动点问题题型方法归纳(可编辑修改word版)
专题10:动点问题的常见题型和解题方法(终稿)
2017—2018学年度第二学期初三数学中考复习专题十:动点问题的常见题型和解题方法(提高)动点问题是近年来中考的的一个热点问题.常求:等腰、直角、相似三角形和四边形的形状,一般都要分类;面积、周长、线段和差的关系和最值.解这类题目要“以静制动”,即把动态问题,变为静态问题来解. 常用:几何方法——相似(全等)、勾股定理、面积关系建立方程或函数. 代数方法——设坐标或元,通过图形中特殊关系建立方程或函数.特别注意:几何方法和代数方法往往是不是孤立的,是相互交融的,即数形结合. 一、热点再练1.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是()A B C D2.如图①,在梯形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:cm 2)与点P 移动的时间(单位:s )的函数如图②所示,则点P 从开始移动到停止移动一共用了 秒(结果保留根号).3.如图,在梯形ABCD 中,AD ∥BC ,AD=6,BC=16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.4.如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q .第2题 第3题(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PDQB 是菱形.二、规律剖析(一)因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ =90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图【基本方法】等腰三角形的存在性问题,一般要分类讨论;两腰相等可能转化为两角相等或者转化为其他线段之间关系,一般会用到勾股定理或相似中的比例式列方程.【思路点拨】1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.(二)因动点产生的直角三角形问题例 2如图,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A (-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【基本方法】直角三角形的存在性问题,一般要分类讨论;遇到直角时一般考虑勾股定理或直角三角形相似或三角函数或代数法中的直线解析式. 【思路点拨】1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点. 2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程. 4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 【变式】条件不变,如果△MON 的边与AC 平行,求t 的值.(三)因动点产生的相似三角形问题例3如图,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,【基本方法】相似三角形的存在性问题,一般都要分类讨论;如果有两个角相等,那这两个角一般是对应角,所以只要讨论两种情况.【思路点拨】1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA可以分割为共底的两个三角形,高的和等于OA.(四)因动点产生的平行四边形问题例4如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC 向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2【基本方法】平行四边形的存在性问题,一般都要分类讨论;比如已知的边是平行四边形的边或对角线,但本题四边形PDBQ 为菱形,只要满足一组对边平行且相等和一组邻边相等.【思路点拨】1.菱形PDBQ 必须符合两个条件,点P 在∠ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径.(五)因动点产生的面积问题例5如图,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.【基本方法】面积问题的关键是用坐标表示线段长度. 【思路点拨】1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD .3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方.4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值. 三、分层作业1.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE —ED —DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,△ABE ∽△QBP ;其中正确的结论是__ __(填序号).图(1) 图(2)第1题Q第2题第3题2.如图,∠ACB=60○,半径为2的⊙0切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2π B.4π C.32D.43.如图,在△ABC中,∠ABC=90º,AB=3,BC=4,P是BC边上的动点,设BP=x.若能在AC边上找到一点Q,使∠BQP=90º,则x的取值范围是.4.直角坐标系中直线AB交x轴,y轴于点A(4,0)与B(0,-3),现有一半径为1的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过秒第4题后动圆与直线AB相切.5.如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.5,∠C=30°.点D从点C出发沿CA方向6.如图,在Rt△ABC中,∠B=90°,BC=3以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由.7.如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(2m ,m ),翻折矩形OABC ,使点A 与点C 重合,得到折痕DE .设点B 的对应点为F ,折痕DE 所在直线与y 轴相交于点G ,经过点C 、F 、D 的抛物线为c bx ax ++=2y .(1)求点D 的坐标(用含m 的式子表示)(2)若点G 的坐标为(0,-3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD 的中点为M ,在线段CD 上方的抛物线上是否存在点P ,使PM =21EA ?若存在,直接写出P 的坐标,若不存在,说明理由.。
动点问题的方法归纳
动点问题的方法归纳
动点问题是指在一段时间内,某个物体或者某个点的位置或者速度的变化问题。
解决动点问题的方法可以归纳为以下几类:
1. 利用公式计算:对于简单的动点问题,可以根据已知条件,利用物理公式或者数学公式计算出所求的位置或者速度。
比如,如果已知物体的初始位置和速度,可以使用匀加速度公式来计算物体在任意时刻的位置。
2. 利用图像分析:对于复杂的动点问题,可以将物体的运动过程绘制成图像,然后通过分析图像中的几何关系,来推导出所求的位置或者速度。
比如,可以绘制出物体在不同时刻的位置,然后通过观察图像的形状和变化趋势,来推导物体的速度。
3. 利用微积分方法:对于连续的动点问题,可以使用微积分的方法来解决。
通过求导或者积分,可以得到物体的速度和加速度与时间的函数关系,然后再根据已知条件,求出所求的位置或者速度。
4. 利用矢量方法:对于多维空间中的动点问题,可以使用矢量的方法进行求解。
通过将问题转化为矢量的形式,可以简化计算过程,并且可以更直观地描述物体的运动过程。
比如,可以将物体在不同时刻的位置表示为矢量函数,然后通过对矢量函数进行求导或者积分,来求得所求的位置或者速度。
以上是解决动点问题的一些常见方法,根据具体问题的情况选择合适的方法进行求解。
数学动点问题解题技巧总结
数学动点问题解题技巧总结动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等。
下面是为大家整理的关于数学动点问题解题技巧,希望对您有所帮助!动点问题解题技巧归纳解这类题目要“以静制动”,即把动态问题,变为静态问题来解。
1、仔细读题,分析给定条件中哪些量是运动的,哪些量是不动的.针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论.针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。
2、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系.如果没有静止状态,通过比例、相等等关系建立变量间的函数关系来研究。
3、做题过程中时刻注意分类讨论,不同的情况。
动点问题解题技巧1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数-左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的.产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
例1.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
七年级数轴动点问题题型归纳
七年级数轴动点问题题型归纳
一、动点位置确定
在数轴上,动点的位置可以根据其相对于参考点的位置来确定。
在解题时,我们需要先确定参考点,然后根据题目中给出的条件来确定动点的位置。
二、动点运动规律
动点在数轴上的运动往往遵循一定的规律,如匀速运动、加速运动等。
在解决这类问题时,我们需要根据题目中给出的条件,建立动点运动的时间模型,从而求解出动点的位置。
三、动点与定点距离
在数轴上,动点与定点之间的距离可以通过绝对值或模运算来求解。
在解题时,我们需要先确定定点和动点的位置,然后根据绝对值或模运算的公式来求解。
四、动点与静点距离
在数轴上,动点与静点之间的距离也可以通过绝对值或模运算来求解。
在解题时,我们需要先确定静点的位置,然后根据题目中给出的条件来确定动点的位置,最后通过绝对值或模运算来求解。
五、动点与动点距离
在数轴上,两个动点之间的距离可以通过坐标运算来求解。
在解题时,我们需要先确定两个动点的位置,然后根据坐标运算的公式来求解。
六、动点与数轴交点
在数轴上,动点与数轴的交点可以通过求解方程得到。
在解题时,我们需要先确定动点的位置,然后建立方程求解交点的位置。
七、动点与坐标关系
在数轴上,动点的坐标与时间之间存在一定的关系。
在解题时,我们需要先确定动点的位置和时间的关系,然后建立坐标和时间的函数关系式,最后通过求解函数关系式来得到答案。
(完整word版)初中数学动点问题解题技巧Du
动点问题解题技巧以运动的看法研究几何图形部分规律的问题,称之为动向几何问题。
动向几何问题充足表现了数学中的“变”与“不变”的和睦一致,其特色是图形中的某些元素(点、线段、角等)或某部分几何图形按必定的规律运动变化,进而又惹起了其余一些元素的数目、地点关系、图形重叠部分的面积或某部分图形等发生变化,可是图形的一些元素数目和关系在运动变化的过程中却相互依存,拥有必定的规律可寻。
所谓“ 动点型问题”是指题设图形中存在一个或多个动点 , 它们在线段、射线或弧线上运动的一类开放性题目,着重对几何图形运动变化能力的观察。
解决这种问题的重点是动中求静 , 灵巧运用相关数学知识解决问题 . 在变化中找到不变的性质是解决数学“动点”研究题的基本思路 , 这也是动向几何数学识题中最中心的数学实质。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间看法和合情推理。
这些压轴题题型众多、题意创新,目的是观察学生的剖析问题、解决问题的能力,内容包含空间看法、应意图识、推理能力等。
从数学思想的层面上讲需要具备以下思想:分类议论思想、数形联合思想、转变思想、函数思想、方程思想。
常有的动点问题一、数轴上的动点问题数轴上的动点问题离不开数轴上两点之间的距离。
为了便于对这种问题的剖析,先明确以下 3 个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右侧的数减去左侧的数的差。
即数轴上两点间的距离=右侧点表示的数—左侧点表示的数。
2.点在数轴上运动时,因为数轴向右的方向为正方向,所以向右运动的速度看作正速度,而向左运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就能够直接获得运动后点的坐标。
即一个点表示的数为 a,向左运动 b 个单位后表示的数为 a—b;向右运动 b 个单位后所表示的数为 a+b。
3.数轴是数形联合的产物,剖析数轴上点的运动要联合图形进行剖析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
完整word版中考数学复习动点问题解题技巧
在运动中剖析 在静态中求解动向几何问题已成为中考试题的一大热点题型.这类试题以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的关系,或变量在必然条件为定值时,进行相关的几何计算和综合解答,解答这类题目,一般要依照点的运动和图形的变化过程,对其不同样样状况进行分类求解,本文以一道中考题为例,谈谈此类问题的思路打破与解题反思,希望能给大家一些启示.题目 如图 1,已知点 A(2 , 0), B(0, 4),∠ AOB 的均分线交 AB 于点 C ,一动点 P 从 O 点出发,以每秒 2 个单位长度的速度,沿 y 轴向点 B 作匀速运动,过点 P 且平行于AB 的直线交 x 轴于点 Q ,作点 P 、Q 关于直线 OC 的对称点 M 、N .设点 P 运动的时间为 t(0<t<2) 秒.(1)求 C 点的坐标,并直接写出点M 、 N 的坐标(用含 t 的代数式表示) .(2)设△ MNC 与△ OAB 重叠部分的面积为 S .①试求 S 关于 t 的函数关系式; ②在直角坐标系中,画出S 关于 t 的函数图象,并回答:S 可否有最大值?若有,写出S 的最大值;若没有,请说明原由.一、研究解题思路 1.利用基础知识轻松求解 由题意不难发现第1 问是对基础知识的观察,有多种方法,考生可自行选择解法,简解 1 可经过作辅助线, 过点 C 作 CF 上 x 轴于点 F ,CE ⊥y 轴于点 E ,由题意,易知四边形 OECF 为正方形,设正方形边长为 x .由比率式求出点 C 的坐标 ( 4 , 4).33简解 2 由点 A 、B 的坐标可得直线 AB 的剖析式 y =- 2x + 4;由 OC 是∠ AOB 的均分线可得直线 OC 的剖析式 y = x ;联立方程组轻松解得点 C 的坐标 ( 4 , 4) .33关于求点 M 、N 的坐标,是对相似及对称性的观察,依照相似可得P(0,2t),Q(t ,0),依照对称性可得 M(2t , 0), N(0, t). 这样,第 1 问轻松获解.2.动静结合找界点,分类议论细演算第 2 问的第一小题中,所求函数关系式为分段函数,需要分类议论,这是本题的难点 之一; 而要点是动静结合找界点, 得出 t = 1 时重叠部分的关系会发生变化, 这是本题的难 点之二.解答时需着手画出草图,随着点M 、 N 的地址的变化,△ MNC 的地址也随之发生变化,△ MNC 与△ OAB 重叠部分的面积 S 也发生变化 .S 可能会存在两种状况: ①△ OAB 将△ MNC 全部覆盖; ②△ OAB 将△ MNC 部分覆盖; 点 M 从点 O 出发运动到点 A 时,即t = 1时重叠部分的关系会发生变化,函数关系式也随之改变.由 t = 1 这个界点确定两个范围,以此界值进行分类议论:当 0<t ≤ 1 时,点 M 在线段 OA 上,△ OAB 将△ MNC 全部覆盖,重叠部分面积为S △CMN = S 四边形 CMON -S △OMN . 结合点 C 的坐标 ( 4 , 4),可得33S △CMN =- t 2+ 2t ;当 1<t<2 时,点 M 在 OA 的延长线上,设MN 与 AB 交于点 D,△ OAB 将△ MNC 部分覆盖,则重叠部分面积为S .△CDN另一个要点是要用 t 的代数式表示 D 点的横坐标,即△ BDN 的高,这是本题的难点之三.由 M(2t , 0), N(0 , t) 可先用 t 的代数式表示直线MN 的剖析式 y=-1x+ t.2再结合直线 AB 的剖析式 y=- 2x+ 4,联立方程组,解出 D 点的横坐标为82t ,则3重叠部分面积为S△CDN=S△BDN -S△BCN1 t2 2t 83 3综上所述,t 2 2t(0 y 1)S 1 t2 2t 8 1 t 23 3由函数剖析式及其自变量的取值范围可画出函数图象,观察图象可知,当t= 1 时, S 有最大值,最大值为1.二、规范解答问题(1)如图 2,过点 C 作 CF⊥ x 轴于点 F, CE⊥y 轴于点 E,由题意,易知四边形 OECF为正方形,设正方形边长为x.∴OP= 2DQ.∵P(0,2t),∴ Q(t ,0).∵对称轴OC 为第一象限的角均分线,∴对称点坐标为:M(2t , 0), N(0 , t).(2)①当 0<t≤ 1 时,如图 3 所示,点M 在线段 OA 上,重叠部分面积为S△CMN .当1<t<2 时,如图 4 所示,点 M 在 OA 的延长线上,设 MN 与 AB 交于点 D,则重叠部分面积为 S△CDN设直线 MN 的剖析式为y= kx +b,将 M(2t , 0)、 N(0, t) 代入,得2tk b 0b t综上所述,t 2 2t(0 y 1)S1 t2 2t 8 1 t 23 3②画出函数图象,如图 5 所示:观察图象可知,当t= 1 时, S 有最大值,最大值为 1.三、解题反思1、要点的一步本题在打破第 2 问时,可否得出t= 1 时重叠部分的关系会发生变化,这是决定性的一步,否则就不知该如何分类议论,解题就难以找到前进的方向.2、解题难点解决本题的主要困难第一是分类议论,依照题意知点P 运动的时间为t(0<t<2) 秒,可以确定点肘、N 运动过程中的三类点,即起点、界点(有的题中存在多个界点)和终点,由界点值划分范围,确定分类标准(平时状况下,为了书写方便简洁,可将界点值归入动向的范围),今后进行分类计算(关于几何图形问题,平时需要依照相似、三角函数、勾股定理以及图形面积建立方程等数学模型计算).其次是重叠面积分类,当1<t<2时,我们面对的困难是如何对重叠部分的面积进行切割;如何用t 的代数式表示点 D 的横坐标;得出 S△CDN= S△BDN- S△BCN也是比较困难的;再者分类后的计算,略不注意也可能出错.3、解题收获解决此类与运动、变化相关的问题,重在运动中剖析,变化中求解.第一,要掌握运动规律,追求运动中的特别地址,在“动”中求“静” ,在“静”中研究“动”的一般规律.其次,经过研究、归纳、猜想,获得图形在运动过程中可否保留或拥有某种性质,要用运动的眼光观察出各种可能的状况分类议论,较为精确地将每种状况一一表现出来.再次,要学会将动向问题静态化,立刻动向情境化为几个静态的情境,从中搜寻两个变量间的关系,用相关字母去表示几何图形中的长度、点的坐标等,很多状况下是与三角形的相似和勾股定理等联系在一起的,在整个解题过程中,要深刻理解分类议论、数形结合、化归、相似等数学思想.。
(完整word版)初一数学动点问题答题技巧与方法
初一数学动点问题答题技巧与方法关键:化动为静,分类讨论。
解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数等等。
动点问题定点化是主要思想。
比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。
步骤:①画图形;②表线段;③列方程;④求正解。
数轴上动点问题问题引入:如图,有一数轴原点为O,点A所对应的数是﹣1,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数.练习:1.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4 (速度单位:单位长度/秒).(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中标出的位置同时向数轴负方向运动,几秒时,A、B两点到原点的距离恰好相等?例题精讲:例1.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
例2.如图,已知A、B分别为数轴上两点,A点对应的数为-20,B点对应的数为100。
⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D 点对应的数。
二、动点问题题型方法归纳
动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ二、 特殊四边形边上动点 5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;图(1)图(2)(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.注意:第(2 第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。
中考动点问题题型方法归纳
动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点3点出发,同同时从两点,动点1、直线与坐标轴分别交于6?y??x QP、O、BA4沿1个单位长度,点时到达点,运动停止.点沿线段运动,速度为每秒Q OAPA→→运动.路线OAB1)直接写出两点的坐标;(BA、与之间的函数关系式;的运动时间为秒,的面积为,求出(2)设点OPQ△Qtt SS48为顶点的平行四边的坐标,并直接写出以点(3)当时,求出点?S QO、P、P5y形的第四个顶点的坐标.M B 所有时间分段分类;P到拐点B提示:第(2)问按点探究第四点构成平行四边形时按已知线、Q,第(3)问是分类讨论:已知三定点O、P P为对角线、③OP②OP为边、OQ为对角线,OQ段身份不同分类-----①OP为边、为边,为边。
然后画出各类的图形,根据图形性质求顶点坐标。
OQ xO A .BC=2cmO的直径,弦,∠ABC=60o2、如图,AB是⊙的直径;(1)求⊙O 与⊙O相切;延长线上一点,连结CD,当BD长为多少时,CDAB2()若D是1cm/sF方向运动,同时动点以点出发沿着以3()若动点E2cm/s 的速度从AAB为何,连结EFB的速度从点出发沿BC方向运动,设运动时间为,当)st()(t?0?2t为直角三角形.值时,△BEF)问按直角位置分类讨论提示:第(3线抛物已如图,知3、CC CF F2)经(3??1)3y?a(x0a?E ABAAD OE OBO过点,抛物线的顶点),0(?2A图图图为,过作射线.过顶点平行于轴的直线交射线于点,在x CADOMOM∥OBDD轴正半轴上,连结.x BC(1)求该抛物线的解析式;(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运OMOPP动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?)st(t DAOP等腰梯形?(3)若,动点和动点分别从点和点同时出发,分别以每秒1个Q OOC?OBBP 长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一BOOC个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,PQ(s)ttM yD C的面积最小?并求出最小值及此时的长.四边形PQBCPQ P的面积最小。
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。
初一数学动点问题归类及解题技巧
初一数学动点问题归类及解题技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、问题归类动点问题是初中数学中常见的一类问题,主要涉及到物体的移动、时间、速度等概念。
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM 为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。
中考数学动点问题题型方法归纳
图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点———-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨.一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A(8,0) B(0,6)2、当0<t <3时,S=t 2当3<t <8时,S=3/8(8—t )t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-————①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标. 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm, ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .图(1)图(2)(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1位和2个长度单位的速度沿OC 和BO 停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
二次函数压轴题---动点问题解答方法技巧总结 (含例解答案)
07 动点个数 问题背景 两个 特殊菱形两边上移动 一个
08 两个
09
特殊直角梯形三边 上移动
抛物线中特殊直角梯形底 边上移动
考查难点
探究相似三角形
探究三角形面积函 数关系式
探究等腰三角形
考 点
①菱形性质 ②特殊角三角函数 ③求直线、抛物线解析式 ④相似三角形 ⑤不等式
①求直线解析式 ②四边形面积的表 示 ③动三角形面积函 数④矩形性质
2
(2)由(1)可计算得点 M (3 , 1),N (31) ,. 过点 N 作 NH AD ,垂足为 H . 当运动到时刻 t 时, AD 2OD 8 2t , NH 1 2t . 根据中心对称的性质 OA OD ,OM ON ,所以四边形 MDNA 是平行四边形. 所以 S 2S△ ADN . 所以,四边形 MDNA 的面积 S (8 2t )(1 2t ) 4t 14t 8 .
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好 一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形 的性质、图形的特殊位置。 ) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直 角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、
抛物线上动点
5、 (湖北十堰市)如图①, 已知抛物线 y ax 2 bx 3 (a≠0)与 x 轴交于点 A(1,0)和 点 B (-3,0),与 y 轴交于点 C. (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与 x 轴交于点 M ,问在对称轴上是否存在点 P,使△CMP 为等腰三 角形?若存在,请直接写出所有符合条件的点 P 的坐标;若不存在,请说明理由. (3) 如图②,若点 E 为第二象限抛物线上一动点,连接 BE、CE,求四边形 BOCE 面积的 最大值,并求此时 E 点的坐标数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式; ⑶ 根据图象的位置判断二次函数 ax²+bx+c=0 中 a,b,c 的符号, 或由二次函数 中 a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的 点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式 ax²+bx+c﹙a≠0﹚本身就 是所含字母 x 的二次函数;下面以 a>0 时为例,揭示二次函数、二次三项式 和一元二次方程之间的内在联系:
(完整版)初中数学动点问题归纳
BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
中考专题二动点问题题型方法归纳
动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已图(3) B图(1)B图(2)知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.图(1)图(2) 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y BPOQA x动点问题题型方法归纳动态几何特点 --- 问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特 殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009 年齐齐哈尔市)直线 y = - 34x + 6 与坐标轴分别交于 A 、B 两点,动点 P 、Q 同时从O 点出发,同时到达 A 点,运动停止.点Q 沿线段OA 点 P 沿路线O → B → A 运动. (1) 直接写出 A 、B 两点的坐标;运动,速度为每秒 1 个单位长度, (2) 设点Q 的运动时间为t 秒, △OPQ 的面积为 S ,求出 S 与t 之间的函数关系式; 48 (3) 当 S=时,求出点 P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第5四个顶点 M 的坐标.提示:第(2)问按点 P 到拐点 B 所有时间分段分类;第(3)问是分类讨论:已知三定点 O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类 ------ ①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
C F OECO BC FE OyDM C的时间2、(2009 年衡阳市)如图,AB 是⊙O 的直径,弦 BC=2cm ,∠ABC=60º. (1) 求⊙O 的直径; (2) 若 D 是 AB 延长线上一点,连结 CD ,当 BD 长为多少时,CD 与⊙O 相切;(3) 若动点 E 以 2cm/s 的速度从 A 点出发沿着 AB 方向运动,同时动点 F 以 1cm/s 的速度从 B 点出发沿 BC 方向运动,设运动时间为t (s )(0 < t < 2) ,连结 EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论ADABAB图(1)图(2) 图(3)3、(2009 重庆綦江)如图,已知抛物线 y = a (x -1)2 + 3 3(a ≠ 0) 经过点 A (-2,0) ,抛 物线的顶点为 D ,过O 作射线OM ∥ AD .过顶点 D 平行于 x 轴的直线交射线OM 于点C , B 在 x 轴正半轴上,连结 BC . (1) 求该抛物线的解析式; (2) 若动点 P 从点O 出发,以每秒 1 个长度单位的速度沿射线OM 运动,设点 P 运动的时间为t (s ) .问当t 为何值时,四边形 DAOP 分别为平行四边形?直角梯形?等腰梯形?(3) 若OC = OB ,动点 P 和动点Q 分别从点O 和点 B 同时出发,分别以每秒 1 个长度单位和 2 个长度单位的速度沿OC 和 BO 运动,当其中一个点停止运动时另一个点也随之停止 运动.设它们的运动为t (s ) ,连接 PQ ,当t 为何值时,四边形 BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形 BCPQ 的面积最小。
二、特殊四边形边上动点4、(2009 年吉林省)如图所示,菱形ABCD 的边长为6 厘米,∠B = 60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1 厘米/秒的速度沿A →C →B 的方向运动,点Q 以2 厘米/秒的速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,△APQ 与△ABC 重叠部分的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:(1)点P 、Q 从出发到相遇所用时间是秒;(2)点P 、Q 从开始运动到停止的过程中,当△APQ 是等边三角形时x 的值是秒;(3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B、C 所有时间分段分类;提醒--------- 高相等的两个三角形面积比等于底边的比。
yA HB yA H BMO图(1)C xMO C3 335、(2009 年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3 ,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M,AB 边交y 轴于点H.(1)求直线AC 的解析式;(2)连接BM,如图2,动点P 从点A 出发,沿折线ABC 方向以2 个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S(S ≠ 0 ),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.x注意:第(2图(2)第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点 P 运动过程中,∠MPB=∠ABM 的两种情况,求出 t 值。
利用 OB⊥AC,再求 OP 与AC 夹角正切值.6、(2009 年温州)如图,在平面直角坐标系中,点A( ,0),B(3 ,2),C(0,2).动点 D 以每秒 1 个单位的速度从点 0 出发沿 OC 向终点 C 运动,同时动点 E 以每秒 2 个单位的速度从点 A 出发沿 AB 向终点 B 运动.过点 E 作 EF 上 AB,交 BC 于点 F,连结 DA、DF.设运动时间为 t 秒.(1)求∠ABC的度数;(2)当t 为何值时,AB∥DF;(3)设四边形 AEFD 的面积为 S.①求 S 关于 t 的函数关系式;②若一抛物线y=x2+mx 经过动点E,当S<2 时,求m 的取值范围(写出答案即可).注意:发现特殊性,DE∥OAyBPC D AQO x7、(07 黄冈)已知:如图,在平面直角坐标系中,四边形 ABCO 是菱形,且∠AOC=60°,点B 的坐标是(0,83),点P 从点C 开始以每秒1 个单位长度的速度在线段CB 上向点 B 移动,同时,点 Q 从点 O 开始以每秒 a(1≤a≤3)个单位长度的速度沿射线 OA 方向移动,设t(0 <t ≤ 8) 秒后,直线 PQ 交 OB 于点 D.(1)求∠AOB 的度数及线段 OA 的长;(2)求经过 A,B,C 三点的抛物线的解析式;4(3)当a = 3, OD =33 时,求 t 的值及此时直线 PQ 的解析式;(4)当a为何值时,以 O,P,Q,D 为顶点的三角形与∆OAB 相似?当a为何值时,以 O,P,Q,D 为顶点的三角形与∆OAB 不相似?请给出你的结论,并加以证明.8、(08 黄冈)已知:如图,在直角梯形COAB 中,OC ∥AB ,以O 为原点建立平面直角坐标系,A,B,C 三点的坐标分别为A(8,0),B(8,10),C(0,4) ,点D为线段BC的中点,动点P 从点O 出发,以每秒 1 个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒.B y D COA(1) 求直线 BC 的解析式;(2) 若动点 P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积2的 ?7(3) 动点 P 从点O 出发,沿折线OABD 的路线移动过程中,设△OPD 的面积为 S ,请直接写出 S 与t 的函数关系式,并指出自变量t 的取值范围;(4) 当动点 P 在线段 AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点 P 的坐标;若不能,请说明理由.x x(此题备用)9、(09 年黄冈市)如图,在平面直角坐标系 xoy 中抛, 物线 y = 1 x 2 - 4x -10 与 x 轴的交点为18 9点 A,与 y 轴的交点为点 B . 过点 B 作 x 轴的平行线 BC ,交抛物线于点 C ,连结 AC .现有两动点 P,Q 分别从O ,C 两点同时出发,点 P 以每秒 4 个单位的速度沿 OA 向终点 A 移动,点 Q 以每秒1 个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点 D ,过点 D 作 DE ∥OA ,交 CA 于点 E ,射线 QE 交 x 轴于点 F .设动点 P,Q 移动的时间为 t (单位:秒)(1) 求 A,B,C 三点的坐标和抛物线的顶点的坐标;B yD COP A(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;9(3)当 0<t<时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;2(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.提示:第(3)问用相似比的代换,得PF=OA(定值)。
第(4)问按哪两边相等分类讨论①PQ=PF,②PQ=FQ,③QF=PF.三、直线上动点8、(2009 年湖南长沙)如图,二次函数y =ax2+bx +c (a ≠ 0 )的图象与x 轴交于A、B 两点,与y 轴相交于点C .连结AC、BC,A、C 两点的坐标分别为A(-3,0)、C(0,3),且当x =-4 和x = 2 时二次函数的函数值y 相等.(1)求实数a,b,c 的值;(2)若点M、N 同时从B 点出发,均以每秒1 个单位长度的速度分别沿BA、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B,N,Q 为项点的三角形与△ABC 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.yCP N提示:第(2)问发现A M O B特殊角∠CAB=30°,∠CBA=60°x特殊图形四边形 BNPM 为菱形;第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。
9、(2009 眉山)如图,已知直线y = 1x +1 与y 轴交于点 A,与x 轴交于点 D,抛物线2y =1x2+bx +c 与直线交于 A、E 两点,与x 轴交于 B、C 两点,且 B 点坐标为 (1,0)。
2⑴求该抛物线的解析式;⑵动点 P 在 x 轴上移动,当△PAE 是直角三角形时,求点 P 的坐标 P。