§233互斥事件与对立事件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑴.
⑵.1张奖券的中奖概率;
⑶.1张奖券不中特等奖或一等奖的概率。
自我挑战三
我的知识网络图——归纳总结 串联整合
规律方
法总结:
创新思维能力培养反思体验过程
自我评价——激励创新思维意识
1.你完成本节学习设计方案的情况为( )
A. 很好 B. 较好 C. 一般 D. 较差
2.你今天所学的重要数学知识是:
(1)甲抽到选择题、乙抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
本小组还存在的问题或困惑
合作探究——培养创新思维品质
探究点一
话题1:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。
学习重点
利用互斥事件及对立事件的概率运算法则求随机事件的概率
学习难点
正确寻找事件的对立事件,互斥事件及对立事件概率的计算
创新思维能力培养过程
自主阅读——寻找创新思维素材
(阅读教材P140~P141,用红色笔画出疑惑之处,并尝试完成下列问题,总结规律方法)
问题1:什么是互斥事件与对立事件?如何计算它们的概率?
课题
§2.3.3互斥事件与对立事件
第3课时
第8周
学习目标
1.进一步理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。能熟练应用概率运算法则解决简单的概率问题。
2.通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。
28
29
8wk.baidu.com
35
已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
自我挑战二
某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1000张奖券为一个开奖单位。设特等奖1个,一等奖10个,二等奖50个。设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:
(1)恰好有1件次品恰好有2件次品;(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品
话题2玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿.
(1)从中取1个球,求取得红或黑的概率;
(2)从中取2个球,求至少一个红球的概率.
话题3:某高级中学有学生1000人,统计全体学生的年龄,得到如下数据:
问题2:某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;
事件B:命中环数为10环;
事件C:命中环数小于6环;
事件D:命中环数为6、7、8、9、10环.
自己存在的困惑:
自己所提的问题:
质疑交流——激发创新思维火花
议题1:甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.
4.某人射击射中10环,9环,8环的概率依次为0.2,0.25,0.3,则他打1枪至少8环的概率为
5.口袋中有若干红球、黄球与蓝球。摸出红球的概率为0.45,摸出黄球的概率为0.33,则摸出红球或黄球的概率摸出蓝球的概率
6.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则使目标受损但未完全击毁的概率
3.你本节课感悟最深的数学思想(数学方法)是:
反思体验——固化创新思维元素
学习建议:(用15分钟时间独立完成,并注意规范书写)
1.抛掷一颗骰子1次,记“向上的点数是4,5,6”为事件A,“向上的点数是1,2”为事件B,“向上的点数是1,2,3”为事件C,“向上的点数是1,2,3,4”为事件D。判断下列每对事件是否为互斥事件,如果是,再判断它们是否为对立事件
7.某种彩色电视机的一等品率为90%,二等品率为8%,次品率为2%,某人买了一台该种电视机,则这台电视机是正品(一等品或二等品)的概率为,这台电视机不是一等品的概率
8.经临床验证,一种新药对某种疾病的治愈率为54%,现效率为22%,有效率为12%,其余为无效。则某人患该病使用此药后无效的概率
年龄(岁)
13
14
15
16
17
18
19
20
合计
人数
8
40
231
315
280
107
13
6
1000
从中任意抽取1人,
求:(1)年龄大于18岁的概率;
(2)年龄不低于15岁的概率.
小组共性问题:
展示提高——形成创新思维能力
自我挑战一
例1.黄种人群中各种血型的人所占的比如下表所示:
血型
A
B
AB
O
该血型的人所占比/%
⑴A与B⑵A与C⑶A与D
2.有一批小包装食品,其中重量在90~95g的有40袋,重量在95~100g的有30袋,重量在100~105g的有10袋。从中任意抽取一袋,则此袋食品的重量在95~100g的概率为;此袋食品的重量不足100g的概率为;此袋食品的重量不低于95g的概率为
3.甲、乙两人下棋,甲胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人下和的概率为
⑵.1张奖券的中奖概率;
⑶.1张奖券不中特等奖或一等奖的概率。
自我挑战三
我的知识网络图——归纳总结 串联整合
规律方
法总结:
创新思维能力培养反思体验过程
自我评价——激励创新思维意识
1.你完成本节学习设计方案的情况为( )
A. 很好 B. 较好 C. 一般 D. 较差
2.你今天所学的重要数学知识是:
(1)甲抽到选择题、乙抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
本小组还存在的问题或困惑
合作探究——培养创新思维品质
探究点一
话题1:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。
学习重点
利用互斥事件及对立事件的概率运算法则求随机事件的概率
学习难点
正确寻找事件的对立事件,互斥事件及对立事件概率的计算
创新思维能力培养过程
自主阅读——寻找创新思维素材
(阅读教材P140~P141,用红色笔画出疑惑之处,并尝试完成下列问题,总结规律方法)
问题1:什么是互斥事件与对立事件?如何计算它们的概率?
课题
§2.3.3互斥事件与对立事件
第3课时
第8周
学习目标
1.进一步理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。能熟练应用概率运算法则解决简单的概率问题。
2.通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。
28
29
8wk.baidu.com
35
已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
自我挑战二
某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1000张奖券为一个开奖单位。设特等奖1个,一等奖10个,二等奖50个。设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:
(1)恰好有1件次品恰好有2件次品;(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品
话题2玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿.
(1)从中取1个球,求取得红或黑的概率;
(2)从中取2个球,求至少一个红球的概率.
话题3:某高级中学有学生1000人,统计全体学生的年龄,得到如下数据:
问题2:某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;
事件B:命中环数为10环;
事件C:命中环数小于6环;
事件D:命中环数为6、7、8、9、10环.
自己存在的困惑:
自己所提的问题:
质疑交流——激发创新思维火花
议题1:甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.
4.某人射击射中10环,9环,8环的概率依次为0.2,0.25,0.3,则他打1枪至少8环的概率为
5.口袋中有若干红球、黄球与蓝球。摸出红球的概率为0.45,摸出黄球的概率为0.33,则摸出红球或黄球的概率摸出蓝球的概率
6.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则使目标受损但未完全击毁的概率
3.你本节课感悟最深的数学思想(数学方法)是:
反思体验——固化创新思维元素
学习建议:(用15分钟时间独立完成,并注意规范书写)
1.抛掷一颗骰子1次,记“向上的点数是4,5,6”为事件A,“向上的点数是1,2”为事件B,“向上的点数是1,2,3”为事件C,“向上的点数是1,2,3,4”为事件D。判断下列每对事件是否为互斥事件,如果是,再判断它们是否为对立事件
7.某种彩色电视机的一等品率为90%,二等品率为8%,次品率为2%,某人买了一台该种电视机,则这台电视机是正品(一等品或二等品)的概率为,这台电视机不是一等品的概率
8.经临床验证,一种新药对某种疾病的治愈率为54%,现效率为22%,有效率为12%,其余为无效。则某人患该病使用此药后无效的概率
年龄(岁)
13
14
15
16
17
18
19
20
合计
人数
8
40
231
315
280
107
13
6
1000
从中任意抽取1人,
求:(1)年龄大于18岁的概率;
(2)年龄不低于15岁的概率.
小组共性问题:
展示提高——形成创新思维能力
自我挑战一
例1.黄种人群中各种血型的人所占的比如下表所示:
血型
A
B
AB
O
该血型的人所占比/%
⑴A与B⑵A与C⑶A与D
2.有一批小包装食品,其中重量在90~95g的有40袋,重量在95~100g的有30袋,重量在100~105g的有10袋。从中任意抽取一袋,则此袋食品的重量在95~100g的概率为;此袋食品的重量不足100g的概率为;此袋食品的重量不低于95g的概率为
3.甲、乙两人下棋,甲胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人下和的概率为