有理数与混合运算基础知识点

合集下载

有理数加减混合运算知识点

有理数加减混合运算知识点

有理数加减混合运算知识点
一、有理数加减混合运算的概念
有理数的加减混合运算,就是将有理数的加法和减法统一成加法运算,再按照加法运算的法则进行计算。

二、有理数加减混合运算的步骤
1. 将减法转化为加法:减去一个数,等于加上这个数的相反数。

2. 写成省略加号和括号的代数和形式:在一个和式里,通常把各个加数的括号和它前面的加号省略不写。

3. 运用加法交换律和结合律,将同号的加数相加,异号的加数相加。

4. 按照加法法则计算出结果。

三、有理数加减混合运算的技巧
1. 凑整:将相加能得到整数的数结合在一起先计算。

2. 同号结合:把同号的加数先相加。

3. 相反数结合:互为相反数的两个数先相加。

4. 同分母结合:把分母相同的数先相加。

四、有理数加减混合运算的应用
1. 在实际生活中的收支、行程等问题中,常需要运用有理数的加减混合运算来解决。

2. 在数轴上的动点问题中,通过计算动点的位置变化来求解。

五、注意事项
1. 运算时要注意符号,不要漏写或错写。

2. 交换加数的位置时,要连同前面的符号一起交换。

3. 计算结果要化简,写成最简形式。

七年级数学上册第2章《有理数的加减混合运算》知识点解读(北师大版)

七年级数学上册第2章《有理数的加减混合运算》知识点解读(北师大版)

《有理数的加减混合运算》知识点解读知识点1 将有理数的加减混合运算统一为加法运算(重点)★在进行有理数的加减混合运算时,可以通过有理数的减法法则,把减法转化为加法,也就是将有理数的加减混合运算统一为单一的加法运算.如(-8)-7+(-6)-(-5)=(-8)+(-7)+(-6)+(+5).★在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.如(-8)+(-7)+(-6)+(+5)=-8-7-6+5.★和式的读法:如上面的例子,一是按这个式子表示的意义读作“负8,负7,负6,正5的和”;二是按运算意义读作“负8减7减6加5”.★省略括号的和的形式,可看作是有理数的加法运算.因此,可运用加法运算律来使计算简化,但要注意运算的合理性.①在交换加数位置时,要连同前面的符号一起交换.②在运用加法结合律时,有时也把减号看作负号.例1把(-6)-(-3)+(-2)-(+6)-(-7)写出省略括号的和的形式是读作或.分析:首先应把这个式子中的减法转化为加法,再写成省略号的和的形式.解:(-6)-(-3)+(-2)-(+6)-(-7)=(-6)+(+3)+(-2)+(-6)+(+7)=-6+3-2-6+7.读作:负6,正3,负2,负6,正7的和,或读作:负6加3减2减6加7.答案:-6+3-2-6+7;负6,正3,负2,负6,正7的和;负6加3减2减6加7.点拨:(1)在省略括号的代数和中,性质符号和运算符号是统一的.(2)省略括号的方法:①若括号前是“+”,则省略括号及括号前的“+”后,原括号内的各项不变号;②若括号前是“-”则省略括号及括号前的“-”后,原括号内各项的符号变为原来相反的符号.知识点2 有理数加减混合运算的步骤(难点)第一步:运用减法法则将有理数混合运算中的减法转化为加法.第二步:写出省略加号、括号的各数和的形式.第三步:运用加法法则、加法交换律、加法结合律进行简便运算.例2 计算:11(0.5)(3) 3.75(8).42---+-+ 分析:按有理数减法法则,把减法统一成加法,运用运算律进行简便运算.解:原式=11311113338(8)(33)97224422244-++-=--++=-+=-. 点拨:进行有理数加减混合运算时一定要注意符号.同时在运算过程中,通常把同分母的分数或者易于通分的分数归类进行计算.知识点3 有理数加减混合运算的注意事项①运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉,因为一个数包括两个方面,一方面是符号,另一方面是绝对值.例如8-5+7应变成8+7-5,而不能变成8-7+5;②应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便;③当分数、小数混在一块运算时,可以把它们统一成分数或小数再运算; ④如果有大括号和小括号应当先转化小括号里的运算,再转化大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.【例3】 计算:⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312; 分析:异分母分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312 =-837-7.5-2147+312=-837-2147-7.5+312=-30-4=-34.知识点4 既含小数又含分数的有理数加减混合运算解题时先将减法转化为加法,再按照以下的四条思路进行转化:一是将小数统一化成分数,二是将分数统一化成小数,三是将小数与小数,分数与分数分别结合,四是将各数的整数部分和分数(小数)部分分别结合.析规律 有理数加减混合运算的运算顺序 注意运算的顺序,如果是同一级的运算,可以同时完成化简绝对值符号和减法变加法的运算过程.有括号的要先计算括号里面的,有绝对值符号的也要先根据数或式的取值范围化去绝对值符号再进行运算.【例4】 计算:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8);(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13. 分析:有多重括号的,先计算小括号里面的,再计算大括号里面的,有绝对值符号的要先把绝对值符号化简.解:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8)=-4.2-[(-0.2)-(-7.1)]+(-3.8)=-4.2-[(-0.2)+(+7.1)]+(-3.8)=-4.2+(-6.9)+(-3.8)=-14.9.(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13 =(-1)-⎣⎢⎡⎦⎥⎤-2+(+4)+12+⎝ ⎛⎭⎪⎫-13 =(-1)-216=-316. 知识点5 利用有理数加减法运算解决实际问题(重点)“水位的变化”问题是典型的利用有理数的加减混合运算的实际问题,首先要理解在水位的变化图表下面标明的“注”或者“注意”的含义:正号表示水位比前一天上升,负号表示水位比前一天下降,参考对象是前一天的水位.例3 一名潜水员在水下80米处发现一条鲨鱼在离他不远处的上方25米的位置往下游追逐猎物,当它向下游42米后追上猎物,此时猎物做垂死挣扎立刻反向上游,鲨鱼紧紧尾随,又游了10米后被鲨鱼一口吞吃.(1)求鲨鱼吃掉猎物时所在的位置;(2)与刚开始潜水员发现鲨鱼的位置相比,鲨鱼的位置有什么变化?解析:本题主要考查应用有理数的加减混合运算解释实际问题,向上游与向下游是一对具有相反意义的量,可以用正数、负数来表示.若设向上游的高度为正数,则向下游的高度为负数.求出几个有理数的和,就可以判断鲨鱼吃掉猎物时所在的位置.答案:(1)设鲨鱼向上游的高度为正,潜水员在水下80米记为-80米,依据题意可得,鲨鱼吃掉猎物时所在的位置是-80+25-42+10=(-80-42)+(25+10)=-122+35=-87(米).(2)鲨鱼原来的位置是-80+25=-55(米).所以鲨鱼原来在水下55米处.所以与刚开始潜水员发现鲨鱼的位置相比,它向下游了32米.点拨:题目中已知条件给出一对具有相反意义的量,但没规定正负,解题时应先规定正、负才能解决问题.【类型突破】某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下:(增加的车辆数为正数,减少的车辆数为负号)根据记录回答下列问题:(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)产量最多的一天比产量最少的一天多生产了多少辆?解析:首先必须弄清表中每个数据的意义,它是表示实际每日与计划量的差额,列出准确算式是关键.答案:(1)300+(-3)=297辆,即本周三生产了297辆.(2)因为表数据中是每日与计划量300的差值,故先求出这些差值的和:(-5)+7+(-3)+4+10+(-9)+(-25)=[(-5)+(-3)+(-9)+(-25)]+7+4+10=-42+21=-21.所以本周总生产量与计划生产量相比,是减少了21辆;(3)产值最多的一天是周五,而产量最少的一天是周日,其差是:(+10)-(-25)=10+25=35辆.即产量最多的一天比产量最少的一天多生产了35辆.点拨:弄清表格中数据表示的意义是解题的首要条件.知识点6 折线统计图(难点)根据相关数据,在图中标出能反映这些数据特征的点,然后再按照事物发展的一种趋势,将标出的点连成折线,这样就得到了折线统计图.★画折线统计图的步骤:(1)首先确定题目中折线统计图的标题,即应弄清楚要画的是说明什么问题的折线统计图.(2)确定一个量或一个数值为0点,有的题目直接给出0点.(3)标出横线和竖线的单位,使看图的人能够看懂,并能正确使用.(4)恰当选择单位长度,使画出的折线统计图既不太靠上,又不太靠下,有明显的上升和下降的幅度,能清楚地看出变化的情况.(5)竖线上选取的最高点最好比实际最高值略高一些,最低点比实际最低值略低些,这样能突出最大值和最小值的变化幅度.例4下表为某个雨季某水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位达到警戒水位).注:正数表示比前一天水位上升,负数表示比前一天水位下降.(1)本周哪一天水位最高?有多少米?(2)根据给出的数据,请利用折线统计图分析一下本周内该水库的水位变化情况.(在不放水的情况下)分析:本周星期一到星期四,水位一直上升,星期五下降,星期六的上升值又低于星期五的下降值,故最高水位出现在周四.解:星期四水位最高,(+0.38+0.25+0.54+0.13)+150=151.3(m)(2)由已知条件,可求出一周内各天相对于警戒水位的变化情况,列表如下:星期一二三四五六日水位变化/m +0.38 +0.63 +1.17 +1.30 +0.85 +1.21 +1.02 以警戒水位为0点,用折线统计图表示在不放水的情况下该水库一周内的水位变化情况如图所示.。

有理数的混合运算知识点

有理数的混合运算知识点

有理数的混合运算知识点
1. 先算乘除后算加减呀!就好像你手里有一堆糖果,要先分好类再计算数量一样。

比如5+3×2,那就要先算3×2 等于 6,再加上 5 就是 11 啦!
2. 有括号要先算括号里面的哦!这就好比你收拾房间,要先整理衣柜里的东西一样重要。

像(5+3)×2,就要先算括号里的 5+3 等于 8,然后8×2 等于16 呀!
3. 负数可别小瞧呀!它就像一阵小凉风,会给计算带来不一样的感觉呢。

比如 5-(-3),就相当于 5 加上 3 等于 8 哟!
4. 乘方也很关键呀!这不就像是放烟花,一下子威力就变大啦。

例如 2 的 3 次方就是 8 呢!
5. 混合运算别慌张,一步一步慢慢来,就像走楼梯一样稳稳当当的。

3+2×(-4)的平方,就要先算平方,再算乘法,最后算加法。

6. 运算顺序要记牢,不然可就全乱套啦!这就像出门要先穿好衣服再穿鞋一样理所当然嘛。

试试计算 4-(2+3)×(-1),是不是得先算括号里的呀!
7. 约分能让计算变简单哦,好比给计算瘦身一样。

像计算12÷3×4 时,就可以先把12÷3 约分掉呀!
8. 相同的数相乘可以用乘方表示呀,这不就是偷懒的小妙招嘛。

比如说 3 个 2 相乘,就可以写成 2 的 3 次方嘛!
9. 有理数的混合运算就像是一场奇妙的冒险,有惊喜也有挑战呢!所以呀,要勇敢面对呀!
我的观点结论就是:有理数的混合运算虽然有一些规则,但只要掌握好了,就能在数学的海洋里畅游啦!。

有理数的加减法基础知识讲解

有理数的加减法基础知识讲解

有理数的加减法基础知识讲解【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:算律加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b-=+-.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2) (3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算: 【答案】 【变式2】计算:(1) (+10)+(-11); (2) 【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2) 1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭113343⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭111113333433412⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12-1+-23⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341-1+-=-1+=-1+=-22323666类型二、有理数的减法运算2. 计算:(1)(-32)-(+5); (2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.举一反三:【变式】(2020•泰安)若( )﹣(﹣2)=3,则括号内的数是( )A . ﹣1B . 1C . 5D . ﹣5【答案】B .根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算3.计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21)(3) (4)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭(5) (6) 【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法=(26+5)+[(-18)+(-16)] →符号相同的数先加= 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加=0(3) →同分母的数先加 (4) →统一成加法 →整数、小数、分数分别加 (5) 132.2532 1.87584+-+1355354624618-++-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++-= ⎪⎝⎭132.2532 1.87584+-+→统一同一形式(小数或分数),把可凑整的放一起(6) →整数,分数分别加 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换.举一反三:【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 类型四、有理数的加减混合运算在实际中的应用4. (2020秋•香洲区期末)邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置;(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936=(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.。

有理数的加减乘除混合运算

有理数的加减乘除混合运算

有理数的加减乘除混合运算有理数是指能够表示为两个整数的比值的数,包括正整数、负整数、零以及分数。

在数学中,有理数的加减乘除混合运算是一个基础而重要的概念。

本文将对有理数的加减乘除混合运算进行详细介绍。

1. 加法运算有理数的加法运算是指在两个有理数之间进行相加操作。

当两个有理数的符号相同时,只需要将它们的绝对值相加,并保留相同的符号。

例如,(-3) + (-2) = -5。

当两个有理数的符号不同时,我们需要进行减法操作。

即将绝对值较大的数减去较小的数,并保留绝对值较大数的符号。

例如,(-3) + 2 = -1。

2. 减法运算有理数的减法运算是指在两个有理数之间进行相减操作。

可以将减法转化为加法,即将减数取相反数,然后进行加法运算。

例如,5 - 3可以转化为 5 + (-3)。

3. 乘法运算有理数的乘法运算是指在两个有理数之间进行相乘操作。

正数与正数相乘或负数与负数相乘,结果为正数;正数与负数相乘或负数与正数相乘,结果为负数。

即符号相同为正,符号不同为负。

例如,(-2) ×5 = -10,(-3) × (-4) = 12。

4. 除法运算有理数的除法运算是指将两个有理数进行相除操作。

除法可以通过乘法的倒数得到,即将除数的倒数与被除数相乘。

例如,(-10) ÷ 2可以转化为 (-10) × (1/2) = -5。

5. 混合运算有理数的混合运算是指在一个表达式中同时包含加减乘除这四种运算。

在进行混合运算时,需要按照运算符的优先级进行计算,并使用括号来改变运算顺序。

通常,括号中的运算先于乘除法的运算,乘除法的运算先于加减法的运算。

例如,计算表达式:(-3) + 4 × (-2) - 6 ÷ 3。

首先进行乘法和除法运算:4 × (-2) = -8;6 ÷ 3 = 2。

然后进行加法和减法运算:(-3) + (-8) - 2 = -13。

有理数的加减混合运算法则

有理数的加减混合运算法则

有理数的加减混合运算法则1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:⑴当b>0时,a+b>a⑵当b<0时,a+b<a⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23)(将减法转换成加法)=-33+18-15-1+23(省略加号和括号)=(-33-15-1)+(18+23)(把符号相同的加数相结合)=-49+41(运用加法法则一进行运算)=-8(运用加法法则二进行运算)Ⅱ.把和为整数的加数相结合(凑整法)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(将减法转换成加法)=6.6-5.2+3.8-2.6-4.8(省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8(把和为整数的加数相结合)=4-10+3.8(运用加法法则进行运算)=7.8-10(把符号相同的加数相结合,并进行运算)=-2.2(得出结论)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)--+-+-原式=(--)+(-+)+(+-)=-1+0-=-1Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-3)+(-3)-(-10)-(+1.25)原式=(+)+(+3)+(-3)+(+10)+(-1)=+3-3+10-1=(3-1)+(-3)+10=2-3+10=-3+13=10Ⅴ.把带分数拆分后再结合(先拆分后结合)-3+10-12+4原式=(-3+10-12+4)+(-+)+(-)=-1++=-1++Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ.先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。

华东师大版数学七年级上册2.8《有理数的加减混合运算》知识点解读

华东师大版数学七年级上册2.8《有理数的加减混合运算》知识点解读

《有理数的加减混合运算》知识点解读知识点1将有理数的加减混合运算统一为加法运算(重点)在进行有理数的加减混合运算时,可以通过有理数的减法法则,把减法转化为加法,也就是将有理数的加减混合运算统一为单一的加法运算.如(-8)-7+(-6)-(-5)=(-8)+(-7)+(-6)+(+5).在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.如(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:如上面的例子,一是按这个式子表示的意义读作“负8,负7,负6,正5的和”;二是按运算意义读作“负8减7减6加5”.省略括号的和的形式,可看作是有理数的加法运算.因此,可运用加法运算律来使计算简化,但要注意运算的合理性.①在交换加数位置时,要连同前面的符号一起交换.②在运用加法结合律时,有时也把减号看作负号.例1把(-6)-(-3)+(-2)-(+6)-(-7)写出省略括号的和的形式是读作或.分析:首先应把这个式子中的减法转化为加法,再写成省略号的和的形式.解:(-6)-(-3)+(-2)-(+6)-(-7)=(-6)+(+3)+(-2)+(-6)+(+7)=-6+3-2-6+7.读作:负6,正3,负2,负6,正7的和,或读作:负6加3减2减6加7.答案:-6+3-2-6+7;负6,正3,负2,负6,正7的和;负6加3减2减6加7.点拨:(1)在省略括号的代数和中,性质符号和运算符号是统一的.(2)省略括号的方法:①若括号前是“+”,则省略括号及括号前的“+”后,原括号内的各项不变号;②若括号前是“-”则省略括号及括号前的“-”后,原括号内各项的符号变为原来相反的符号.知识点2 有理数加减混合运算的步骤(难点)第一步:运用减法法则将有理数混合运算中的减法转化为加法.第二步:写出省略加号、括号的各数和的形式.第三步:运用加法法则、加法交换律、加法结合律进行简便运算.例2计算:11---+-+(0.5)(3) 3.75(8).42分析:按有理数减法法则,把减法统一成加法,运用运算律进行简便运算.解:原式=11311113338(8)(33)972-++-=--++=-+=-.24422244点拨:进行有理数加减混合运算时一定要注意符号.同时在运算过程中,通常把同分母的分数或者易于通分的分数归类进行计算.知识点3 利用有理数加减法运算解决实际问题(重点)“水位的变化”问题是典型的利用有理数的加减混合运算的实际问题,首先要理解在水位的变化图表下面标明的“注”或者“注意”的含义:正号表示水位比前一天上升,负号表示水位比前一天下降,参考对象是前一天的水位.例3某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下:(增加的车辆数为正数,减少的车辆数为负号)根据记录回答下列问题:(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)产量最多的一天比产量最少的一天多生产了多少辆?解析:首先必须弄清表中每个数据的意义,它是表示实际每日与计划量的差额,列出准确算式是关键.答案:(1)300+(-3)=297辆,即本周三生产了297辆.(2)因为表数据中是每日与计划量300的差值,故先求出这些差值的和:(-5)+7+(-3)+4+10+(-9)+(-25)=[(-5)+(-3)+(-9)+(-25)]+7+4+10=-42+21=-21.所以本周总生产量与计划生产量相比,是减少了21辆;(3)产值最多的一天是周五,而产量最少的一天是周日,其差是:(+10)-(-25)=10+25=35辆.即产量最多的一天比产量最少的一天多生产了35辆.点拨:弄清表格中数据表示的意义是解题的首要条件.例4下表为某个雨季某水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位达到警戒水位).注:正数表示比前一天水位上升,负数表示比前一天水位下降.(1)本周哪一天水位最高?有多少米?(2)根据给出的数据,请利用折线统计图分析一下本周内该水库的水位变化情况.(在不放水的情况下)分析:本周星期一到星期四,水位一直上升,星期五下降,星期六的上升值又低于星期五的下降值,故最高水位出现在周四.解:星期四水位最高,(+0.38+0.25+0.54+0.13)+150=151.3(m)(2)由已知条件,可求出一周内各天相对于警戒水位的变化情况,列表如下:星期一二三四五六日水位变化/m+0.38+0.63+1017+1.30+0.85+1.21+1.02以警戒水位为0点,用折线统计图表示在不放水的情况下该水库一周内的水位变化情况如图所示.。

有理数的加减法(基础)知识讲解

有理数的加减法(基础)知识讲解

a+b=b+a
符号语言
数加 律
法运 加法
三个数相加,先把前两个数相加,或者先把后两个数相加,
文字语言
算律 结合
和不变
律 符号语言 (a+b)+c=a+(b+c)
要点诠释:交换加数的位置时,不要忘记符号.
要点二、有理数的减法 1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+? =7,求?,减法是加法的逆运算.
; (2)依题意得:C 点与 A 点的距离为:2+4=6(千米); (3)依题意得邮递员骑了:2+3+9+4=18(千米). 【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知 识即可.)班的学生分成五组进行答题游戏,每组的基本分为 100 分,
2 3
11 6
(3)(+2)+(-11)=-(11-2)=-9 (4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9 (5)(-2.9)+(+2.9)=0; (6)(-5)+0=-5. 【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先
确定符号,再计算绝对值.
最全中学生学习资料整理
有理数的加减法(基础)
【学习目标】
1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;
2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;
3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算
律合理简算,并会解决简单的实际问题.
【要点梳理】

有理数混合运算的知识点

有理数混合运算的知识点

有理数混合运算的知识点数学是一门与我们生活息息相关的学科,数学的应用在我们的日常生活中随处可见。

而有理数混合运算,是数学中一个十分基础却又重要的知识点,我们在数学学习过程中会经常用到这个知识点来解决一些实际问题。

本文将从有理数混合运算的定义、性质、计算等方面进行探讨。

一、有理数混合运算的定义有理数混合运算是指,在运算中同时涉及到整数和分数的运算。

例如:5 + 1/4、8 - 2/3、3 × 2/5、7 ÷ 3/4等。

二、有理数混合运算的性质有理数混合运算有以下几个性质:1、加法的交换律和结合律有理数混合运算的加法满足交换律和结合律,即a + b = b + a;(a + b) + c = a + (b + c)。

例如,3 + 1/3 + 2/3 = (3 + 1/3) + 2/3 = 3 + (1/3 + 2/3)。

2、减法的性质有理数混合运算的减法不满足交换律和结合律,a - b ≠ b - a;(a - b) - c ≠ a - (b - c)。

例如,5 - 2/3 ≠ 2/3 - 5。

3、乘法的交换律和结合律有理数混合运算的乘法满足交换律和结合律,即a × b = b × a;(a × b) × c = a × (b × c)。

例如,3 × 1/2 × 2/5 = (3 × 1/2) × 2/5 = 3 ×(1/2 × 2/5)。

4、除法的性质有理数混合运算的除法不满足交换律和结合律,a ÷ b ≠ b ÷ a;(a ÷ b) ÷ c ≠ a ÷ (b ÷ c)。

例如,5 ÷ 3/4 ≠ 3/4 ÷ 5。

三、有理数混合运算的计算有理数混合运算的计算需要掌握一些基本的运算规则和技巧。

有理数混合运算的知识点

有理数混合运算的知识点

有理数混合运算的知识点有理数混合运算,这可是数学学习中的一个重要板块哦!咱们先来说说啥是有理数。

有理数啊,简单来说就是能写成两个整数之比的数,像整数啦、分数啦,都是有理数。

那有理数混合运算呢,就是把这些有理数加加减减、乘乘除除的一通操作。

比如说,给你这样一道题:“(-3)×(2 5)÷(-1/2)”,这可咋算呢?别慌,咱们一步步来。

先算括号里的,2 5 =-3,式子就变成了(-3)×(-3)÷(-1/2)。

接下来,乘法运算,(-3)×(-3) = 9,式子又变成了 9÷(-1/2)。

这时候就要注意啦,除以一个数等于乘以它的倒数,所以 9÷(-1/2)= 9×(-2) =-18。

再比如,“ -5 + 3×(-2)² ”,这里面先算乘方,(-2)²= 4,式子变成-5 + 3×4,然后算乘法 3×4 = 12,式子就成了-5 + 12,最后得出结果是 7 。

我记得我之前教过一个学生,叫小明。

这孩子啊,一开始对有理数混合运算那叫一个头疼。

有一次做作业,碰到一道题“ -1 2×(-3) ”,他愣是给算成了-7 。

我问他咋算的,他一脸迷茫地说先算乘法 2×(-3) =-6 ,然后-1 减去-6 ,负负得正,就成了-7 。

我一听,哭笑不得,赶紧给他重新讲了一遍运算顺序,先算乘法没错,但是-1 减去-6 应该等于-1 + 6 = 5 呀。

从那以后,小明每次做有理数混合运算的题,都会先在草稿纸上把运算顺序写下来,一步一步地算,再也不出错啦。

咱们再来说说运算顺序。

先乘方,再乘除,最后加减。

如果有括号,先算括号里面的。

这个顺序可千万不能乱,一乱就容易出错。

还有啊,计算的时候一定要细心。

有时候一个小符号的错误,就能让整个答案都错了。

比如把“ ”看成“ +”,那结果可就差得远了。

第1章有理数有理数混合运算知识点讲解及练习课件人教版七年级数学上册

第1章有理数有理数混合运算知识点讲解及练习课件人教版七年级数学上册
2
解:原式 4 1 2
2
(2) 2.5 2 1 ;
3
解:原式 2.5 2 1
3
35 6
两数相乘,同号得正,异号得负,并把绝对值相乘.
【例2】计算:
(3) 30 6 ;
解:原式 30 6
5
能整除,可用有理数除法的法则2
法则2:两数相除,同号得正, 异号得负,并把绝对值相除
2.4
1 5
3.8
3 5
3.7
0.4 2.4 0.2 3.8 0.6 3.7
0.4 2.4 0.2 3.8 0.6 3.7
2 4 4.3 2 4.3 4
6.3 4
6.3 4
2.3
【巩固】
3. 计算:
(7) 5.13 4.62 8.57 2.3;
; 2 2 的倒数是
3 8
.
3
2 2. 化简: 2 3
3
; 12 -4 ; 6
3
7
6 7
; 0 0 85

1 1. 3. 已知 a,b,c,d 是非零有理数,若 a 1 , b 1 ,则 a 6 ;
b2 c3 c
【巩固】
4. 计算:
(1) 2.25 4 ;
5
解(:1)
2.25
2. 乘法运算律: 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
3. 有理数的除法 法则1:除以一个不等于0的数,等于乘这个数的倒数. 法则2:两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0.
【例2】计算:
(1) 4 1 ;
解:原式

有理数四则混合运算

有理数四则混合运算

第三讲有理数的加、减、乘、除(一)一.知识梳理1.有理数加法的运算法则2.有理数加法的运算定律3.有理数加法的运算法则4.有理数的加减法混合运算二.课堂例题精讲与随堂演练知识一:有理数加法的运算法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

(3)互为相反数的两个数相加得0。

(4)一个数同0相加,仍得这个数。

例1:(1)(-8)+(-5)(2)(-8)+(+5)(3)(+8)+(-5)例2 填下列表格加数加数和的组成和(结果)符号绝对值-12 3 -9 16 -9 -5 -16 16 -15 0例3 今年我省元月份某一天的天气预报中,延安市最低温度为-6℃,西安市最低温度为2℃,这一天延安市最低温度比西安市低 ( )A.8℃B.-8℃C.6℃D.2℃随堂演练: A 级 1.填空:(1)(-5)+(-6)=-( + )= (2)(-25)+9=-( - )= (3)(-0.4)+3.6=3.6 0.4= B 级2.两数相加,如果和为负数,则这两个数 ( )A.都是负数B.都是正数C.一个正数,一个负数D.至少有一个为负数知识二:有理数加法的运算律:加法交换律:两个数相加,交换加数的位置,和不变。

a b += b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

a b c ++=()a b c ++=()a b c ++注:多个有理数相加,可任意交换加数的位置,也可先把其中几个数相加,使计算简化。

灵活运用加法的运算律:互为相反数的两个数,可以先相加。

如:2(5)5+-+=2[(5)5]+-+=202+=符号相同的数可以先相加。

如:(1)3(3)[(1)(3)]3(4)31-++-=-+-+=-+=- 分母相同的数可以先相加。

如:121121117()[()]2552552510++-=++-=+= 几个数相加能得到整数的可以先相加。

有理数的乘方与混合运算

有理数的乘方与混合运算

有理数的乘方知识点1 乘方的定义把n 个相同因数a 相乘,记作na ,即n a =,这种求n 个相同因数a 的积的运算叫做乘方,其结果叫做幂,a 叫做底数,n 叫做指数。

n a 读作a的n 次方(或a 的n 次幂)。

知识点2 乘方的运算符号法则※通常先判断幂的符号,再进行乘法运算正数的n 次方,无论n 是奇数还是偶数,其结果都为正数负数的n 次方,如果n 是奇数,则结果为负数;如果n 是偶数,则结果为正数 注意: 0的0次方没有意义,0的整数幂都等于0;如02=0;03=01n =1 (n 为任意整数) n 为奇数时(-1)n =-1 n 为偶数时(-1)n =1 常数都是1次方的数,如91=9;(-3)1=-3例1.计算:2)3(- 23- 232⎪⎭⎫⎝⎛- 322-分析:①()-32与-32的区别:()-32的底数为(-3),指数为2,则计算为两个(-3)相乘,-32的底数为3,指数为2,符号为符号,则计算为两个3相乘,加上符号;②-⎛⎝ ⎫⎭⎪232与-232的区别:-⎛⎝ ⎫⎭⎪232的底数为-⎛⎝ ⎫⎭⎪232,指数为2,则计算为两个-⎛⎝ ⎫⎭⎪232相乘。

a n幂指数底数-232 的底数为2,指数为2,则计算为两个2相乘得出结果做分子。

例2. 计算:(1)-3×24; (2)(-3×2)4.分析:有括号先做括号里面的,再做乘方,最后做乘除。

例3.当x=-4,y=-3时,求下列各式的值:(1) (x+y)2; (2) x 2-y 2;(3) (x-1)2+y ; (4) x 3-y 3.例4:计算(1)33)2(|2|-+- (2)23241|3|-⨯-随堂练习一、计算180= =25 =-3)2( =31.0 =-3)10( =-2)3.0( =-2)211( =-3)321(=-1)2009( =-2012)1( =-33 =-410=--3)4( =--2)2( =--2)53( =--4)101(二、选择题1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( )A 、 -32 与 -23B 、-23 与 (-2)3C 、-32 与 (-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积B 、任何一个有理数的偶次幂是正数C 、-32 与 (-3)2互为相反数D 、一个数的平方是94,这个数一定是32 5、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A 、-2B 、2C 、4D 、2或-26、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数7、两个有理数互为相反数,那么它们的n 次幂的值( )A 、相等B 、不相等C 、绝对值相等D 、没有任何关系 8、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 9、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( ) A 、0 B 、 1 C 、-1 D 、2 三、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ; 10、若032>b a -,则b 0有理数混合运算知识点3 有理数混合运算先算乘方,再算乘除,最后算加减。

初中数学有理数混合运算知识点

初中数学有理数混合运算知识点

初中数学有理数混合运算知识点一、有理数的加法运算1.同号两数相加,保留原有符号,并将两数的绝对值相加即可。

例如:(-3)+(-5)=-8,(-7)+(-2)=-92.异号两数相加,先将两数的绝对值相减,然后保留绝对值大的符号即可。

例如:(-3)+5=2,7+(-4)=33.加法运算具有交换律和结合律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)二、有理数的减法运算1.减法可转化为加法,即a-b=a+(-b)例如:5-(-3)=5+3=8,4-9=4+(-9)=-5三、有理数的乘法运算1.同号两数相乘,积为正,即正乘正为正,负乘负为正。

例如:2×3=6,(-4)×(-6)=242.异号两数相乘,积为负,即正乘负为负,负乘正为负。

例如:(-3)×5=-15,8×(-2)=-16四、有理数的除法运算1.除法可转化为乘法,即a÷b=a×(1/b)例如:6÷(-2)=6×(-1/2)=-3,(-15)÷(-3)=(-15)×(1/(-3))=52.正数除以正数或负数除以负数,商为正;负数除以正数或正数除以负数,商为负。

例如:10÷2=5,(-12)÷(-4)=33.除法运算和乘法运算一样,具有交换律:a÷b=a×(1/b)=(1/b)×a五、混合运算的顺序1.先进行括号内的运算。

2.然后按照先乘除,后加减的顺序依次进行运算。

六、数的相反数1.一个正数的相反数是一个与之绝对值相等但符号相反的数。

2.一个负数的相反数是一个与之绝对值相等但符号相反的数。

举例来说,4的相反数是-4,-7的相反数是7有理数混合运算是数学中的基础知识点之一,通过掌握以上内容,我们能够正确进行有理数的加减乘除等运算。

混合运算需要按照一定的顺序进行,灵活运用数学知识和运算规则,能够解决实际生活和工作中的问题,提高我们的数学运算能力。

有理数的乘方混合运算题

有理数的乘方混合运算题

有理数的乘方混合运算题一、有理数乘方混合运算的知识点回顾1. 有理数乘方的定义- 求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂。

a叫做底数,n 叫做指数,a^n读作“a的n次方”或“a的n次幂”。

- 例如2×2×2 = 2^3,其中2是底数,3是指数,2^3=8。

2. 运算顺序- 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。

- 例如计算2 + 3×2^2,先算乘方2^2=4,再算乘法3×4 = 12,最后算加法2+12 = 14。

二、有理数乘方混合运算题1. 计算(-2)^3+3×(-1)^2-(-1)^4- 解析:- 先分别计算各项的乘方。

- 对于(-2)^3,根据乘方的定义,(-2)^3=(-2)×(-2)×(-2)= - 8。

- 对于(-1)^2,(-1)^2=(-1)×(-1)=1,所以3×(-1)^2=3×1 = 3。

- 对于(-1)^4,(-1)^4=(-1)×(-1)×(-1)×(-1)=1。

- 然后进行加减运算:(-2)^3+3×(-1)^2-(-1)^4=-8 + 3-1=-6。

2. 计算2×(-3)^2-4×(-2)^3+(-1)^5- 解析:- 先计算乘方。

- (-3)^2=(-3)×(-3)=9,所以2×(-3)^2=2×9 = 18。

- (-2)^3=(-2)×(-2)×(-2)= - 8,所以4×(-2)^3=4×(-8)=-32。

- (-1)^5=(-1)×(-1)×(-1)×(-1)×(-1)= - 1。

- 再进行加减运算:2×(-3)^2-4×(-2)^3+(-1)^5=18-(-32)+(-1)=18 + 32-1 = 49。

13有理数的加减乘除混合运算知识讲解

13有理数的加减乘除混合运算知识讲解

13有理数的加减乘除混合运算有理数的加减乘除混合运算主讲:黄冈中学优秀数学教师余燕一、有理数的加减乘除混合运算1、在带有括号的运算中,先算小括号,再算中括号,最后算大括号.2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减,注意运算律.3、合理运用运算律合理运用运算律是提高有理数运算能力的基本保证,在运用时,首先要搞清楚各种运算律的名称和使用的方法.(1)加法交换律和结合律通常在加、减运算中同时使用,交换的目的在于结合,结合时一般是按正负结合,按相反数结合,总之,将容易计算的数进行结合.(2)乘法交换律和结合律通常在乘、除运算中使用,交换的目的同样是为了结合,结合时一般将能约分的数结合.(3)分配律是乘法对加法的分配,它既可以正用(即a(b+c)=ab+ac),也可以逆用(即ab+ac=a(b+c)),要特别注意除法对加法没有分配律,不要出现12÷(4+3)=12÷4+12÷3=3+4=7的错误.4、含多重括号时,要注意灵活去括号,没必要墨守成规,总是先去小括号,再去中括号,最后去大括号,也可以先去大括号,再去小括号.有理数的加减乘除混合运算,应按照“先乘除,后加减”的顺序进行.若有括号,则应先计算括号内的数.二、例题讲解例1、(1)若x·(-4)=,则x=__________;(2)已知a=-3,b=-2,c=5,则=__________;(3)等式[(-8)-△]÷(-2)=4中,△表示的数是_______.答案:(1);(2);(3)0例2、当a>b>0时,则__________0.答案:<例3、下列计算正确的是()A.(-1)÷(-7)×=1÷7×=1÷1=1B.12÷(3+4)=12÷3+12÷4=4+3=7C.()÷3=-66÷3-÷3=D.0÷(5-2+3-6)=0÷0=0答案:C例4、阅读下面解题过程:计算.解:原式=.回答:(1)上面解题过程有两个错误,第一处是第二步,错误的原因是运算顺序错了,第二处是第三步,错误的原因是结果错了.(2)求出正确的结果.解:原式=.例5、计算:答案:例6、在如图所示的运算流程中,若输出的数y=3,则输入的数x=_________.答案:6或5例7、小强在自学了简单的电脑编程后,设计了如图所示的程序,他若输入的数为-1,那么执行程序后输出的数是多少?答案:-105例8、计算:答案:(1);(2)1例9、某市质量监督局从某食品厂生产的罐头中,随意抽取20听进行检查,超过标准质量的用正数表示,不足标准质量的用负数表示,抽查的结果如下表:与标准质量的偏-10 -5 0 +5 +10 +15 差(单位:克)听数 2 5 4 6 2 1试问:这批样品的平均质量比标准质量多或者少多少克?解:[-10×2+(-5)×5+0×4+5×6+10×2+15×1]÷20=20÷20=1所以这批样品的平均质量比标准质量多1克.- 返回 -同步测试2、计算:__________,(-10)÷[(-2)-3]=__________.3、计算:5×(-3)+6÷(-2)=__________.4、受金融危机的影响,小明的爸爸返乡做生意,一次性投入资金4000元,最初两个月每月开支2000元,收入1000元.接着后三个月每月开支1000元,收入4000元.五个月后小明的爸爸是亏损还是盈利?__________,是__________元.5、要使等式[(-27)-□]÷3=-2成立,则“□”中应填的数是__________.隐藏答案答案:1、-16;-27;-92、-32;23、-184、盈利;30005、-216、下列正确的是()7、若a+b<0,,那么()A.a>0,b>0B.a<0,b<0C.a、b同号D.a、b异号且负数的绝对值较大8、若ab≠0,则的值是()A.0B.±1 C.±2D.±2,0 9、计算:(1)(-8)÷25×1.25×(-8)隐藏答案9、(1)3.2;(2);(3);(4);(5)5;(6)10、冷库的室温为-2℃,现存入一批食品,必须使室温为-20℃,若冷冻机每小时可使室温下降6℃,则要使冷库室温达到所需温度,需要多长时间?(列式解答)隐藏答案10、(小时)-END-课外拓展例、如果规定“⊙”为一种新的运算:a⊙b=a×b-a2+b2.例如:3⊙4=3×4-32+42=12-9+16=19,仿照例题计算:(1)(-2)⊙6;(2)(-2)⊙[(-3)⊙4].分析:根据规定的新运算,a⊙b等于两个数的乘积减去第一个的平方再加上第二个数的平方,(1)根据新运算的含义化简(-2)⊙6,然后根据有理数混合运算的顺序,先算乘方,计算出(-2)2和62的结果,然后算乘法计算出-2×6的结果,再根据减去一个数等于加上这个数的相反数,把减法运算化为加法运算后,利用同号两数相加的法则:取相同的符号,并把绝对值相加计算出-12+(-4)的结果,最后利用异号两数相加的法则:取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值计算出最后结果;(2)根据新运算的含义先化简中括号里面的(-3)⊙4,然后根据有理数混合运算的顺序,先算乘方,计算出(-3)2和42的结果,然后算乘法计算出-3×4的结果,再根据减去一个数等于加上这个数的相反数,把减法运算化为加法运算后,利用加法法则计算出中括号里面的结果为-5,然后再根据新运算的含义化简(-2)⊙(-5),同理也根据有理数混合运算的顺序以及法则进行正确的计算得出最后的结果.解:(1)(-2)⊙6=-2×6-(-2)2+62=-12-4+36=-12+(-4)+36=-16+36=20;(2)(-2)⊙[(-3)⊙4]=(-2)⊙[(-3)×4-(-3)2+42]=(-2)⊙(-12-9+16)=(-2)⊙(-21+16)=(-2)⊙(-5)=(-2)×(-5)-(-2)2+(-5)2=10-4+25=6+25=31.点评:此题根据定义的新运算间接的考查了有理数的混合运算,解此类题的关键是搞清新运算的含义,从而根据新运算表示的含义化简要求的式子,同时也要求学生掌握有理数混合运算的运算顺序以及各种运算法则.例2、某市有一块土地共100亩,某房地产商以每亩80万元的价格购得此地,准备修建“和谐花园”住宅区.计划在该住宅区内建造八个小区(A区,B 区,C区…H区),其中A区,B区各修建一栋24层的楼房;C区,D区,E区各修建一栋18层的楼房;F区,G区,H区各修建一栋16层的楼房.为了满足市民不同的购房需求,开发商准备将A区,B区两个小区都修建成高档,每层800m2,初步核算成本为800元/m2;将C区,D区,E区三个小区都修建成中档住宅,每层800m2,初步核算成本为700元/m2;将F区,G区,H区三个小区都修建成经济适用房,每层750m2,初步核算成本为600元/m2.整个小区内其他空余部分土地用于修建小区公路通道,植树造林,建花园,运动场和居民生活商店等,这些所需费用加上物业管理费,设置安装楼层电梯等费用共计需要9900万元.开发商打算在修建完工后,将高档,中档和经济适用房以平均价格分别为3000元/m2,2600元/m2和2100元/m2的价格销售.若房屋精品资料全部出售完,请你帮忙计算出房地产开发商的赢利预计是多少元?分析:计算出开发商的总销售额和总投资,二者之差即为盈利.解:开发商共投资:100×800000+24×800×800×2+18×800×700×3+16×750×600×3+99000000=26156(万元),房屋全部出售完可得:(2×24×800×3000+3×18×800×2600+3×16×750×2100)÷10000=30312(万元),房地产开发商的赢利预计:30312-26156=4156万元.所以房地产开发商的赢利预计是4156万元.点评:此题计算量不大,思维含量也较小,但是有很大的阅读量.从大量的信息中找到和解题相关的条件,去掉无关的条件是解答此题的关键.-END-仅供学习与交流,如有侵权请联系网站删除谢谢11。

《有理数加减混合运算》知识点整理

《有理数加减混合运算》知识点整理

《有理数加减混合运算》知识点整理【知识点一】1有理数的加减乘除混合运算顺序:如无括号则先算乘除,再算加减;有括号的先算括号里面的。

2算式中有小数的可化为分数,这样利用分数乘除来约分,简化计算。

若有带分数则化为假分数。

3熟练运用乘法交换律、乘法结合律和乘法分配率可以是计算简便。

【知识点二】有理数加法运算总是涉及两个方面:一方面是确定结果的符号,另一方面是求结果的绝对值法则:同号两数相加,取相同的符号,并把绝对值相加异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值一个数同0相加,仍得这个数有理数减法法则法则:减去一个数,等于加上这个数的相反数注:在运用减法法则时,注意两个符号的变化,一是运算符号,减号变成加号,二是性质符号,减数变成它的相反数有理数的加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算步骤:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算【练习题】1、把-+-都统一转化成加法运算,即它还可以写成省略加号的和的形式,即,读作2、将下列式子写成省略加号的和的形式,并说出它的两种读法:①-+-②-+--+43、①-11-9-7+6-8+10②-7-[-3+]-3124、某公路养护小组乘车沿南北方向公路巡视维护,某天从地出发,约定向南行驶为正,到收工时的行驶记录如下:8,-,7,-4,-6,13,4,12,-11问收工时,养护小组在地的哪一边?距离地多远?若汽车行驶毎千米耗油0升,求从出发到收工共耗油多少升?答案1、-+++,-+6-7+4,-加6减7加42、①37+2-3-24②-1-1-2+3+1+43、①-19②04、原点南边18米处3升十你若真见过那些强者打拼的样子,就一定会明白,那些人之所以能达到别人到不了的高度,全是因为他们吃过许多别人吃不了的苦。

这世上从来就没有横空出世的运气,只有不为人知的努力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数
定义:凡能写成形式的数,都是有理数.
正整数、0、负整数统称整数;正分数、负分数统称分数;
整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;(?=3.1415926。


有理数的分类: ①②
相关概念与术语:自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数.
数轴:
定义:数轴是规定了原点、正方向、单位长度的一条直线.
相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.
绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .
有理数比大小:(1)正数的绝对值越大,这个数越大;例:|6|>|1|所以6>1.
(2)正数永远比0大,负数永远比0小;例:-1<0<1
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;例:|-9|>|-1|但是-1>—9
(5)数轴上的两个数,右边的数总比左边的数大;例:-1<0<1
(6)大数-小数> 0,小数-大数< 0.例:—1-(-9)=8>0,等等
互为倒数:
乘积为1的两个数互为倒数;注意:0没有倒数;
若 a≠0,那么a的倒数是1\a;1倒数是本身的数是1;(-1倒数是—1)
若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.(负倒数不作要求)
. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
(4)加法的交换律:a+b=b+a ;(5)加法的结合律:(a+b)+c=a+(b+c).
有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
(4)乘法的交换律:ab=ba;(5)乘法的结合律:(ab)c=a(bc);
(6)乘法的分配律:a(b+c)=ab+ac .
有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .(此注意不作要求)
乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;
混合运算法则:
首先考虑括号内,先乘方,后乘除,最后加减;
注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.
科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
..特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.。

相关文档
最新文档