电力系统谐振过电压
三种谐振过电压及其对应关系 -回复
三种谐振过电压及其对应关系-回复谐振过电压是指在电力系统中,由于电力设备或其他故障引起的电压波动,其频率等于系统谐振频率的电压异常现象。
谐振过电压对电力系统的稳定运行具有重要影响,能够导致设备损坏、线路过载等问题。
本文将分别介绍三种常见的谐振过电压及其对应关系。
一、串联谐振过电压串联谐振过电压是指在电力系统中,线路与电容性负载串联连接时,由于谐振回路发生谐振而产生的过电压现象。
谐振回路由电源、线路和电容性负载构成。
当线路长度与谐振频率相等或者线路长度的整数倍等于谐振频率的一半时,谐振回路产生谐振,电压会急剧增大。
产生串联谐振过电压的原因主要有两个方面:一是线路长度符合谐振条件,使得电源输出的电压和线路中的谐振电压相叠加;二是电容性负载的谐振频率接近或者等于电压谐振频率,从而使得线路上的电压出现大幅度增加。
串联谐振过电压对电力系统的影响非常严重。
首先,电压的突然增大可能导致设备的工作不稳定,从而影响电力系统的正常运行。
其次,过高的电压会使线路出现过载情况,可能引发火灾等安全事故。
因此,在电力系统的设计和运行中,需要注意串联谐振过电压的控制,采取相应的补偿和保护措施。
二、并联谐振过电压并联谐振过电压是指在电力系统中,电容性负载与线路并联连接时,由于谐振回路发生谐振而产生的过电压现象。
谐振回路由电源、线路和电容性负载构成。
当电容性负载谐振频率接近或者等于电压谐振频率时,谐振回路产生谐振,电压会急剧增大。
产生并联谐振过电压的原因主要是由于电容性负载的谐振频率与谐振频率相近或相等,从而使得电容性负载上的电压出现异常增大。
并联谐振过电压对电力系统的影响也是十分严重的。
首先,过高的电压可能导致设备的绝缘破坏,从而引发设备损坏和线路故障。
其次,电压突然增大还可能影响电力系统的稳定运行,引发供电中断等问题。
因此,在电力系统的设计中,需要合理选择电容性负载,控制并联谐振过电压的发生。
三、平行谐振过电压平行谐振过电压是指在电力系统中,当谐振回路的谐振频率接近或者等于系统的谐振频率时,由于负载或者设备改变引起的过电压现象。
第10讲-谐振过电压
2 0
2
0
0 = ,电容电压幅值为
UC
E
2
E 1
R C
如图中 / 0
点所示
0曲线中在 0
1
不同 /0 下 UC 与 /0 的关系曲线
15
分析讨论
UC
E
1 / 0 2 2 2 /02 2
0
0 ,将 作为变量,对电容电压幅
值表达式求导 / 0
0
1
2
0
2
U CM
6
铁磁谐振(非线性谐振)
谐振回路由带铁芯的电感元件(如空载变压器、电压 互感器)与系统的电容元件组成。因为铁芯电感元件 的饱和现象,使回路的电感参数是非线性的,在满足 一定谐振条件时,会产生铁磁谐振,并有许多特有的 性质
7
参数谐振
由电感参数作周期性变化的电感元件(如凸极发电机 的同步电抗在Xd~Xq的周期性变化)与系统的电容元 件(如空载长线)组成回路,当参数配合时,通过电 感的周期变化,不断向谐振系统输送能量,将会造成 参数谐振过电压
13
分析讨论
UC
E
1 / 0 2 2 2 /02 2
=0
XC XL
0 <
UC
02 02 2
E
电容电压幅值有可能大于E,如
图中 / 0 0 曲线中在区间 1 内所示 0
不同 /0 下 UC 与 /0 的关系曲线
14
分析讨论
E
UC
1 / 0 2
2
2
/
当系统进行操作或发生故障时,电感、电容元件可形成 各种振荡回路,如某一自由振荡频率等于外加强迫频率, 发生谐振。谐振是一种周期性或准周期性的运行状态
浅谈电力系统中的铁磁谐振过电压及消除方法
浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。
关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。
这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。
2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。
铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。
铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。
当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。
电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。
在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。
35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。
据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。
铁磁谐振过电压导致故障的严重性可见一般。
铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。
电力系统谐振过电压产生的原因及防范措施
电力系统谐振过电压产生的原因及防范措施摘要电力系统中,厂站因过电压引起故障甚多,特别是谐振过电压,对设备甚至系统安全稳定运行影响大。
分析原因,找出问题,提出防治措施很有必要。
关键词谐振过电压;PT;铁芯饱和;防范措施0 引言我国电力系统分为不同电压等级,35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。
过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。
1 谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
2 铁磁谐振为满足电网测量、保护需要,电力系统中配置大量电感电容元件,如:互感器、电抗器等电感元件;电容器、线路对地电容等电容元件。
当进行设备操作或系统故障时,电感电容元件构成振荡回路,在一定条件下产生谐振,损坏设备影响系统。
2.1 原因分析图1某水厂单串接线图,采用接线,110kV系统中性点直接接地,变压器、PT等分相运行,变压器、PT高压绕组接成Y0,该厂多次发生铁磁谐振过电压。
原因:图1 某水电站单串接线图1)故障时产生谐振过电压。
当系统发生单相故障时,因整个电网系统中电感电容元件参数不匹配,两者共同作用,为谐振产生创造条件,最终导致铁磁谐振过电压发生;2)操作时产生谐振过电压。
110kV开关为双断口且并联均压电容,停送电操作时,先拉5012、5013,再拉50126,其他刀闸均接通。
110kV环网通过开关断口电容构成带电磁式PT空母线产生谐振。
2.2 等值电路图该厂输出线路发生单相接地故障,瞬时A相线路产生接地电流,因避雷器参数不匹配,构成谐振回路而产生谐振过电压。
图2 简化电路图如图2,L1是1B一次侧电感,L2是2B一次侧电感,Lm是PT一次侧电感,C0是空长线路对地电容,RL是电阻,k为故障点。
串联谐振产生过电压的原因
串联谐振产生过电压的原因串联谐振是一种利用谐振电路产生过电压的方法。
所谓谐振电路,是指电感和电容器按一定方式连接在一起,形成共振回路。
在谐振电路中,当外加交流电源的频率等于谐振频率时,电路中的电流和电压将达到最大值,这种现象称为谐振现象。
而串联谐振电路则是将电感和电容器串联起来,形成一个串联谐振回路。
我们来了解一下串联谐振电路的基本原理。
串联谐振电路由电感、电容器和负载组成,其中负载可以是电阻、电感或电容器。
当外加交流电源的频率等于谐振频率时,电感和电容器的阻抗大小相等,且相位相反,从而使电路的总阻抗最小。
在这种情况下,电流和电压的大小将达到最大值,电路呈共振状态。
接下来,我们来探讨一下串联谐振电路产生过电压的原因。
当谐振电路处于共振状态时,电感和电容器的阻抗最小,电流和电压的大小最大。
由于负载是串联在电感和电容器之间的,所以负载两端的电压也将达到最大值,这就是过电压的产生原因。
具体来说,过电压的产生可以通过以下几个步骤来解释。
首先,在谐振频率时,电感和电容器的阻抗最小,电路中的电流达到最大值。
然后,由于负载是串联在电感和电容器之间的,所以负载两端的电压也将达到最大值。
接着,由于电感和电容器的阻抗相等且相位相反,它们之间的电压将相互抵消,从而使负载两端的电压进一步增大。
最后,过电压的产生使得负载两端的电压大于外加交流电源的电压,从而形成过电压现象。
总的来说,串联谐振电路产生过电压的原因是谐振电路处于共振状态时,电感和电容器的阻抗最小,电流和电压的大小最大。
负载作为串联在电感和电容器之间的,负载两端的电压也将达到最大值。
由于电感和电容器的阻抗相等且相位相反,它们之间的电压相互抵消,使得负载两端的电压进一步增大,形成过电压现象。
串联谐振电路产生过电压的原理可以应用于实际生活中的许多领域。
例如,变压器中的谐振电路可以用于提高电压的变换效率;电力系统中的谐振电路可以用于保护电力设备免受过电压的损害;无线电通信中的谐振电路可以用于增加信号的传输距离等。
电力系统中的谐振过电压
正文标题
在电力系统中,当发生不对称接地故障或断路器的不同期操作时,将会 出现零序电压和零序电流,通过静电和电磁耦合,会在相邻的低压平行 线路中感应出传递过电压; 当变压器的高压绕组侧出现零序电压时,会通过绕组间的杂散电容传递 至低压侧,危及低压绕组绝缘或接在低压绕组侧的电气设备。
20
正文标题
铁路供电强电线路在信号电缆的芯线上产生的纵向感应电动势,与强电线路 中的影响电流、信号电缆的金属护套屏蔽层、信号电缆的直径、信号电缆屏 蔽层的接地方式以及它们之间的距离等因素有关。
22
正文标题
当信号电缆屏蔽层不接地时,强电线路有影响电流,会通过互感抗在信 号电缆屏蔽层和线芯产生磁感应电势分别为 IP
2
3
X r1 Z1ctg(1 1 ) X r0 Z0ctg(0 0 )
X r1 2X r0 0
Z1ctg(1 1 ) 2Z0ctg(1 1 ) 0
16
正文标题
忽略导线电感,令导线的正序和零序电容分别为C1和C0,容抗为-jXC1和 -jXC0,线路首端的入口阻抗为
X r1 1 1 1
X L1 X C1
X r1 2X r0 0
X r0
1
1
1
X L0 X C0
单相开断发生谐振的条件
开断相的电压
11
1111
UA
EA 2
X rN
X r1 2
X
rN
EA
Xr0 Xr1 2Xr0 Xr1
EA
X r1 2
X r1
谐振条件
2 C0
TK
C1 2G
输电线路电容
电力系统过电压分类和特点
电力系统过电压分类和特点电力系统过电压主要分以下几种类型:大气过电压、工频过电压、操作过电压、谐振过电压。
产生的原因及特点是:大气过电压:由直击雷引起,特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。
因此,220KV以下系统的绝缘水平往往由防止大气过电压决定。
工频过电压:由长线路的电容效应及电网运行方式的突然改变引起,特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用。
操作过电压:由电网内开关操作引起,特点是具有随机性,但最不利情况下过电压倍数较高。
因此30KV及以上超高压系统的绝缘水平往往由防止操作过电压决定。
谐振过电压:由系统电容及电感回路组成谐振回路时引起,特点是过电压倍数高、持续时间长。
变压器中性点接地方式的安排一般如何考虑?变压器中性点接地方式的安排一般如何考虑?答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变.遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理.(1)变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式。
当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段。
(2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地.如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运时,若有第三台变压器则将第三台变压器改为中性点直接接地运行。
否则,按特殊运行方式处理。
(3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时、将另一台中性点不接地变压器直接接地。
电力系统中产生铁磁谐振过电压的原因
电力系统中产生铁磁谐振过电压的原因电力系统中的铁磁谐振过电压是指在一些特定的运行条件下,电力系统中的铁磁元件(如变压器、电感器等)由于谐振现象而产生的过电压。
这种过电压会对电力设备和系统的安全稳定运行产生不利影响,因此对于铁磁谐振过电压的产生原因进行深入的研究和分析具有重要意义。
铁磁谐振过电压的产生主要是由于电力系统中的谐振特性和非线性特性的相互作用引起的。
具体而言,以下是造成铁磁谐振过电压的几个主要原因:1. 谐振频率与系统频率接近:电力系统中的铁磁元件具有一定的谐振频率。
当系统频率与铁磁元件的谐振频率接近时,就容易引发谐振现象,从而产生过电压。
这是因为谐振频率附近会出现共振现象,电力系统中的能量在谐振回路中积累,导致过电压的产生。
2. 非线性特性引起的谐波:电力系统中存在各种非线性元件,如变压器的磁化曲线非线性、饱和等。
这些非线性特性会引起系统中谐波的产生和传播,进而导致铁磁谐振过电压的产生。
当谐波频率与铁磁元件的谐振频率相近时,谐波能量会在铁磁元件中积累,导致过电压的产生。
3. 谐振回路的存在:电力系统中的变压器、电感器等铁磁元件与电容器、线路等组成了谐振回路。
当这些元件的参数满足一定的条件时,谐振回路就会形成,从而引起谐振现象和过电压的产生。
4. 突变负载的突发性变化:电力系统中的负载存在突变的情况,例如突然断开大负载或突然接入大负载。
这样的突变负载会导致电力系统中的谐振频率发生变化,从而引起铁磁谐振过电压的产生。
为了避免铁磁谐振过电压对电力系统的影响,可以采取以下几种措施:1. 谐振频率的分析和计算:对于电力系统中的铁磁元件,需要进行谐振频率的分析和计算。
这样可以了解系统中是否存在谐振频率接近的情况,并采取相应的措施来避免谐振现象的发生。
2. 谐振回路的设计和调整:在电力系统的设计和运行过程中,需要合理设计和调整谐振回路。
这包括选择合适的元件参数、合理布置线路等,以降低谐振回路的谐振能力,减少谐振过电压的产生。
串联谐振过电压
串联谐振过电压串联谐振过电压,简称串谐过电压,是一种特殊的过电压现象,通常会在电能传输和分配系统中出现。
串谐过电压在现代电力系统中是比较常见的,因此对于电力系统工程师来说,了解并掌握如何防止和减轻串谐过电压的影响是非常重要的。
一、什么是串联谐振过电压?串联谐振是指在交流电路中由于电容和电感或者馈线导纳达到共振而产生的一种过电压现象。
在电力系统中,电容和电感(馈线导纳)组成的LC谐振系统通常被称为化工可控及高压输电线路中的串联补偿电容器组。
二、为什么会产生串联谐振过电压?串联谐振过电压是由于系统中存在的高压输电线路与串联补偿电容器组共振导致的。
当系统在正常运行时,电源给负载供电,并从电源平衡运行时的振荡状态中分离出来,当线路不平衡时,线路不平衡会导致电压的扰动,这些扰动会沿着线路传播并且会通过补偿电容器组达到串谐过电压水平。
三、串联谐振过电压的危害串联谐振过电压在电力系统中的危害是很严重的,它可以导致系统中的开关设备受损或烧毁。
此外,如果串联谐振过电压持续时间较长,它可能会对电力系统的绝缘性能造成损坏,从而导致更严重的后果。
四、防止和减轻串联谐振过电压的方法1. 通过电容器的分布式电抗器分布式电抗器是一种分布在高压输电线路上的高压电容器。
它能够减少补偿电容器的谐振因子而防止串联谐振过电压的发生。
通过这种方法可以有效地减轻串联谐振过电压所引起的损害。
2. 通过智能监控装置现代电力系统中的智能监控装置可以在系统出现异常时及时响应并采取相应的措施。
通过使用智能监控装置,可以实时监控电压和电流,并诊断出系统中存在的问题并提供有效的解决方案。
3. 通过调节电容器的参数我们可以通过调整电容器的参数来减轻串联谐振过电压的影响。
调整电容器的参数有助于确保电容器与线路的谐振共振频率不同步,这可以防止序列谐波产生,并减轻串联谐振过电压的影响。
总之,了解串联谐振过电压的防止和减轻方法是保证电力系统安全稳定运行的重要一环。
电网谐振过电压的限制方法
电网谐振过电压的限制方法1.增加电容器的谐振电抗:通过增加电容器的谐振电抗,可以有效地限制谐振过电压的产生。
这可以通过在电容器和电网之间串联电感元件实现,例如串联电感线圈或串联电抗器。
2.控制谐振频率:降低谐振频率可以有效地减少过电压的发生。
这可以通过改变电容器的额定值或选择合适的电感器来实现。
此外,还可以采用带有可调节参数的电容器,以便在需要时通过调节参数来改变谐振频率。
3.准确选择电容器:选择合适的电容器是限制电网谐振过电压的重要因素之一、在选择电容器时,要考虑其额定电压和频率响应特性。
电容器的额定电压应大于电网中可能出现的最高电压值,并且它的频率响应特性应与电网频率相匹配。
4.控制电容器接线:电容器的接线方式也会影响电网谐振过电压的发生。
例如,星形接线比三角形接线方式更有利于减少过电压现象的发生。
5.定期检测和维护:定期检测和维护电容器和相关设备是限制电网谐振过电压的关键措施之一、这可以通过定期检查接线连接、检测电容器的电压和频率响应特性以及及时更换老化的电容器来实现。
6.使用过电压保护装置:安装过电压保护装置是保护电网设备的有效方式。
这些装置可以在电网谐振过电压超过设定值时自动切断电源,以保护电网设备免受损坏。
7.采用阻尼器:为了防止电网谐振过电压的产生,可以在电容器和电网之间并联阻尼电阻。
这种方法可以通过在路线中添加电阻、采用特殊设计的电抗器或使用阻尼装置来实现。
8.谱隔离:谱隔离是一种有效的限制电网谐振过电压的方法。
通过控制电容器的电流谱,可以减少谐振电流的泄漏。
这可以通过滤波器和降低高次谐波电流来实现。
总之,限制电网谐振过电压是确保电网设备和电力系统正常运行的重要措施之一、通过增加电容器的谐振电抗、控制谐振频率、准确选择电容器、控制电容器接线、定期检测和维护、使用过电压保护装置、采用阻尼器以及谱隔离等方法,可以有效地减少谐振过电压的产生,提高电网的稳定性和可靠性。
谐振过电压
谐振过电压当系统进行操作(例如断路器的操作或不同期动作)或发生故障(例如不对称接地故障或断线故障)时,系统中的电感、电容元件可形成多种频率的振荡回路。
当外加的强迫振荡频率等于振荡系统中的某一自由振荡频率时,就会出现周期性的或准周期性的谐振现象,此时发生谐振的那个谐波电压的幅值和谐波电流的幅值将急剧上升。
谐振是一种稳态性质的现象,虽然在某些情况下,谐振现象不能自保持,在发生后经一段短促的时间,会自动消失,但也可稳定存在,直到破坏谐振条件为止。
因此谐振过电压的危害性既决定于其幅值的大小,也决定于持续时间的长短。
当系统产生谐振时,可能因持续的过电压而危及电气设备的绝缘,也能因持续的过电流而烧毁小容量的电感元件设备(如电压互感器),还会影响保护装置的工作条件(如影响避雷器的正常运行)。
运行经验表明,谐振过电压可在各种电压等级的电网中产生。
在35kV及以下的电网中,由谐振造成的事故较多,需要特别重视。
在电网设计时及进行操作前,要作一些估计和安排,尽量避免谐振的发生或缩短谐振存在的时间。
电力系统中的有功负荷是阻尼振荡和限制谐振过电压的有利因素,所以通常只有在空载或轻载的情况下才会发生谐振。
但对零序回路参数配合不当而形成的谐振,系统的正序有功负荷是不起作用的。
电力系统中的电容和电阻元件,一般可认为是线性参数。
可是电感元件则不然。
由于振荡回路中包含不同特性的电感元件,谐振将有三种不同的类型:(1)线性谐振。
谐振回路由不带铁芯的电感元件(如输电线路的电感、变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈,其铁芯中有气隙)和系统中的电容元件所组成。
在正弦电源作用下,当系统自振频率与电源频率相等或接近时,将产生线性谐振。
(2)铁磁谐(非线性谐振)。
谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统中的电容元件组成。
受铁芯饱和的影响,铁芯电感元件的电感参数是非线性的,这种含有非线性电感元件的回路,在满足一定谐振条件时,会产生铁磁谐振。
10KV铁路电力系统谐振过电压产生原因及抑制措施讲解
10KV 铁路电力系统谐振过电压产生原因及抑制措施摘要:铁路10KV 电力系统是中性点不接地系统,中性点直接接地的三相五柱电磁式电压互感器线圈电感和电网对地电容与构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压。
本文通过对10KV 中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并针对各种抑制谐振过电压的措施进行探讨,得出可行性结论。
关键词:铁路;电力;过电压;抑制措施1 概述铁路10KV 电力系统均为中性点不接地系统(小电流接地),发生单相接地故障时,由于对线电压不产生影响,允许继续运行2个小时,提高了供电的可靠性和连续性,但是存在着易产生过电压的问题。
在10KV 配电所的每一段母线上均接有一台三相五柱电磁式电压互感器,其一次线圈中性点直接接地。
由于电网对地电容与压互的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,甚至能长时间自保持,对系统的安全运行威协极大,它是导致压互高压熔丝熔断和压互烧损、避雷器爆炸的主要原因,也是某些重大事故的诱发原因之一。
近五年以来,在我段管内共发生谐振过电压烧坏压互高压保险12次,烧毁10KV 压互1台,压互瓷瓶内部引出线烧断1次。
2 铁路10KV 电力系统谐振过电压产生的条件2.1 内部条件铁路10KV 电力系统是中性点不接地系统,为了监视系统的三相对地电压,10 kV配电所每段母线上均接有Y/Y/接线的三相五柱电磁式压互。
母线电压互感器的高压侧接成Y 型,其中性点是接地的,由于铁路10KV 电力系统中电缆较多,各相对地电容较高,电网对地电容与压互的电感相匹配构成谐振条件。
当发生谐振时,压互感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成压互烧毁或保险熔断。
2.2 外界激发条件激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。
(2)向带有三相五柱电磁式压互的空母线充电(不带馈线负荷的情况下空送母线)。
电力系统中的谐振过电压汇总
电力系统中的谐振过电压汇总串联谐振过电压是指当电力系统中的电感元件和电容元件呈串联关系时,由于谐振频率的输入而导致的电压过高的现象。
通常情况下,电力系统中的电感元件包括变压器、线圈等,而电容元件则包括电容器、电缆等。
串联谐振过电压的存在可能会导致电压过高,进而导致设备失效,甚至发生电弧灼伤的危险。
为了解决串联谐振过电压问题,可以采取添加电阻元件或者改变电路结构等方法进行限制。
并联谐振过电压是指在电力系统中,当电容元件和电感元件呈并联关系时,由于谐振频率的输入而导致的电压过高的现象。
并联谐振过电压通常存在于变电站的电容电压互感器、过电压防护器等设备中。
并联谐振过电压的存在可能会导致设备破坏、继电保护功能异常等问题。
为了解决并联谐振过电压问题,可以采取增加电阻元件、加大绝缘距离等方法进行限制。
谐振过电压的产生原因多样,主要包括谐振电路的共振、外部谐振源的干扰等。
谐振电路的共振可以是因为电力系统中元件的电感值和电容值之间的匹配产生谐振频率。
而外部谐振源干扰主要是指其他系统或装置中产生的谐振源通过电力系统传输而导致的谐振过电压。
谐振过电压的存在对电力系统的稳定运行会造成较大的影响,因此,对于谐振过电压的研究和预防十分重要。
为了降低电力系统中的谐振过电压,可以采取以下措施:1.改变电路结构:通过改变电力系统中电感元件和电容元件的连接方式,使其不易形成谐振回路。
2.增加阻尼元件:向谐振回路中加入合适的阻尼元件,可以消耗谐振电流,从而减小过电压的幅值。
3.增加电容补偿:通过增加额外的并联电容,提高电力系统的谐振频率,减小谐振过电压的发生。
4.改变设备参数:通过调整电感元件和电容元件的参数,改变谐振频率,从而降低谐振过电压的幅值。
5.优化绝缘水平:加大设备间的绝缘距离和绝缘强度,提高系统的耐受谐振过电压能力。
总之,电力系统中的谐振过电压是一种常见的问题,对电力系统的正常运行和设备的安全运行都会产生一定的影响。
因此,对于谐振过电压的预防和限制是电力系统运行中的一项重要任务,通过采取合适的措施来解决谐振过电压问题,能够提高电力系统的稳定性和可靠性。
电力系统过电压知识
2 线路合闸和重合闸操作过电压
空载线路合闸时,由于线路电感-容的振荡将产生合闸过电压。线路重合时,由于电源电势较高以及线路上残余电荷的存在,加剧了这一电磁振荡过程,使过电压进一步提高。因此断路器应安装合闸电阻,以有效地降低合闸及重合闸过电压。 应按电网预测条件,求出空载线路合闸、单相重合闸和成功、非成功的三相重合闸(如运行中使用时)的过电压分布,求出包括线路受端的相对地及相间统计操作过电压。预测这类操作过电压的条件如下: A.空载线路合闸,线路断路器合闸前,电源母线电压为电网最高电压; B.成功的三相重合闸前,线路受端曾发生单相接地故障;非成功的三相重合闸时,线路受端有单相接地故障。 空载线路合闸、单相重合闸和成功的三相重合闸(如运行中使用时),在线路受端产生的相对地统计操作过电压,不应大于2 2UXG 。
操作过电压:由于操作(如断路器的合闸和分闸)、故障或其他原因,使系统参数过渡过程中系统本身的电磁能振荡而产生的过电压。 ,特点是具有随机性,但最不利情况下过电压倍数较高。操作过电压原因及规避措施
1 电网的操作过电压一般由下列原因引起
该处过电压不超过避雷器操作过电压保护水平时,可不必在该处安装避雷器。
7 具有串联间隙避雷器的额定电压
应不低于安装点的电网工频过电压水平。
8 应用金属氧化物避雷器限制操作过电压时
应参照厂家产品使用说明书,使其长期运行电压值、工频过电压、谐振过电压允许持续时间符合电网要求。
(2) 在并联高压电抗器中性点加装小电抗,用这个措施可以阻断非全相运行时工频电压传递及串联谐振。 (3) 破坏发电机产生自励磁的条件,防止参数谐振过电压。
4 线路非对称故障分闸和振荡解列操作过电压
电网送受端联系薄弱,如线路非对称故障导致分闸,或在电网振荡状态下解列,将产生线路非对称故障分闸或振荡解列过电压。 预测线路非对称故障分闸过电压,可选择线路受端存在单相接地故障的条件,分闸时线路送受端电势功角差应按实际情况选取。 有分闸电阻的断路器,可降低线路非对称故障分闸及振荡解列过电压。当不具备这一条件时,应采用安装于线路上的避雷器加以限制。
电网谐振过电压的限制方法(三篇)
电网谐振过电压的限制方法电力供电系统或者说在电力供电电网上,过电压现象十分普遍。
如果没有防范措施,随时都可能发生,也随时都可以发现。
引起电网过电压的原因很多。
主要可分为谐振过电压、操作过电压和雷电过电压;其中谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。
多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。
由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。
为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以避免形成严重的串联谐振回路;或采取适当的防止谐振的措施。
在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。
目前,我国35kV及以下配电网,仍大部分采用中性点不接地方式运行,一部分采用老式的消弧(消谐)线圈接地。
从电网的运行实践证明,中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、TV高压中性点增设电阻或单只TV等,但始终没有从根本上得到解决,TV烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。
而采用老式消弧线圈接地方式的系统由于结构的限制,只能运行在过补偿状态,不能处在全补偿状态,所以脱谐度整定的比较大,约在20%~30%,对弧光过电压无抑制效果。
电力系统产生铁磁谐振过电压的原因及消除方法
电力系统产生铁磁谐振过电压的原因及消除方法目前,我国的经济发展十分迅速,在电力系统中容易出现铁磁谐振过电压事故,严重威胁着人们的生命财产安全,需要引起高度的重视,有针对性采取解决措施,避免出现铁磁谐振过电压现象。
本文将简述铁磁谐振的危害性,并分析了其产生的原因与条件,最后提出了具体可行的预防对策。
标签:电力系统;铁磁谐振;消除方法引言电力系统内设置有众多的储能元件,在系统操作与出现故障以后,变压器、互感器等含铁芯元件的非线性电感元件和系统内电容串联将造成铁磁谐振现象,将严重威胁着电力系统运行的安全性与稳定性。
在出现铁磁谐振过电压以后,会让电压互感器一次熔丝熔断,并将电压互感器烧毁,严重时还会炸毁瓷绝缘子和避雷器,从而以引起系统停运。
且受到电源的作用,还会引起串联谐振的情况,让系统内发生严重的谐振过电压。
对此我们需要引起高度重视,消除铁磁谐振过电压势在必行。
1 电压互感器发生铁磁谐振的机理谐振是交流电路当中独有的一种现象,通常情况下,交流电路当中出现了电感以及电容的串联现象,会出现感抗等于容抗,从而造成谐振。
一般来说,电力系统当中,受到电容、电感等元件故障影响或者误操作时,就会产生以谐振为代表的震荡回路。
谐振所具有的串谐特征,还会对某些系统元件产生不可逆的破坏性影响,其中电压互感器在谐振影响下的表现十分明显,这是由于电压互感器作为铁芯元件,而铁芯在参与到回路当中所形成的饱和电路会表现为非线性的电感参数,从而造成其严重破坏。
就目前的电力系统谐振问题影响特征来看,谐振问题一般可以依据电网结构分为并联谐振以及串联谐振两种谐振类型,前者表现在小接地单流系统内部,并联状态下的铁磁谐振会使得电容互感器与电压互感器在一次中性接地点的非线性电感之上,构成谐振回路;而后者则是在大接地电流系统当中产生。
电磁式电压互感器会通过非线性电感与断路器断口的电容共同构成谐振回路。
而在众多谐振回路当中,铁磁电压谐振出现最为频繁,同时影响力也最大。
谐振过电压
2、物理过程
1 L C 是产生铁磁谐 振的必要条件 可能存在两个稳定工 作点a1和a3 平衡方程为:E=ΔU=|ULUC| ΔU与E线共有3个交点, 加小扰动后,a2不能回 到平衡点,不是稳定的工 作点
串联铁磁谐振回路的伏安特性
铁磁元件的非线性是产生铁磁谐振的根本原因, 但其饱和特性本身又限制了过电压的幅值。 回路中的损耗会使过电压降低,当回路电阻值大到 一定数值时,就不会出现强烈的的谐振现象。
小 结
谐振过电压可分为如下三种形式:线性谐振过电 压、参数谐振过电压和铁磁谐振。
具有各种谐波谐振的可能性是铁磁谐振的一个重 要特点。
限制措施:
使回路脱离谐振状态或增加回路的损耗
电力系统设计和运行时,应设法避开谐振 条件以消除这种过电压
(2)参数谐振过电压
产生原因:
系统中某些元件的电感会发生周期性变化,如 发电机转动时,其电感的大小随着转子位置的不同 而周期性地变化,当发电机带有电容性负载时(例 如一段空载线路),如再存在不利的参数配合, 就有可能引发参数谐振现象
限制措施:
发电机在正式投入运行前,应当避开谐振点, 一般不会出现谐振现象
(3)铁磁谐振过电压
当电感元件带有铁心时,一般会出现饱和现 象,此时电感随着电流或磁通的变化而改变,在 满足一定条件时,就会产生铁磁谐振现象,它具 有一系列不同于其他谐振过电压的特点,可在电 力系统中引发某些严重事故。
5.2.2 铁磁谐振的基本原理
电力系统的谐振过电压浅析
D I1 .99 ji n 10 - 9 2 2 1 .5 0 3 O: 0 3 6 / . s .0 1 8 7 .0 0 1 .0 s
压 器 , 互 感 器 , 线 圈等铁 芯 电感的磁 电压 消弧
电力系统的谐振过 电压浅析
雷强 湖 南澧县 艳 洲 水利 水 电工 程 管理 局
致在系统中的某些部件( 或元件) 上出现严重
种原因, 如中性点电压位移 , 断路器非全相或 不 同期操作, 电磁式电压互感器饱和等等, 产 生 谐 振 过 电 压 。 过 电 压 首 先 使设 备 老 化 ,
绝 缘 水平 较 低 的 电 气设 备 损坏 , 最终 造 成事 故 。为 了尽 量避 免这类 事故的发生 , 就要
运行 经验表 明谐振 过电压可在各种 电压等 级 的 网络 中产 生 , 其是 在 3k 及 以 下的 电 尤 5v
过 电压 对 电 力 系统 危 害 极 大 , 往 会 引 起 往
重 大 设 备 事 故 , 成 重 大设 备损 坏 和 重 大 造
路饱和作用而激发起持续性 的较 高幅值 的 铁 磁谐 振 过 电压 , 它具 有 与线 性 谐振 过 电 压 完全不 同的特 点和性 能 。 在正常的同步运行状态下 , 水轮发 电机 每经过 一个电周期 , 电抗将变动两个周期 。
财 产损 失 , 能 不 引 起 足 够 的 重视 。 相 对 不 于 雷 击过 电压 、 操 作 过 电压 , 力 系统 的 电
动 。在所有 这些情况下 , 如果电机的外 电 路 容 抗 满 足一 定 的 条件 , 损 耗 电 阻又 足够 且 小时 , 就有可能在此电感参数周期变化的振 荡回路 中激 发起一种特殊性 质的参数谐振 现象 , 电感参数周期变化的过程 中将不断 在 地经过感抗等于容抗的谐振 点, 导致 同步电
谐振过电压的原因
谐振过电压的原因1. 操作不当不就会引起谐振过电压吗?就像你开车时不小心猛踩油门,车子可能就出问题啦。
比如说在进行电气设备操作时,要是没按正确步骤来,就可能引发这种情况哟!2. 系统参数不合理难道不是原因之一吗?这就好比你穿了一双不合脚的鞋子,肯定会不舒服呀。
像电感电容参数设置得不合适,那谐振过电压就容易出现啦!3. 元件故障难道不会导致谐振过电压吗?哎呀,就像家里的电器坏了一样,肯定会有影响呀。
比如电容器损坏了,就可能引发这个问题呢!4. 线路的不合理布局不也是个因素吗?这跟你整理房间一样,如果东西放得乱七八糟,肯定会有麻烦呀。
线路布局不好,谐振过电压就可能冒出来咯!5. 外界干扰会不会引发谐振过电压呢?这就好像你在安静做事的时候有人来捣乱一样。
比如强烈的电磁干扰,就可能导致这种情况呀!6. 电网负荷变化大难道不是原因吗?这不就像你一会儿背很重的东西,一会儿又什么都不背,身体能受得了吗。
负荷变化大时,谐振过电压可能就出现啦!7. 设备老化难道不会带来谐振过电压吗?就如同人老了会有各种毛病一样。
设备用久了老化了,就容易有这个问题哟!8. 环境因素影响大着呢,不是吗?就好像天气对人的心情影响很大一样。
恶劣的环境条件下,谐振过电压可能就来了呀!9. 系统运行状态不稳定,能不出现谐振过电压吗?这就像车子开得摇摇晃晃的,肯定不安全呀。
运行状态不好,那可就危险啦!10. 没有良好的维护管理,谐振过电压不就容易出现吗?就跟你不保养身体容易生病一个道理。
不好好维护管理,问题就会找上门呀!我的观点结论:谐振过电压的产生原因是多方面的,我们在实际中一定要注意这些因素,尽量避免因为这些原因而导致谐振过电压的出现,保障电力系统的安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统谐振过电压
电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压,这一现象叫电力系统谐振过电压。
谐振过电压分为以下几种: (1)线性谐振过电压
谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。
(2)铁磁谐振过电压
谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。
(3)参数谐振过电压
由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Kd~Kq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。