混凝实验
混凝实验报告总结
一、实验背景混凝过程是现代城市给水和工业废水处理工艺研究中不可或缺的前置单元操作环节之一。
本实验旨在通过混凝实验,加深对混凝理论的理解,探索最佳混凝工艺条件,提高水处理效果。
二、实验目的1. 了解混凝现象及过程,观察矾花的形成。
2. 了解混凝的净水作用及主要影响因素。
3. 了解助凝剂对混凝效果的影响。
4. 探求水样最佳混凝条件(包括投药种类、投加量、pH值等)。
三、实验原理天然水中存在大量胶体颗粒,使原水产生浑浊。
混凝剂通过压缩双电层、吸附电中和、吸附架桥和沉淀物网捕等机理,使胶体颗粒脱稳,相互碰撞聚集,形成较大的絮体,从而实现净水目的。
四、实验方法1. 实验材料:原水、混凝剂、助凝剂、pH值调节剂、烧杯、搅拌器、pH计等。
2. 实验步骤:(1)取一定量的原水,加入适量的混凝剂,搅拌一定时间;(2)调节pH值,观察矾花形成情况;(3)加入助凝剂,继续搅拌;(4)观察絮体沉降情况,记录相关数据。
五、实验结果与分析1. 实验结果表明,混凝剂投加量为7ml时,混凝效果最佳。
在此条件下,矾花形成迅速,沉降速度快,出水浊度低。
2. 最佳pH值为7.63,在此pH值下,混凝剂水解程度高,脱稳效果显著。
3. 助凝剂对混凝效果有一定影响,但其影响相对较小。
在最佳混凝剂投加量和pH值条件下,助凝剂对混凝效果的影响不明显。
六、实验结论1. 本实验验证了混凝剂、pH值和助凝剂对混凝效果的影响,为实际水处理工艺提供了理论依据。
2. 最佳混凝工艺条件为:混凝剂投加量为7ml,pH值为7.63,无需添加助凝剂。
3. 实验结果可为水处理工程提供参考,有助于提高水处理效果。
七、实验不足与展望1. 实验过程中,未对混凝剂种类进行深入研究,今后可对不同混凝剂进行对比实验,探究其适用范围。
2. 实验过程中,未对助凝剂种类和用量进行系统研究,今后可对助凝剂进行优化,提高混凝效果。
3. 实验过程中,未对混凝过程中的水质变化进行详细分析,今后可对混凝过程中水质变化进行跟踪,为优化混凝工艺提供数据支持。
混凝沉淀实验
熟化反应
Al (O H) 2 Cl -Al2 (O H) 4 Cl2 -[ Al2 (O H) 5 Cl ]2 -[ Al2 (O H) 4 Cl2 ]3⋯-[ Al2 (O H) n Cl6 - n ] m .
聚 合 氯 化 铝 简 称 PAC , 其 化 学 通 式 为 [ Al2 (O H) n Cl6 - n ] m ( 1 ≤n ≤5 , m ≤10 ) , 是一种新 型高效无机高分子絮凝剂 。PAC 具有混凝能力强 , 用量少 ,净化性能高 ,适应力强等特点 ,净化效果是 传统净水剂硫酸铝的 3 ~ 5 倍 。PAC 是介于 AlCl3和 Al ( O H) 3 之 间 的 中 间 水 解 产 物 , 常 温 下 有 固 体 (白色) 和液体 (无色) 两种形态 。固体产品具有吸附 活性高 、澄清泥少 、时间短 、适应 p H 值范围宽 、不需 助凝剂和不受水温影响等优点 。PAC 现已被广泛 用于净水处理和工业废水的处理 。还可用于制革的 鞣软剂 、造纸的施胶剂 、印染的漂染剂 、精密铸造的 硬化剂 、耐火材料的粘结剂等
01
启动搅拌机,先中速运转数分钟,然后快速运转,稳定后再1—6 号烧杯中分别加入3、6、9、12、15、18ml的硫酸铝混凝剂。快速搅拌半分钟、转速约 300r/min。
03
用 6 个 1000mL 的烧杯,分别放入 1000mL 原水,置实验搅拌机平台上。
02
确定最佳投药量
四.实验步骤
中速搅拌 5分钟,转速约 120r/min; 慢速搅拌 10 分钟、转速约 80r/min。
关闭搅拌机,静置1 5 分钟,取上清液(用浊度仪测定浊度,记入表 2 中。
混凝实验 确定版
实验一化学混凝一、试验的目的和意义影响混凝效果的因素有水温,pH值,混凝剂种类、加量以及搅拌速度和时间等。
由于上述诸因素的影响的错综复杂,且非拘一格,所以混凝过程的优惠工艺条件通常要用混凝试验来确定。
衡量混凝主要指标是出水浊度和主要污染因子浓度。
实验方案技术及数据处理常用优选法和正交设计等数理统计法。
本实验的目的,在于使学生掌握进行混凝实验的基本技能(包括混凝剂品种的筛选,以及与待处理废水相适应的pH值和混凝剂加量的确定等),并对实验数据作正确的处理和分析。
二、实验原理化学混凝法通常用来除去废水中的胶体污染物和细微悬浮物。
所谓化学混凝,是指在废水中投加化学及来破坏胶体及细微悬浮物颗粒在水中形成的稳定分散体系,使其聚集为具有明显沉降性能的絮凝体,然后再用重力沉降,过滤,气浮等方法予以分离的单元过程。
这一过程包括凝聚和絮凝两个步骤,二者统称为混凝。
具体地说,凝聚是指在化学药剂作用下使胶体和细微悬浮物脱稳,并在布朗运动作用下,聚集为微絮粒的过程,而絮凝则是指为絮粒在水流紊动作用下,成为絮凝体的过程。
根据混凝过程的GT值要求,在药剂与废水的混合阶段,对搅拌速度和搅拌时间的要求是高速短时;而在反应阶段则要求低速长时。
两个阶段的搅拌转速n(r、p、m)和搅拌时间T由GT=104-105通过计算确定。
一般水处理中,混合阶级的G值约为500~1000秒-1,混合时间为10~30秒,一般不超过2分钟,在反应阶段,G值约为10~100秒-1,停留时间一般为15~30钟。
三、实验设备及仪器1、无级调速六联搅拌机一台(或六台单联搅拌机);2、721型分光光度计3、pH计或精密pH试纸;4、温度计;5、50ml注射器;6、秒表;7、量筒;8、1000ml烧杯,250ml烧杯;9、移液管;10、混凝剂:10g/L FeCl3, 10g/L聚合氯化铝〔Al2(OH)m Cl6-m〕;聚丙烯酰胺PAM11、10%盐酸,8%氢氧化钠。
实验一混凝实验
给水处理工程实验一混凝实验一、实验目的:1、通过实验观察混凝现象,加深对混凝理论的理解;2、学会求得一般天然水体最佳混凝条件(包括投药量、pH值、水流速度梯度)的基本方法;3、加深对混凝机理的理解。
4、了解混凝的相关因素。
二、实验原理:分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化作用下,长期处于稳定分散状态,不能用自然沉淀方法去除。
向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。
由于各种原水有很大差别,混凝效果不尽相同。
混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。
胶体颗粒(胶粒)带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。
胶粒表面的电荷值常用电动电位ξ来表示,又称为Zeta电位。
Zeta电位的高低决定了胶体颗粒之间斥力的大小和影响范围。
Zeta电位的测定,可通过在一定外加电压下带电颗粒的电泳迁移率计算:ξ= KπηuHD (1-1)式中:ξ——Zeta电位(mV);K ——微粒形状系数,对于圆球体K=6;π——系数,为3.1416;η——水的粘度(Pa·S),(此取η=10-1Pa·S);u ——颗粒电泳迁移率(um/s/\V/cm);H ——电场强度梯度(V/cm);=81。
D ——水的介电常数D水Zeta电位值尚不能直接测定,一般是利用外加电压下追踪胶体颗粒经过一个测定距离的轨迹,以确定电泳迁移率值,再经过计算得出Zeta电位。
电泳迁移率用下式进行计算:u=GL(1-2)VT式中:G ——分格长度(um);L ——电泳槽长度(cm);V ——电压(V);T ——时间(s)。
一般天然水中胶体颗粒的Zeta电位约在-30毫伏以上,投加混凝剂后,只要该电位降到-15毫伏左右即可得到较好的混凝效果。
相反,当Zeta电位降到零,往往不是最佳混凝状态。
投加混凝剂的多少,直接影响混凝效果。
投加量不足不可能又很好的混凝效果。
混凝实验报告
混凝实验报告实验目的,通过混凝实验,研究混凝剂对水质的净化效果,探讨最佳混凝剂用量及混凝时间,为水处理工程提供科学依据。
实验原理,混凝是指在水中加入混凝剂后,使水中的悬浮物、胶体物质凝聚成较大的絮凝体,便于后续的沉降或过滤。
混凝剂一般为阳离子、阴离子或非离子高分子物质,其作用机理主要有吸附、中和、电中和和凝聚等。
实验材料与方法:材料,实验室自来水、混凝剂(聚合氯化铝)、搅拌器、玻璃容器、pH计、浊度计等。
方法:1. 取一定量自来水倒入玻璃容器中;2. 用搅拌器将水搅拌均匀;3. 用pH计检测水的初始pH值;4. 在搅拌的同时,向水中加入不同剂量的混凝剂;5. 混凝一定时间后停止搅拌,观察絮凝体的生成情况;6. 用浊度计检测水的浊度,记录下实验数据。
实验结果与分析:经过一系列实验,我们得出以下结论:1. 随着混凝剂用量的增加,水中絮凝体的生成量逐渐增加,浊度逐渐降低,水质得到了改善;2. 随着混凝时间的延长,絮凝体的大小逐渐增加,浊度进一步降低,但当混凝时间过长时,絮凝体又会发生分散,浊度会有所上升;3. 初始水质的pH值对混凝效果也有一定影响,一般情况下,pH值在6.5-7.5之间时,混凝效果较好。
结论:混凝实验结果表明,聚合氯化铝作为混凝剂,能够有效地改善水质,提高水的透明度,减少水中的悬浮物和胶体物质。
在实际应用中,应根据水质的不同情况,合理控制混凝剂的用量和混凝时间,以达到最佳的净化效果。
总结:通过本次混凝实验,我们对混凝剂的作用机理和影响因素有了更深入的了解,为今后的水处理工程提供了有益的参考。
同时,也为我们提供了实验操作的经验,为今后的科研工作打下了坚实的基础。
实验报告撰写人,XXX。
日期,XXXX年XX月XX日。
混凝优化实验报告
一、实验目的1. 了解混凝过程的基本原理及其在水质净化中的应用。
2. 探究不同混凝剂对水质净化效果的影响。
3. 通过实验确定最佳混凝条件,以优化水质净化效果。
4. 分析实验数据,总结混凝过程的关键影响因素。
二、实验原理混凝过程是利用混凝剂使水中的悬浮颗粒、胶体等杂质聚集成较大的絮体,从而实现水质净化的过程。
混凝剂通过压缩双电层、吸附架桥等作用,使杂质颗粒相互吸引、聚集,形成易于沉降的絮体。
三、实验材料与仪器1. 实验材料:原水、聚合氯化铝(PAC)、硫酸铝(SAS)、氢氧化钠(NaOH)、硫酸铁(FeSO4)、碳酸钠(Na2CO3)等。
2. 实验仪器:混凝实验装置、电子天平、pH计、浊度计、搅拌器、烧杯、玻璃棒等。
四、实验方法1. 实验步骤:(1)取一定量的原水置于烧杯中,测定初始pH值和浊度。
(2)分别向烧杯中加入不同种类和浓度的混凝剂,搅拌一定时间。
(3)测定混凝后的pH值、浊度和沉淀时间。
(4)观察沉淀物形态,记录实验数据。
2. 实验条件:(1)原水:取自某地表水体,浊度约为30NTU。
(2)混凝剂:PAC、SAS、NaOH、FeSO4、Na2CO3等。
(3)搅拌速度:100-200转/分。
(4)沉淀时间:30分钟。
五、实验结果与分析1. 不同混凝剂对水质净化效果的影响:表1:不同混凝剂对水质净化效果的影响| 混凝剂 | 投加量(mg/L) | 沉淀时间(分钟) | 浊度(NTU) || ------ | -------------- | ---------------- | ------------ || PAC | 20 | 30 | 1.5 || SAS | 20 | 30 | 2.0 || NaOH | 20 | 30 | 1.8 || FeSO4 | 20 | 30 | 1.2 || Na2CO3 | 20 | 30 | 2.5 |由表1可知,PAC和FeSO4的混凝效果较好,浊度去除率分别为50%和60%。
混凝实验报告
混凝实验报告混凝实验报告引言:混凝是一种常见的水处理技术,用于去除水中的悬浮物和溶解物,以提高水质。
本实验旨在通过模拟混凝过程,探究不同条件下的混凝效果,并分析其影响因素。
实验材料与方法:1. 实验材料:- 水样:采集自自来水厂的自来水- 混凝剂:聚合氯化铝(PAC)- 混凝剂浓度:0.1 g/L、0.2 g/L、0.3 g/L- 水样pH值调节剂:氢氧化钠(NaOH)、盐酸(HCl)2. 实验方法:- 步骤一:准备三个不同浓度的混凝剂溶液,分别为0.1 g/L、0.2 g/L、0.3g/L。
- 步骤二:取一定量的自来水样,分成三组,每组分别加入相应浓度的混凝剂溶液。
- 步骤三:使用搅拌器将混凝剂与水样充分混合,搅拌时间为5分钟。
- 步骤四:待混凝剂与水样反应完成后,停止搅拌并静置一段时间,观察悬浮物的沉降情况。
- 步骤五:测量不同条件下水样的浊度,并记录结果。
实验结果与分析:在进行实验过程中,观察到不同浓度的混凝剂对水样的混凝效果有显著影响。
通过测量水样的浊度,可以客观地评估混凝效果。
1. 不同混凝剂浓度对混凝效果的影响:在实验中,我们分别使用了0.1 g/L、0.2 g/L和0.3 g/L的混凝剂浓度。
结果显示,随着混凝剂浓度的增加,水样的浊度逐渐降低。
这是因为混凝剂中的聚合氯化铝可以与水中的悬浮物发生化学反应,形成较大的絮凝物,从而使悬浮物沉降速度加快。
2. pH值对混凝效果的影响:pH值是另一个影响混凝效果的重要因素。
在实验中,我们分别使用氢氧化钠和盐酸来调节水样的pH值。
结果显示,在酸性条件下(pH值低于7),混凝效果更好,浊度降低更为明显。
这是因为在酸性条件下,混凝剂与水中的悬浮物更容易发生反应,形成较大的絮凝物。
3. 混凝时间对混凝效果的影响:在实验中,我们观察到混凝剂与水样反应后的静置时间也会对混凝效果产生影响。
随着静置时间的延长,悬浮物的沉降速度逐渐加快,浊度逐渐降低。
这是因为较大的絮凝物在静置过程中会逐渐沉降,从而使水样变得更清澈。
混凝实验报告三篇
混凝实验报告三篇一、混凝实验报告实验类型:混凝实验实验目的:测试混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂/水体系的温度及湿度;5. 记录混凝剂使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂使用量,重复2-5步,最后得出混凝剂使用量对混凝剂/水体系的影响。
二、混凝实验报告实验类型:混凝实验实验目的:研究不同混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 分别将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后得出不同混凝剂使用量对混凝剂/水体系的影响。
三、混凝实验报告实验类型:混凝实验实验目的:评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂A/水体系的比例,取出混凝剂B/水体系的比例,取出混凝剂C/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
混凝实验报告
混凝实验报告混凝实验报告一、实验目的1、了解混凝剂混凝机理及作用方式;2、掌握常用混凝剂对水质的处理效果;3、熟悉混凝工艺操作步骤。
二、实验原理混凝时,混凝剂与水中有害物质发生化学反应或电荷中和作用,形成较大的絮凝团,并形成一定密度的絮体,从而使水中溶解物、悬浮物或胶体颗粒等杂质得以集结、附着并迅速沉降。
混凝剂主要有无机盐和有机高聚物两大类,常用的有氯化铝、硫酸铝、聚合铁盐、聚合铝盐等。
三、实验步骤1、将水样倒入混凝澄清装置中;2、将混凝剂按照一定比例加入混凝槽,并进行搅拌;3、待混凝剂与水中的杂质充分反应后,停止搅拌;4、观察混凝后水样的悬浮物;5、待悬浮物沉降后,取上清液进行测定。
四、实验结果与分析通过本次实验,分别使用了氯化铝和聚合铁盐作为混凝剂进行处理。
实验结果表明,两种混凝剂均能使水样中的悬浮物集结成絮体并沉降,但聚合铁盐的效果更好。
这是因为聚合铁盐是一种高分子有机聚合物,具有较强的吸附能力和官能团化合作用,能有效地集结水中的杂质。
五、实验总结本次实验通过混凝实验,初步了解了混凝剂的混凝机理和作用方式,掌握了常用混凝剂对水质的处理效果。
在实验操作过程中,需要注意混凝剂的投加量和混凝时间,以及混凝后需等待悬浮物沉降后再进行测定。
同时,还需要注意混凝剂的种类选择,根据水质和实际情况来确定最佳的混凝剂。
六、参考文献[1] 水处理学. 朱成钢,刘上岐主编. 北京:中国建筑工业出版社,2014.[2] 环境工程学. 丁仲礼,林长森编著. 北京:中国建筑工业出版社,2011.[3] 膨胀土等胶结材料的沉降实验研究[D]. 成都:西南交通大学,2015.。
混凝正交实验实验报告
一、实验目的1. 通过混凝正交实验,观察和了解混凝过程中胶体颗粒的聚集现象,加深对混凝理论的理解。
2. 探究不同混凝剂投加量、pH值、温度等参数对混凝效果的影响。
3. 利用正交试验设计,优化混凝工艺条件,提高混凝效果。
二、实验原理天然水中含有大量的胶体颗粒,这些颗粒表面带有电荷,使得水中的悬浮物不易沉淀。
混凝剂是一种能够中和胶体颗粒表面电荷的物质,使胶体颗粒失去稳定性,从而聚集成较大的絮体,便于后续的沉淀或过滤。
三、实验材料与仪器1. 实验材料:原水、聚合氯化铝(PAC)、聚丙烯酰胺(PAM)、氢氧化钠(NaOH)、盐酸(HCl)、水温计、pH计、烧杯、搅拌器、移液管等。
2. 实验仪器:电子天平、恒温箱、离心机、分光光度计等。
四、实验方法1. 实验分组:根据正交试验设计,将实验分为L9(3^4)组,每组实验条件如下:| 组别 | PAC投加量(mg/L) | pH值 | 温度(℃) || ---- | ----------------- | ---- | ---------- || 1 | 20 | 7 | 20 || 2 | 30 | 7 | 20 || 3 | 40 | 7 | 20 || 4 | 20 | 6 | 25 || 5 | 30 | 6 | 25 || 6 | 40 | 6 | 25 || 7 | 20 | 8 | 20 || 8 | 30 | 8 | 20 || 9 | 40 | 8 | 20 |2. 实验步骤:1. 准备原水,测定其浊度。
2. 根据实验分组,依次加入不同浓度的PAC,搅拌均匀。
3. 调节pH值,使其达到预定值。
4. 在恒温箱中,将混合液保持在预定温度下反应一定时间。
5. 将混合液离心分离,测定上清液的浊度。
6. 记录实验数据。
五、实验结果与分析1. 实验结果:| 组别 | PAC投加量(mg/L) | pH值 | 温度(℃) | 浊度(NTU) | | ---- | ----------------- | ---- | ---------- | ----------- | | 1 | 20 | 7 | 20 | 4.5 | | 2 | 30 | 7 | 20 | 3.2 | | 3 | 40 | 7 | 20 | 2.6 | | 4 | 20 | 6 | 25 | 4.0 | | 5 | 30 | 6 | 25 | 3.0 | | 6 | 40 | 6 | 25 | 2.5 | | 7 | 20 | 8 | 20 | 5.0 | | 8 | 30 | 8 | 20 | 4.0 | | 9 | 40 | 8 | 20 | 3.5 | 2. 分析:通过实验结果可以看出,PAC投加量、pH值、温度等因素对混凝效果有显著影响。
混凝实验报告三篇
混凝实验报告三篇篇一: 混凝实验报告物化实验一混凝混凝过程是现代城市给水和工业废水处理工艺研究中不可缺少也是最为关键的前置单元操作环节之一。
在原水和废水中都存在着数量不等的胶体粒子,如粘土、矿物质、二氧化硅或工业生产中产生的碎屑等,它们悬浮在水中造成水体浑浊,混凝工艺是针对水中的这些物质处理的过程。
混凝可去除的悬浮物颗粒直径范围在:(有时认为在1m)。
1nm~0.1m S过试验摸索混凝过程各参数的最佳值,对于获得良好的混凝效果至关重要。
一、实验目的1. 2. 3. 4.了解混凝的现象及过程,观察矾花的形成。
了解混凝的净水作用及主要影响因素。
了解助凝剂对混凝效果的影响。
探求水样最佳混凝条件(包括投药种类、投药量、pH值、水流速度梯度等)。
二、实验原理天然水体中存在大量胶体颗粒,是水产生浑浊的一个重要原因,胶体颗粒靠自然沉淀是不能去除的。
胶体的布朗运动、胶体表面的水化作用以及胶体间的静电斥力,使得胶体颗粒具有分散稳定性。
其中因胶体颗粒带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。
胶体表面的电荷值常用电动电位表示,又称为Zeta 电位。
Zeta 电位的高低决定了胶体颗粒之间斥力的大小和影响范围。
一般天然水中的胶体颗粒的Zeta 电位约在(-30mV)以上。
若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结核沉降;压缩胶团的扩散层,使电位降到(-15mV)左右而变成不稳定因素,也有利于胶粒的吸附凝聚,即可得到较好的混凝效果。
然而当Zeta 电位降到零,往往不是最佳混凝状态。
同时,投加混凝剂后电位降低,有可能使水花作用减弱,混凝剂水解后形成的高分子物质(一般具有链状结构)在胶粒与胶粒之间起着吸附架桥的作用,也有利于提高混凝效果;即使电位没有降低或者降低不多,胶粒不能相互接触,但通过高分子链状物吸附作用,胶粒之间也能形成絮凝体。
消除或降低胶体颗粒稳定因素的过程叫脱稳。
脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花。
混凝搅拌实验报告(3篇)
第1篇一、实验目的1. 了解混凝搅拌的基本原理和过程。
2. 掌握混凝搅拌实验的操作方法和步骤。
3. 分析不同混凝剂和搅拌条件对混凝效果的影响。
4. 优化混凝搅拌工艺,提高水处理效果。
二、实验原理混凝搅拌实验是水处理过程中关键的一环,通过向水体中加入混凝剂,使悬浮物和胶体颗粒脱稳,相互聚集形成絮凝体,从而实现固液分离。
实验原理主要包括以下三个方面:1. 压缩双电层作用:混凝剂中的正电荷离子与悬浮物表面的负电荷离子发生中和反应,使悬浮物表面的电荷降低,从而降低悬浮物的稳定性,促进其聚集。
2. 吸附架桥作用:混凝剂分子中的桥连基团吸附在悬浮物颗粒表面,将不同颗粒连接起来,形成较大的絮凝体。
3. 电中和作用:混凝剂中的正电荷离子与悬浮物表面的负电荷离子发生中和反应,降低悬浮物的表面电荷,从而降低其稳定性。
三、实验材料与仪器1. 实验材料:原水、聚合氯化铝、硫酸铝、聚丙烯酰胺等混凝剂。
2. 实验仪器:烧杯、搅拌器、秒表、温度计、量筒、滤纸等。
四、实验步骤1. 样品准备:取一定量的原水置于烧杯中,测量水温。
2. 混凝剂投加:根据实验设计,向烧杯中加入不同种类和浓度的混凝剂。
3. 搅拌:启动搅拌器,以一定速度搅拌水样,保持搅拌时间。
4. 取样:在搅拌过程中,定时取样,观察絮凝体形成情况。
5. 过滤:将样品过滤,测量过滤后的浊度。
6. 数据分析:根据实验数据,分析不同混凝剂和搅拌条件对混凝效果的影响。
五、实验结果与分析1. 混凝剂种类对混凝效果的影响:实验结果表明,聚合氯化铝和硫酸铝对混凝效果较好,而聚丙烯酰胺的混凝效果较差。
2. 混凝剂浓度对混凝效果的影响:随着混凝剂浓度的增加,混凝效果逐渐提高,但超过一定浓度后,混凝效果变化不大。
3. 搅拌速度对混凝效果的影响:实验结果表明,搅拌速度对混凝效果有较大影响。
搅拌速度过快,容易破坏絮凝体;搅拌速度过慢,则混凝效果较差。
4. 搅拌时间对混凝效果的影响:搅拌时间对混凝效果有较大影响。
(完整版)混凝
混凝沉淀实验一、实验目的1、要求认识几种混凝剂,掌握其配制方法;2、观察混凝现象,从而加深对混凝理论的理解。
二、实验原理水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体表面的水化作用,致使水中这种含浊状态稳定。
向水中投加混凝剂后,由于如下原因:①能降低颗粒间的排斥能峰,降低胶粒的δ电位,实现胶粒“脱稳”;②发生高聚物式高分子混凝剂的吸附架桥作用;③网捕作用,从而达到颗粒的凝聚。
三、实验设备及药品按每4人一组配置数量如下:1、设备⑴1000mL量筒,2个;⑵1000mL烧杯,6个;⑶100mL烧杯,2个;⑷l0mL移液管,2个;⑸2mL移液管,1个;⑹医用针筒,1个;⑺洗耳球,1个;⑻2100P浊度仪,1台;⑼ZR4-6混凝搅拌器,1台;⑽pH计,1台。
⑾温度计,1根。
2、药品⑴Al2(SO4)3⑵FeCl3四、实验方法1、方法一混凝搅拌器变速混凝实验实验步骤如下:(1)认真了解ZR4--6型混凝搅拌器的使用方法。
(2)用1000ml量筒取6个水样至6个1000mL烧杯中。
注意:所取水样要搅拌均匀,要一次量取,以尽量减少取样浓度上的误差。
(3)按10、20、30、40、50、60、70、80mg/L的量将Al2(SO4)3或FeCl3依次加入各水样中。
(4)将第一组水样置于ZR4--6型混凝搅拌器下。
(搅拌时间和程序已按说明书预先设定好)与此同时,按计算好的投药量,用移液管分别移取不同体积的混凝剂逐个加到加药试管中。
(5)开动机器,在搅拌器第一次自动加药后,用蒸馏水冲洗加药试管2次。
(6)搅拌器以500r/min的速度搅拌30s,150r/min的速度搅拌5min,80r/min的速度搅拌10min。
(7)搅拌过程中,注意观察并记录“矾花”形成的过程,“矾花”形成的快慢、外观、大小、密实程度、下沉快慢等。
(8)搅拌过程完成后,搅拌器自动停机,水样静沉15min,继续观察并记录“矾花”沉淀的过程,记入表1—1—2内。
混凝实验报告
混凝实验报告一、引言混凝作为一种常见且重要的实验,在水处理、建筑材料等领域都具有广泛的应用。
本次实验旨在探究不同因素对混凝效果的影响,以期提高混凝效率和质量。
二、实验方法1. 实验原理混凝是通过添加混凝剂,使悬浮在水中的细小颗粒迅速沉淀并凝结成块状的过程。
常用的混凝剂包括硫酸铝、聚合氯化铝等。
2. 实验装置与试剂本次实验所需的装置包括:玻璃棒、磁力搅拌器、容量瓶、滴定管、烧杯等。
试剂包括硫酸铝、水样。
3. 实验步骤(1)准备工作:清洗实验仪器、准备试剂。
(2)制备不同浓度的混凝液:将一定量的硫酸铝加入不同的容量瓶中,并用去离子水稀释,得到不同浓度的混凝液。
(3)取样测试:从水样中取一定量的样品,加入混凝液中,并在磁力搅拌器上搅拌均匀。
(4)观察与分析:观察混凝液的沉淀情况,计算混凝效果。
三、实验结果与分析在本次实验中,我们按照不同的浓度制备了三组混凝液,分别为5%、10%和15%的硫酸铝混凝液。
并在同样条件下,将水样加入各组混凝液中进行反应。
经过一段时间的搅拌,观察到混凝液中颗粒逐渐沉淀,并形成混凝块,混凝效果明显。
其中,浓度为15%的混凝液效果最佳,沉淀块形状更为饱满、坚固。
混凝效果的优劣主要受到混凝剂浓度、反应时间和水样质量的影响。
较高的混凝剂浓度可以提高混凝效果,但当浓度过高时,反而会造成过度凝结,使混凝块过于致密而难以分离。
因此,在实际应用中,需要根据具体需求选择适当的混凝剂浓度。
反应时间也是影响混凝效果的重要因素。
反应时间过短,颗粒可能没有完全沉淀;反应时间过长,可能会出现过度凝结的情况。
因此,在实验操作中,我们需要掌握合理的反应时间,以获得最佳的混凝效果。
水样的质量也会对混凝效果产生影响。
水样中悬浮颗粒的种类和浓度不同,对混凝液的混凝效果也会有所差异。
在实际应用中,需要根据具体的水质情况选择合适的混凝剂和浓度。
四、结论本次实验通过制备不同浓度的硫酸铝混凝液,加入水样进行混凝实验,得出以下结论:1. 混凝剂浓度较高可以提高混凝效果,但过高的浓度会导致过度凝结。
混凝实验
一、实验目的二、实验原理三、主要影响因素:PH值、混凝剂的加入量、混凝剂与水的混合、温度、水中杂质、接触介质、接触时间四、实验设备:500ml烧杯、玻璃棒、混凝剂(PAC)、量筒五、实验试样:校池塘水六、实验药剂:1000ppmPAC、10%HCL、10%NaOH七、实验步骤:混凝实验混凝剂最佳加入量测定(1)1000ppmPAC溶液(2)取8个烧杯洗净并编号备用(3)每个烧杯加入500ml水样,PAC加入量的方案见下表,用清洁的玻璃棒在烧杯中快速搅拌1min、然后慢速搅拌2min(4)剩余水样加入0号烧杯,不做任何处理,仅作对比用(5)搅拌后,在水样静止沉淀20分钟,仔细观察以下项目:一、形成绒粒的快慢,二、绒粒之间水的透明度,三、绒粒大小和沉降快慢,并记录在表(6)数据分析对比,按观察项目排列混凝效果顺序,以确定最佳混凝剂加入量。
组长:一、实验目的二、实验原理三、主要影响因素:PH值、混凝剂的加入量、混凝剂与水的混合、温度、水中杂质、接触介质、接触时间四、实验设备:500ml烧杯、玻璃棒、混凝剂(PAC)、量筒五、实验试样:校池塘水六、实验药剂:1000ppmPAC、10%HCL、10%NaOH七、实验步骤:混凝实验混凝剂最佳混合速度测定(1)1000ppmPAC溶液(2)取8个烧杯洗净并编号备用(3)每个烧杯加入500ml水样,PAC加入量的方案见下表,用清洁的玻璃棒在烧杯中快速搅拌1min、然后慢速搅拌2min(4)剩余水样加入0号烧杯,不做任何处理,仅作对比用(5)搅拌后,在水样静止沉淀20分钟,仔细观察以下项目:一、形成绒粒的快慢,二、绒粒之间水的透明度,三、绒粒大小和沉降快慢,并记录在表(6)数据分析对比,按观察项目排列混凝效果顺序,以确定最佳混合速度。
组长:一、实验目的二、实验原理三、主要影响因素:PH值、混凝剂的加入量、混凝剂与水的混合、温度、水中杂质、接触介质、接触时间四、实验设备:500ml烧杯、玻璃棒、混凝剂(PAC)、量筒五、实验试样:校池塘水五、实验药剂:1000ppmPAC、10%HCL、10%NaOH七、实验步骤:混凝实验混凝剂最佳PH测定(1)1000ppmPAC溶液(2)取8个烧杯洗净并编号备用(3)每个烧杯加入500ml水样,PAC加入量的方案见下表,用清洁的玻璃棒在烧杯中快速搅拌1min、然后慢速搅拌2min(4)剩余水样加入0号烧杯,不做任何处理,仅作对比用(5)搅拌后,在水样静止沉淀20分钟,仔细观察以下项目:一、形成绒粒的快慢,二、绒粒之间水的透明度,三、绒粒大小和沉降快慢,并记录在表(6)数据分析对比,按观察项目排列混凝效果顺序,以确定最佳ph值。
混凝实验原理
混凝实验原理
混凝土实验原理是通过对混凝土试件进行试验与观测,以揭示混凝土物理性质、力学性能和工艺性能之间的关系。
混凝土实验原理主要包括以下几个方面:
1. 混凝土成分分析:对混凝土配合比中各组分的比例进行分析,确定混凝土的配合比和材料的使用量。
2. 混凝土试块的制备:按照一定的标准和规范,将混凝土配制成试块,常见的试块有立方体试块和圆柱试块。
3. 混凝土强度试验:通过压力机对混凝土试块进行加载,测量其破坏载荷,计算出混凝土的强度指标,如抗压强度、抗拉强度等。
4. 混凝土韧性试验:通过对混凝土试块进行剪切或弯曲试验,测量其抗剪和抗弯性能,评估混凝土的韧性和变形能力。
5. 混凝土密度测定:通过对混凝土试块的质量和体积进行测量,计算出混凝土的干密度和湿密度,并进一步计算出混凝土的孔隙率。
6. 混凝土渗透性试验:通过对混凝土试块进行渗透试验,评估混凝土的防水性能和抗渗透能力。
7. 混凝土耐久性试验:通过混凝土试块的浸泡、冻融、碳化和盐腐蚀等试验,评估混凝土的耐久性和抗腐蚀性能。
混凝土实验原理是混凝土工程技术中不可或缺的部分,通过对混凝土试块的试验与观测,可以获取混凝土的力学性能和耐久性能数据,为混凝土结构设计和施工提供科学的依据。
混凝实验报告三篇
混凝实验报告三篇篇一:混凝实验报告物化实验一混凝混凝过程是现代城市给水和工业废水处理工艺研究中不可缺少也是最为关键的前置单元操作环节之一。
在原水和废水中都存在着数量不等的胶体粒子,如粘土、矿物质、二氧化硅或工业生产中产生的碎屑等,它们悬浮在水中造成水体浑浊,混凝工艺是针对水中的这些物质处理的过程。
混凝可去除的悬浮物颗粒直径范围在:(有时认为在1m)。
1nm~0.1m通过试验摸索混凝过程各参数的最佳值,对于获得良好的混凝效果至关重要。
一、实验目的1. 2. 3. 4.了解混凝的现象及过程,观察矾花的形成。
了解混凝的净水作用及主要影响因素。
了解助凝剂对混凝效果的影响。
探求水样最佳混凝条件(包括投药种类、投药量、pH值、水流速度梯度等)。
二、实验原理天然水体中存在大量胶体颗粒,是水产生浑浊的一个重要原因,胶体颗粒靠自然沉淀是不能去除的。
胶体的布朗运动、胶体表面的水化作用以及胶体间的静电斥力,使得胶体颗粒具有分散稳定性。
其中因胶体颗粒带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。
胶体表面的电荷值常用电动电位表示,又称为Zeta电位。
Zeta电位的高低决定了胶体颗粒之间斥力的大小和影响范围。
一般天然水中的胶体颗粒的Zeta电位约在(-30mV)以上。
若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结核沉降;压缩胶团的扩散层,使电位降到(-15mV)左右而变成不稳定因素,也有利于胶粒的吸附凝聚,即可得到较好的混凝效果。
然而当Zeta电位降到零,往往不是最佳混凝状态。
同时,投加混凝剂后电位降低,有可能使水花作用减弱,混凝剂水解后形成的高分子物质(一般具有链状结构)在胶粒与胶粒之间起着吸附架桥的作用,也有利于提高混凝效果;即使电位没有降低或者降低不多,胶粒不能相互接触,但通过高分子链状物吸附作用,胶粒之间也能形成絮凝体。
消除或降低胶体颗粒稳定因素的过程叫脱稳。
脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花。
混凝沉淀实验 设计
混凝沉淀实验设计方案实验名称:混凝沉淀实验设计一. 实验目的:1.掌握水处理实验设计的一般方法;2•掌握混凝工艺基本原理,了解针对实际废水采用混凝工艺的参数确定与优化。
二. 实验原理:胶体颗粒带有一定的电荷,它们之间的静电斥力是胶体颗粒长期处于稳定的分散悬浮状态的主要原因,胶粒所带的电荷即电动电位称g电位,g电位的高低决定了胶体颗粒之间斥力的大小及胶体颗粒的稳定性程度,胶粒的g电位越高,胶体颗粒的稳定性越高。
胶体颗粒的g电位通过在一定外加电压下带电颗粒的电泳迁移率计算:g=K兀叫HD式中:K——微粒形状系数,对于圆球体K=6;兀系数,为3.1416;n——水的粘度(Pa・S),(此取耳二10-1Pa-S);卩颗粒电泳迁移率(p m/s/V/cm);H电场强度梯度(V/cm);D——水的介电常数D=8.1。
水通常,g电位一般值在10-200mv之间,一般天然水体中胶体颗粒的g电位-30mv 以上,投加混凝剂以后,只要该电位降至-15mv左右,即可得到较好的混凝效果,相反,g电位降为0时,往往不是最佳混凝效果。
投加混凝剂的多少,直接影响混凝的效果。
投加量不足或投加量过多,均不能获得良好的混凝效果。
不同水质对应的最优混凝剂投加量也各不相同,必须通过实验的方法加以确定。
向被处理水中投加混凝剂(如A12(SO4)3)后,生成A1(III)化合物对胶体颗粒的脱稳效果不仅受投量、水中胶体颗粒的浓度影响,同时还受水PH的影响。
若PH V4,则混凝剂的水解受到限制,其水解产物中高分子多核多羟基物质的含混凝沉淀实验设计方案量很少,絮凝作用很差;如水PH>8-10,它们就会出现溶解现象而生成带负电荷,不能发挥很好混凝效果的络合离子。
水力条件对混凝效果有重大的影响,水中投加混凝剂后,胶体颗粒发生凝聚而脱稳,之后相互聚集,逐渐变成大的絮凝体,最后长大至能发生自然沉淀的程度。
在此过程中,必须严格控制水流的混合条件,在凝聚阶段,要求在投加混凝剂的同时,使水流具有强烈的混合作用,以便所投加的混凝剂能在较短时间内扩散到整个被处理水体中,起压缩双电层作用,降低胶体颗粒的g电位,而是其脱稳,此阶段所需延续的时间仅为几十秒钟,最长不超过2min。
(完整word版)混凝实验
混凝沉淀实验混凝沉淀工艺在给水和废水处理中被广泛的应用,是重要的水处理技术之一。
通过混凝沉淀实验,可以了解混凝工艺中主要参数的确定:如混凝剂种类的选择,混凝剂投加量的确定,以及其它影响混凝条件的相关因素。
一、实验目的(1)观察矾花的形成过程及混凝沉淀效果,加深对混凝理论的理解。
(2)选择和确定最佳混凝工艺条件二、实验原理混凝阶段所处理的对象,主要是水中悬浮物和胶体杂质。
天然水中存在着大量悬浮物,悬浮物的形态是不同的,有些大颗粒悬浮物可以在自身重力作用下沉降;而另一种是胶体颗粒,是使水产生混浊的一个重要原因,胶体颗粒靠自然沉降是不能除去的,因为,水中的胶体颗粒主要是带负电的粘土颗粒,胶粒间存在着静电斥力、胶粒的布朗运动、胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大.若向水中投加混凝剂提供大量的正离子,压缩胶体的双电层,使ξ电位降低,静电斥力减小,此时布朗运动由稳定因素转为不稳定因素,有利于胶粒的凝聚。
水化膜中的水分子与胶粒有固定联系,具有弹性较高的粘度,把这些水分子排挤出去需要克服特殊的阻力,这种阻力阻碍胶粒直接接触。
有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位,有可能使水化作用减弱。
混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用,此时即使ξ电位没有降低或降低不多,胶粒之间不能相互接触,但通过高分子链状物吸附胶粒,也能形成絮凝体。
消除或降低胶体颗粒稳定因素的过程叫脱稳。
脱稳后的胶粒,在一定的水力条件下,才能形成较大的絮凝体,俗称矾花。
直径较大而密实的矾花容易下沉。
自投加混凝剂直至形成较大矾花的过程叫混凝。
混凝过程见表1表1-混凝过程“同向絮凝”。
异向絮凝只对微小颗粒起作用,当粒径大于1~5µm时,布朗运动基本消失.从胶体颗粒变成较大矾花是一个连续过程,为了研究方便可划分为混合和反应两个阶段。
混合阶段要进行剧烈搅拌,目的使使混凝药剂快递均匀的分散与水中以利于混凝剂的快速水解、聚合和颗粒脱稳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的和要求
• 要求:
• 1、提交实验方案: 学生查阅相关资料,提出实验方案,方案中须包括: (1)选择实验废水的种类; (2)混凝工艺对该废水的主要去除对象及相关分析方法、效能评价指标; (3)选取三种及以上的混凝药剂进行效果对比,列出最佳药剂、最佳投 药量以及适宜pH等控制条件的实验方法与步骤; (4)实验中可能碰到的现象及问题; (5)方案提交指导教师(任务布置后2-3天),讨论和论证后,指导教 师签字认可后,确定时间(预约)展开实验。 2、提交实验报告: 含实验步骤,实验原始记录数据,数据分析及图表,实验结论,思考题 答案等。
1 六联搅拌机
2 光电式浊度仪 3 1000m1烧杯 4 1000ml量筒 5 温度计 6 吸管(1m1、2ml、5ml、
10ml) 7 混凝剂 8 NaOH、HCL溶液 9 精密pH试纸
数量
1
1台 6个 1个 1支 各1支
备注 带时间控制
500ml 各100ml 各种范围,若干
五、实验步骤
• 1、确定最佳混凝剂和最小投药量 • (1)测定原水特征(水温、PH、浊度) • (2)取2个800ml烧杯,将其置于搅拌仪上 • (3)向烧杯中各注入600ml原水,启动搅拌仪,使搅拌仪处于慢速搅拌
同时分别将相同数量的最佳投药量的混凝剂加入各个水样中,并开始计 时,按最佳投药量实验的操作步骤重复; • (4)关闭搅拌机,静置5min,用50ml注射器分别从各烧杯中取出上清 液,立即永光电浊度仪分别测定其水浊度; • (5)作出PH与出水浊度之间的关系,试确定最佳PH值。
六、数据记录
• (A)确定最佳混凝剂和最小投药量
三、实验内容
• (1)废水领取或配制、混凝剂配制; • (2)最佳混凝剂的选择; • (3)混凝剂最小投量的确定; • (4)混凝剂最佳投量的确定; • (5)最佳pH的确定; • (6)混凝水力条件的控制(G值和GT值的计算); • (7)对实验数据绘制表格,并进行分析。
四、实验仪器设备
序号 设备名称
为6号杯的投加量,2~5烧杯为最小投量的0.5、1.0、1.5、2.0倍 • 3、开启搅拌仪,使其使用搅拌的快速而剧烈的混合状态,用吸管将上述混凝剂
量移入6个编号(1~6)的烧杯中,并同时开始计时 • 4、用转速约300r/min,1min快速混合结束后,调节搅拌仪转速至中速,转速
约150r/min,3min,最后慢速搅拌,转速为50r/min,8min • 5、关闭搅拌仪,静置5min,分别从烧杯中取上清液,立即永光电式浊度仪分别
状态 • (4)向烧杯中投加已配置的Al2(SO4)3和Fecl3混凝剂,直至杯中出现矾
花为止,此时的混凝剂投量即为形成矾花的最小投量 • (5)静沉10分钟,观察矾花的形成,并判断最佳混凝剂
五、实验步骤
• 2、测定最佳投药量 • (1)取6个1000ml烧杯并依次分别编号(1~6)按顺序安放在搅拌仪上 • (2)根据A确定的混凝剂的最小投量为1号杯的投加量,取最小投加量的4倍作
• 原水浊度________mg/L,
原水PH________,
• Al2(SO4)3最小投药量_____ml Fecl3最小投药量_____ml • 选定的最佳混凝剂________
• (B)测定最佳投药量 • 根据上表知,最佳投药量为_______ml。 • 作出水浊度对投加量的曲线图:
最佳投药量记录表
件一致; • (3)抽取上清液测定时注意不要将下层矾花带入,导致测定误差。
八、思考题
• (1)试根据实验结果说明混凝剂投量对混凝效果的影响。 • (2)在实际工程中是如何实现混凝对水力条件的要求的。 • (3)对自己的实验过程加以分析,指出可以改进的地方。
测定水浊度,并记录 • 6、分析浊度与投加量的关系,找出相应的最佳投药量。
五、实验步骤
• 3、测定最佳的PH值 • (1)取6个烧杯编号(1~6),分别装600ml原水水样,然后分别用10
%的HCL和NaOH溶液将原水的PH值分别调至3,4,5,7,8,9; • (2)取6个小试管分别装入最佳投药量的混凝剂,备用; • (3)将调节PH后的6个水样(800ml烧杯)置于搅拌仪上,开启搅拌仪,
水样编号
123456
混凝剂投量(mg/L) 出水浊度(mg/L)
六、数据记录
• (C)测定最佳的pH值 • 根据上表知,最佳PH值约为_______。 • 作出水浊度对PH值的曲线图:
最佳PH值记 录表
水样编号 PH值
出水浊度 (mg/L)
123456
七、注意事项
• (1)注意观察混凝过程中的矾花的生成和长大; • (2)投加混凝剂时,应严格保证同时向各烧杯投加,并使烧杯的水力条
二、实验原理
1、向这种水中投加混凝剂,通过电性中和或吸附架桥作用,而使分散在 水中稳定状态的胶体颗粒脱稳,进而相互凝聚在一起形成矾花;
2、混凝处理的效果不仅与混凝剂的投量有关,同时还与被处理水的PH、 水温及处理过程中的水力条件等因素有密切的关系;
3、水力条件对混凝效果有重大的影响,水中投加混凝剂后,要求水流具 有由强至弱的混合强度,以一方面保证脱稳的颗粒间相互接触的机率, 另一方面防止已形成的絮体被水力剪切作用而打破,一般要求混合速度 由大变小。
混凝实验
一、实验目的和要求 • 目的: • 1、掌握水处理实验设计的一般方法;
• 2、掌握混凝工艺基本原理,了解针对实际废水采用混凝工艺的参数确定 与优化;
• 3、掌握水和废水混凝处理的最佳混凝条件的确定方法;
• 4、深入理解不同混凝求掌握的技能和知识点:水处理实验方案的编制要点,浊度仪、 pH仪的正确使用和操作,水样和药剂的配置、取样方法,实验数据记录、 整理和分析方法,混凝工艺最佳药剂、最佳投药量等控制条件的获取方 法。