入新表面或删除多余表面。

字母串“OBJ”,“AST”,“IMS”分别表示物、光阑和像表面。

利用此方法可在物面和像面之间建立你要研究的光学系统所需要的表面数目。

但应注意,该软件所容许的系统最多不能超过10个表面。

比如,要研究一个单透镜,它具有两个表面,所以在物像表面之间至少应包含两个表面。

图2建起光学系统数据表格(如图3反示出物面和镜面)之后,即可按你所准备好的数据按位置填好。

其中包括曲率半径(Radius )、厚度(Thickness )、界面之间的介质参数(Glass )、入射光束半孔径、视场和工作波长(以μ为单位)。

对于某些特殊表面(比如非球面、衍射光栅面、全息图表面等)还应在special 一列填写相应的参量数据。

《光信息传输技术》实验指导书(新)

《光信息传输技术》实验指导书(新)

《光信息传输技术》实验指导书何宁编信息与通信学院2009年12月实验一 光纤及LD 特性测量一.实验目的1.掌握光纤的基本结构和传输特性。

2.了解光纤通信光源的类型及发光机理。

3.掌握光纤及LD 有关特性测量。

二.实验内容及要求1. 光纤损耗特性及连接技术测试。

2.LD 伏安特性测试。

3.LD 电光转换特性测试。

4.LD 调制特性测试。

三.实验原理光纤制造过程是比较复杂的过程,生产光纤的主要材料为石英(SiO 2),其制造流程如图1所示:图1 光纤光缆制造流程图光纤的制作过程一般可分为三个主要步骤:熔炼、拉丝、套塑。

光纤按制作材料不同可分为石英光纤,塑料光纤和氧化物光纤。

按工作波长分为短波光纤(0.85um ),长波长光纤(1.31um ,1.55um )和超长波长光纤(2um 以上)。

按传输模式分为单模光纤和多模光纤。

光纤接续有固定连接和活动连接两种,固定连接一般用于光缆工程上;活动连接一般用于机与线或机与机之间的连接,是可以拆卸的。

光纤接续损耗主要受以下几个因素的影响,被焊接光纤折射率失配,纤蕊失配,端面的平整度和干净程度等。

光纤传输特性主要有损耗特性和频带特性,光纤损耗特性通常用dB/km 表示,引起光能量衰减的原因有吸收损耗、散射损耗和辐射损耗。

要降低光纤衰减,可采用纯度极高的石英玻璃。

光纤频带特性通常用兆赫千米来表示,说明1Km 光纤所具有的带宽能力,光纤频带特性主要受传光时色散性的影响。

光纤的损耗是决定光纤通信系统传输距离的一个很重要的参数,光纤内的吸收、散射和弯曲、微弯以及护套等因素均可引起光纤传输中光功率的衰减,由于精确地计算光纤损耗极为困难,光纤的损耗通常用实验确定,因此,掌握测量光纤损耗的方法十分重要。

光纤中光信号的传输可用下式表示:L e I P L P 1)()(α-= (1)式中)(I P 是光纤输入功率,)(L P 是光纤长L 处的光功率,1α是功率损耗系数,单位是1/米。

信息光学综合实验报告

信息光学综合实验报告

一、实验目的1. 理解信息光学的基本原理和实验方法;2. 掌握信息光学中常用的光学元件和仪器;3. 培养实验操作技能,提高动手能力;4. 通过实验验证信息光学的基本理论和现象。

二、实验原理信息光学是研究光在信息传输、处理和存储等领域中的应用的科学。

本实验主要包括以下几个方面:1. 光的干涉现象:利用光的干涉原理,通过实验观察干涉条纹,研究光波的相干性、相位差和光程差等概念。

2. 光的衍射现象:通过实验观察单缝衍射、圆孔衍射等现象,研究光的衍射规律,了解衍射极限和衍射效率。

3. 光的偏振现象:通过实验观察光的偏振现象,研究偏振光的产生、分解和检验方法,了解偏振光在信息光学中的应用。

4. 光的调制与解调:利用调制和解调技术,实现光信号的传输和处理,研究调制方式、解调方法及调制效率等。

三、实验仪器与设备1. 光源:He-Ne激光器、白光光源;2. 光学元件:透镜、棱镜、光栅、偏振片、全息底片等;3. 仪器设备:光具座、光功率计、显微镜、分光计等。

四、实验内容及步骤1. 光的干涉实验(1)调整光源,使其发出单色光;(2)利用分光计将光束分成两束,一束作为参考光,另一束作为物光;(3)调整透镜和光栅,使物光和参考光在光具座上会合;(4)观察干涉条纹,分析干涉条纹的分布规律。

2. 光的衍射实验(1)调整光源,使其发出单色光;(2)利用单缝衍射实验装置,观察单缝衍射现象;(3)调整圆孔衍射实验装置,观察圆孔衍射现象;(4)分析衍射现象,验证衍射规律。

3. 光的偏振实验(1)调整光源,使其发出偏振光;(2)利用偏振片观察偏振光的产生、分解和检验;(3)分析偏振现象,了解偏振光在信息光学中的应用。

4. 光的调制与解调实验(1)调整光源,使其发出调制信号;(2)利用调制器将信号调制到光波上;(3)利用解调器将调制信号解调出来;(4)分析调制与解调过程,研究调制方式、解调方法及调制效率。

五、实验结果与分析1. 光的干涉实验:观察到干涉条纹,验证了干涉原理,分析了干涉条纹的分布规律。

信息光学实验教程教学设计

信息光学实验教程教学设计

信息光学实验教程教学设计背景随着信息技术的发展以及人们对信息处理和传输的需求不断增加,信息光学技术的应用也越来越广泛。

信息光学实验是信息光学领域中最基础的实验之一,在光、电、机等多个领域有着广泛的应用。

本文主要针对信息光学实验这一课程,进行教学设计。

教学目标本课程的教学目标主要有以下三个方面:1.掌握光的基本原理,包括光的干涉、衍射、透射等现象;2.熟悉信息光学技术的应用,了解光场调制、光波片的工作原理,以及光学成像等;3.掌握信息光学实验中的仪器操作和实验数据的处理。

教学内容本课程的主要教学内容包括以下几个方面:光的基本原理这一部分主要讲解光的基本性质,涉及光的波动理论、折射、反射等现象,以及光的干涉、衍射、透射等现象。

通过实验演示可以帮助学生直观理解光的波动性、光的干涉、衍射等基本现象。

光的成像这一部分主要讲解光的成像原理。

包括解析式成像、透镜成像等内容。

通过实验演示可以让学生直观感受光的成像过程,同时帮助学生理解透镜成像的基本原理。

信息光学技术这一部分主要讲解信息光学技术的应用,包括光场调制、光波片的工作原理,以及光学成像等。

通过实验演示可以让学生直观感受信息光学技术的应用过程,同时帮助学生理解光场调制、光波片的工作原理等基本原理。

实验操作与数据处理这一部分主要讲解实验仪器的使用方法、实验操作的步骤,以及实验数据的处理。

通过实验让学生全面学习信息光学实验中的仪器操作及实验数据处理方法,并加强学生的动手能力和实际操作能力。

教学方法本课程教学方法采用理论结合实验的方式,注重学生的实践能力和实际操作能力的培养。

同时,采用讲授与对话相结合的教学方法,既让学生掌握光学基础理论知识,又可以及时解决学生在学习过程中的疑惑和困惑。

教学时间与进度安排本课程总共分为两个阶段进行,每个阶段时间为4周。

具体进度安排如下:第一阶段第一周:光的波动性;第二周:光的干涉、衍射、透射;第三周:光的成像原理;第四周:透镜成像、实验操作。

(最新)光学实验指导书

(最新)光学实验指导书

第一部分绪论本实验指导书是根据《光学实验》课程实验教学大纲编写,适用于光信息科学与技术专业。

一、本课程实验的作用与任务《光学实验》课程是光信息科学与技术学生进行科学实验基本训练的一门必修基础课,与理论课具有同等重要的地位。

它按照循序渐进的原则,使学生系统的学习物理实验知识、方法和技能,使学生了解科学实验的主要过程与基本方法,为以后的学习和工作莫定良好的基础。

二、本课程实验的教学基本要求:1.在教学中适当的介绍一些物理实验史料,对学生进行辩证唯物主义世界观和方法论的教育,使学生了解科学实验的重要性,明确物理实验课程的地位、作用和任务。

2.要求学生了解测量误差的基本知识,具有正确处理实验数据的初步能力。

其中包括:测量误差的基本概念,随机误差的估算,系统误差的发现和处理,测量不确定度,直接和间接测量的结果表示,有效数字,试验数据处理的常用方法等。

三、本课程实验教学项目及要求第二部分基本实验指导实验一用自准法测薄凸透镜焦距一、实验目的1、掌握简单光路的分析和调整方法2、了解、掌握自准法测凸透镜焦距的原理及方法3、掌握光的可逆性原理测透镜焦距的方法4、掌握光的可逆性原理的光路调节二、实验原理(一)光的可逆性原理当发光点(物)处在凸透镜的焦平面时,它发出的光线通过透镜后将成为一束平行光。

若用与主光轴垂直的平面镜将此平行光反射回去,反射光再次通过透镜后仍会聚于透镜的焦平面上,其会聚点将在发光点相对于光轴的对称位置上。

光的可逆性原理:当光线的方向返转时,它将逆着同一路径传播。

借此原理可测量薄凸透镜的焦距,实验原理见图1-1图1-1当物P在焦点处或焦平面上时,经透镜后光是平行光束,经平面镜反射再经透镜后成像于原物P处(记为Q)。

因此,P点到透镜中心O点的距离就是透镜的焦距f。

(二)自准法如图1-2所示,将物AB放在凸透镜的前焦面上,这时物上任一点发出的光束经透镜后成为平行光,由平面镜反射后再经透镜会聚于透镜的前焦平面上,得相同的倒立实像A´B´。

信息光学实验讲义二

信息光学实验讲义二

信息光学实验讲义(二)指导教师:刘厚通安徽工业大学数理学院实验三全息光栅的制作引言光栅是一种重要的分光元件,在实际中被广泛应用。

许多光学元件, 例如单色仪、摄谱仪、光谱仪等都用光栅作分光元件;与刻划光栅相比, 全息光栅具有杂散光少、分辨率高、适用光谱范围宽、有效孔径大、生产效率高, 成本低廉等突出优点。

实验目的1、了解全息光栅的原理;2、掌握制作全息光栅的常用光路和调整方法;3、掌握制作全息光栅的方法。

基本原理(1)全息光栅当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。

采用线性曝光可以得到正弦振幅型全息光栅。

从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅,这是本节的内容。

(2)光栅制作原理与光栅频率的控制用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片,当波长为λ的两束平行光以夹角 交迭时, 在其干涉场中放置一块全息干版, 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。

相邻干涉条纹之间的距离即为光栅的空间周期d (实验中常称为光栅常数) 。

如图2-1所示:图2-1全息光栅制作原理示意图有多种光路可以制作全息光栅。

其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。

如图2-2和图2-3所示。

Ⅰ图 2-2 全息光栅制作实验光路图MSPL1L2L1234567891011121314151617SPML350150100270200150L1L2图 2-3 全息光栅制作实验光路图图2-2采用马赫-曾德干涉仪光路,它是由两块分束镜(半反半透镜)和两块全反射镜组成,四个反射面接近互相平行,中心光路构成一个平行四边形。

从激光器出射的光束经过扩束镜及准直镜,形成一束宽度合适的平行光束。

这束平行光射入分束板之后分为两束。

一束由分束板反射后达反射镜,经过其再次反射并透过另一个分束镜,这是第一束光;另一束透过分束镜,经反射镜及分束镜两次反射后射出,这是第二束光。

信息光学实验报告

信息光学实验报告

一、实验目的1. 了解信息光学的基本原理和实验方法。

2. 学习利用信息光学技术进行图像处理和光学信息传输。

3. 掌握信息光学实验仪器的操作和实验数据的处理方法。

二、实验原理信息光学是研究光波在信息传输、处理和存储等方面的学科。

本实验主要涉及以下内容:1. 光学信息传输:利用光纤传输信息,通过调制解调技术实现数字信号的传输。

2. 图像处理:利用光学滤波器和傅里叶变换等方法对图像进行增强、压缩和恢复等处理。

3. 光学存储:研究光盘、全息存储等光学存储技术。

三、实验仪器与设备1. 光纤通信实验箱2. 光学滤波器3. 傅里叶变换实验装置4. 全息存储实验装置5. 相关软件和计算机四、实验内容及步骤1. 光纤通信实验(1)搭建光纤通信实验系统,包括光源、光纤、光模块、电模块等。

(2)调整实验系统,使光源发出的光通过光纤传输。

(3)利用调制解调技术实现数字信号的传输。

(4)观察和记录实验数据,分析光纤通信的性能。

2. 图像处理实验(1)搭建图像处理实验系统,包括图像源、光学滤波器、傅里叶变换装置等。

(2)将图像通过光学滤波器进行滤波处理。

(3)对滤波后的图像进行傅里叶变换,得到图像的频谱。

(4)分析频谱,根据需要选择合适的滤波器对图像进行处理。

(5)将处理后的图像进行傅里叶逆变换,得到恢复后的图像。

3. 光学存储实验(1)搭建光学存储实验系统,包括全息存储装置、光源、物镜、记录介质等。

(2)调整实验系统,使光源发出的光通过物镜照射到记录介质上。

(3)利用全息技术记录图像信息。

(4)观察和记录实验数据,分析全息存储的性能。

五、实验结果与分析1. 光纤通信实验实验结果显示,光纤通信系统能够稳定地传输数字信号,传输速率较高,损耗较小。

2. 图像处理实验实验结果表明,利用光学滤波器和傅里叶变换技术可以对图像进行有效的处理,如增强、压缩和恢复等。

3. 光学存储实验实验结果显示,全息存储技术能够记录和恢复图像信息,具有较高的存储容量和良好的性能。

光学原理实验指导书

光学原理实验指导书

光学原理实验指导书燕山大学信息科学与工程学院光电子工程系2005年7月目录实验一光具组基点的测定 (1)实验二望远镜放大率的测量 (5)实验三光学系统象质检验 (8)实验四干涉现象的观察及钠光D双线波长差的测定 (12)实验五利用单缝衍射测量光波波长 (19)实验一光具组基点的测定一、实验目的1、了解光具组基点的一般特性。

2、测定光具组的焦距和基点。

二、实验原理每个厚透镜及光具组都有六个基点,即两个焦点F、F′,两个主点H、H′,两个节点N、N′,如图1—1所示。

实际使用光具组时,多数场合是光具组两边的媒质都是空气,折射率相等。

根据几何光学的理论,当物方的折射率和象方的折射率相等时,主点和节点重合(折射率不相同时是不重合的),也就是说,在这种情况下,主点兼有节点的性质,而整个光具组只用四个基点就可以完全确定。

图 1—1 光具组基点示意图本实验利用准直管来测定光具组的焦距和基点,这种方法是生产和科研中常用的方法,测量的准确度较高。

准直管是一种能发射平行光束的精密光学仪器,主要部件为一块质量优良的物镜,其焦距出厂前已经过精确测定。

图1—2为准直管的示意图。

以分划板为物,置于物镜左方,经过调整,将分划板准确地固定在物镜的焦平面上,用小灯泡及毛玻璃把分划板照亮,准直管即能产生多种方向的平行光,例如,对应分划板A点得A 方向的平行光,对应B点得B′方向的平行光。

准直管的可更换的分划板有多种形式,用于测量焦距的分划板称为玻罗板,它是一块表面刻有多组标准线对的薄玻璃板。

本实验所用玻罗板的标准线对的间距分别为1mm 、2mm 、4mm 、10mm 和20mm ,如图1—3所示。

因为每对刻线都对称于光轴且图 1—2 准直管示意图间隔已知,准直管物镜的焦距0f '也已知,所以对应的平行光和光轴的夹角(或这两束平行光之间的夹角)也就确定了。

把待测光具组沿准直管的光轴放置,平行光将在光具组的象方焦平面上会聚, 形成象A ″B ″,如图1—4所示。

光电信息技术实验指导书

光电信息技术实验指导书

光电信息技术实验指导书光通信系2014年8月实验一光纤活动连接器插入损耗及回波损耗测试实验一、实验目的1、认知光纤活动连接器(法兰盘)。

2、了解光纤活动连接器在光纤通信系统中的作用。

二、实验内容1、认识和了解光纤活动连接器及其作用。

2、测量光纤活动连接器的插入损耗。

三、实验器材1、主控&信号源、25号模块各1块2、23号模块(光功率计)1块3、连接线若干4、光纤跳线2根5、光纤活动连接器(法兰盘)1个6、Y型分路器1个四、实验原理光纤活动连接器即光纤适配器,又叫法兰盘,是光纤传输系统中光通路的基础部件,是光纤系统中必不可少的光无源器件。

它能实现系统中设备之间、设备与仪表之间,设备与光纤之间以及光纤与光纤之间的活动连接,以便于系统接续、测试、维护。

它用于光纤与光纤之间进行可拆卸(活动)连接的器件。

它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小。

目前,光纤通信对活动连接器的基本要求是:插入损耗小,受周围环境变化的影响小;易于连接和拆卸;重复性、互换性好;可靠性高,价格低廉。

光连接器的指标有:插入损耗、回波损耗、重复性和温度范围等。

I、插入损耗测试光纤活动连接器插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的分贝数,计算公式为:IL=10lg(P0/P1)其中P0为输入端的光功率,P1为输出端的光功率,功率单位W。

设备自带的功率计组成架构图插入损耗实验测试框图a插入损耗实验测试框图b光纤活动连接器的插入损耗越小越好。

光纤活动连接器插入损耗测试方法为:如上述实验测试框图所示,(图B )向光发端机的数字驱动电路送入一伪随机信号,保持注入电流恒定。

将活动连接器连接在光发机与光功率计之间,记下此时的光功率P1;(图A )取下活动连接器,再测此时的光功率,记为P0,将P0、P1代入公式即可计算出其插入损耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 阿贝成像与空间滤波实验实验目的1、 验证和演示阿贝成像原理,加深对傅里叶光学中空间频谱和空间滤波概念的理解;2、 初步了解简单的空间滤波在光信息处理中的实际应用;3、 了解透镜孔径对成像的影响和两种简单的空间滤波。

实验原理傅立叶变换在光学成像系统中的应用在信息光学中、常用傅立叶变换来表达和处理光的成像过程。

设一个xy 平面上的光场的振幅分布为g(x,y),可以将这样一个空间分布展开为一系列基元函数[])(exp y f x f iz y x +π的线性叠加。

即:[]yxyxyxdf df y)f x 2i π(f exp ),f G(f g(x,y)+=⎰⎰∞∞- (2-1)y x f f ,为x,y 方向的空间频率,量纲为1L -;)(y x f f G 是相应于空间频率yx f f ,的基于原函数的权重,称为空间频谱函数,)(y x f f G 可由求得:[]dxdy y f x f i f ff f G y x y xy x )(2-exp ),(g )(+=⎰⎰∞∞-π (2-2)),(y x g 和)(y x f f G 实际上是对同一光场的的两种本质上的等效的描述。

当g(x,y)是一个空间的周期性函数时,其空间频谱就是不连续的。

例如空间频率为0f 的一维光栅,其光振幅分布展开成级数:)2exp()(0∑∞-∞==nx nf i x g π 阿贝成像原理傅立叶变换在光学成像中的重要性,首先在显微镜的研究中显示出来。

1874年,德国人阿贝从波动光学的观点提出了一种成像理论。

他把物体通过凸透镜成像的过程分为两步:(1)从物体发出的光发生夫琅和费衍射,在透镜的像方焦平面上形成其傅立叶频谱图;(2)像方焦平面上频谱图各发光点发出的球面次级波在像平面上相干叠加形成物体的像。

阿贝成像原理是现代光学信息处理的理论基础,空间滤波实验是基于阿贝成像原理的光学信息处理方法。

成像的这两步骤本质上就是两次傅立叶变换,如果物的振幅分布是),(y x g ,可以证明在物镜后面焦面x',y ' 上的光强分布正好是g(x,y)的傅立叶变换)(y x f f G 。

(只要令,,Fy f F x f y x λλ'='=为F 为波长,λ物镜焦距)。

所以第一步骤起的作用就是把一个光场的空间分布变成空间频率的分布;而第二步骤则是进行傅里叶逆变换将)(y x f f G 还原到物空间。

下图显示了成像的这两个步骤,为了方便起见,我们假设物是一个一维光栅,平行光照在光栅上,经衍射分解成为向不同方向的很多束平行光(每一束平行光对应于一定的空间频率)。

经过物镜分别聚集在后焦面上形成点阵,然后代表不同空间频率的光束又在像平面上复合而成像。

图2-1 阿贝成像原理示意图但一般说来,像和物不可能完全一样,这是由于透镜的孔径是有限的,总有一部分衍射角度较大的高次成分(高频信息)不能进入到物镜而被丢弃了,所以像的信息总是比物的信息要少一些,高频信息主要是反映物的细节的,如果高频信息受到了孔径的阻挡而不能到达像平面,则无论显微镜有多大的放大倍数,也不可能在像平面上分辨出这些细节,这是显微镜分辨率受到限制的根本原因,特别当物的结构是非常精细(例如很密的光栅),或物镜孔径非常小时,有可能只有0级衍射(空间频率为0)能通过,则在像平面上就完全不能形成图像。

光学空间滤波如果在焦平面上人为的插上一些滤波器(吸收板或移相板)以改变焦平面上光振幅和位相就可以根据需要改变频谱面上的频谱,这就叫做空间滤波。

最简单的滤波器就是把一些特殊形式的光阑插到焦平面上,使一个或几个频率分量能通过,而挡住其他频率分量,从而使像平面上的图像只包括一种或几种频率分量,对这些现象的观察能使我们对空间傅立叶变换和空间滤波有更清晰的概念。

阿贝成像原理和空间滤波预示了在频谱平面上设置滤波器可以改变图像的结构这是无法用几何光学来解释的。

除了实验中的高通滤波、低通滤波、方向滤波及θ调制等较简单的滤波特例外,还可以进行特征识别、图像合成、模糊图像复原等较复杂的光学信息处理.因此透镜的傅里叶变换功能的涵义比其成像功能更深刻、更广泛。

实验器件光纤耦合半导体激光器、正交光栅、狭缝,白屏/相机实验内容1、 如图2-2安装各光学器件;图2-2 阿贝成像与空间滤波实验示意图2、 在激光管夹持器中安装30mm 准直镜,安装可变光阑调至与准直镜等高,打开激光器,把可变光阑放在准直镜的近处、远处让光束恰好通过可变光阑,光轴与导轨平行;3、 加入正交光栅、正透镜,调节正交光栅,使光束通过光栅、正透镜中心;4、 在正透镜的后焦平面加入狭缝,使狭缝正好滤掉x (y )向衍射级次,并且观察滤波后的条纹方向,改变狭缝方向,观察衍射图样,分析现象。

如图2-3所示:图2-3(a) 滤波前 图2-3(b) 滤掉x 向衍射级 图2-3(c) 滤掉y 向衍射级图2-3狭缝 正透镜 正交光栅 激光器5、将狭缝替换为可变光阑,改变光阑大小,观察低通滤波效果,如图2-4所示;图2-4(a) 低通滤波2-4(b) 不滤波图2-4实验5 光学图像相加减实验引言图像相减是求两张相近照片的差异,从中提取差异信息的一种运算。

通过在不同时期拍摄的两张照片相减,在医学上可用来发现病灶的变化;在军事上可以发现地面军事设施的增减;在农业上可以预测农作物的长势;在工业上可以检查集成电路掩膜的疵病,等等。

还可用于地球资源探测、气象变化以及城市发展研究等各个领域。

图像相减是相干光学处理中的一种基本的光学一数学运算,是图像识别的一种主要手段。

实现图像相减的方法很多,本实验介绍最常用的利用正弦光栅作为空间滤波器来实现图像相减的方法。

实验目的1. 用正弦光栅作滤波器,对图像进行相加和相减实验,加深对空间滤波概念的理解; 2. 通过实验,加深对傅里叶光学相移定理和卷积定理的认知。

实验原理设正弦光栅的空间频率为0f ,将其置于4f 系统的滤波平面2p 上,如图5-1所示,光栅的复振幅透过率为:()()()()0200202202011111,cos 222244i f x i f x x y H f f f x e e πϕπϕπϕ+-+=++=++ (5-1)式中,2x x f f λ=,2y xf f λ=;f 为傅里叶变换透镜的焦距;0f 为光栅频率;0ϕ表示光栅条纹的初位相,它决定了光栅相对于坐标原点的位置。

将图像A 和图像B 置于输入平面1P 上 ,且沿1x 方向相对于坐标原点对称放置,图像中心与光轴的距离均为b 。

选择光栅的频率为0f 使0b ff λ=得,以保证在滤波后两图像中A 的+1级像和B 的-1级像能恰好在光轴处重合。

于是,输入场分布可写成:()()()111111,,,A B f x y f x b y f x b y =-++ (5-2)图5-1 光栅实现图像相减其在频谱面2P 上的频谱为()()()22,,,x x i f b i f b x y A x y B x y F f f F f f e F f f e ππ-=+()()2222,,x x i f x i f x A x y B x y F f f e F f f e ππ-=+ 经光栅滤波后的频谱为 ()()[()()]001,,,,4i i x y x y A x y B x y H f f F f f F f f e F f f e ϕϕ-=+[()()]0202221,,2if x i f x A x y B x y F f f e F f f e ππ-++ [()()()()]020020441,,4i f x i f x A x y B x y F f f e F f f e πϕπϕ-++++ (5-3)再通过透镜2L 进行逆傅里叶变换(取反演坐标系统),在输出平面3P 上的光场为 ()()()023333331,,,4i i A B g x y e f x y f x y e ϕϕ-⎡⎤=+⎣⎦ ()()33331,,2A B f x b y f x b y +-++⎡⎤⎣⎦ ()()00333312,2,4i i A B f x b y e f x b y e ϕϕ-⎡⎤+-++⎣⎦ (5-4)当光栅条纹的初位相02πϕ=,即光栅条纹偏离轴线14周期时,上式第一行中的因子021i e ϕ-=-,于是上式变为()()()3333331,,,4A B g x y f x y f x y =-+⎡⎤⎣⎦其余四项结果表明,在输出面3P 上系统的光轴附近,实现了图像相减。

当光栅条纹的初位相00ϕ=,即光栅条纹与轴线重合时,上式第一行中的指数因子均等于1,结果在输出面00ϕ=上系统的光轴附近实现了图像相加。

实验器件650激光器、准直镜、正弦光栅、双凸透镜、白屏等实验内容1. 为简洁起见,本实验采用两个透光的长条孔作为图形,其中图形孔A 竖放,图形孔B 水平横放,如图5-1所示,两者中心相距为2b 。

为使其零级像和一级像能分开,距离b 必须大于图形的长边。

选用或自制一全息光栅,使其空间频率满足0bf f λ=。

为此,宜综合考虑0f 的值,使之与所用透镜焦距f 和图像间距协调。

0f 值过大将使b 值过大,图像摆放不便,故0f 值宜取小一些。

如0f =100线/mm ,f =150mm ,λ=632.8nm ,则b ≈9.49mm 。

2. 按图5-2布置好系统光路,并调整入射的相干光为准直光,然后将物图形,()11,f x y 和光屏分别置于输入面1P ,频谱面2p 和输出面3P 上。

3. 光栅滤波。

将已制作好的正弦光栅G 按其栅线竖向置于傅里叶变换透镜1L 的后焦面上,并使其沿水平横向可微动(用一维平移台来实现),在光屏3P 上观察其对图形A 的+1级衍射像1A +和对图形B 的一1级衍射像1B -,使1A +和1B -的中心重合于光轴上。

若1A +和1B -的中心重合不好,可稍微调节图形A 、B 的相对位置。

图5-2 光学图像相加减光路图4. 观察图形的相加和相减。

令光栅沿水平横向微动时,便可在输出面P3上观察到1A +和1B -。

的重合处周期地交替出现图形A 、B 相加和相减的效果。

相加时,重合处特别亮,相减时,重合处变得全黑。

使用白屏观察实验结果,可用CMOS 相机记录下图形相加和相减的实验结果。

图5-3 图形样品及实验结果注意:1. 实验中如果出现无论怎样调整光栅位置,1A +和1B -的重合处始终无法得到全黑,这可能是由下列原因引起:(1)用于照明图形A 和B 的光场不均匀,应重新调整照明光束。

(2)实验数据0f 和b 估算不准,致使1A +和1B -的中心未能完全重合,应重新核算0f 和b 的值。

相关文档
最新文档