反比例函数应用题练习
反比例函数的应用经典习题(含答案)
反比例函数的应用反比例函数应用——跨学科的综合性问题:解答该类问题的关键是确定两个变量之间的函数关系(常应用物理公式),然后利用待定系数法求出它们的关系式.常见模型:1.压力与压强、受力面积的关系2.电压、电流与电阻的关系3.水池中水的体积、排水量与所需时间的关系 4、气体的气压P(千帕)与气体体积V(立方米)的关系例1、某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1) 用含S的代数式表示p,并求木板面积为0.2 m2时.压强是多少?解:P=F/S=600/S ,S=0.2 m2 ,P=600/0.2=1200(Pa)(2)如果要求压强不超过6000 Pa,木板面积至少要多大?方法一:P=600/S≤6000,S≥600/6000=0.1,故面积至少0.1 m2方法二:已知图象上点的纵坐标不大于6000,求这些点所处位置及它们横坐标的取值范围.实际上这些点都在直线P=6000下方的图象上(3) 在直角坐标系中,作出相应的函数图象.注意:只需要坐第一象限的图,因为S>0.例2.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R( )之间的函数关系如图所示。
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?解:因为电流I与电压U之间的关系为IR=U(U为定值),把图象上的点A的坐标(9,4)代入,得U=36.所以蓄电池的电压U=36V.这一函数的表达式为:I=36/R(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?R(Ω) 3 4 5 6 7 8 9 10I(A) 4解:当I≤10A时,解得R≥3.6(Ω).所以可变电阻应不小于3.6Ω.试一试1.某蓄水池的排水管每时排水8m 3 ,6h 可将满池水全部排空。
反比例函数经典例题(含详细解答)
反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。
反比例函数的应用题
反比例函数的应用题一.解答题(共30小题)1.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=k/a (k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?2.如图,直线y=-x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC= 1/m.3.为了预防流感,学校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比,燃烧后,y与x成反比(如图),现测得药物10min燃烧完,此时,教室内每立方米空气含药量为16mg.已知每立方米空气中含药量低于4mg时对人体无害,那么从消毒开始经多长时间后学生才能进教室?4.如图,点A(3,1),B(-1,n)是一次函数y1=ax+b 和反比例函数y2=k/x 图象的交点,(1)求两个函数的解析式(2)观察图象直接写出y1≥y2自变量x的取值范围.(3)在平面内求一点M,使△AOM是以OA为直角边等腰直角三角形.如果还存在其他点M,直接写出答案.5.如图,直线AB与x轴、y轴分别交于点A和点B,且OA=OB=1.点P(a、b)是双曲线y=1/2x上任意一点,过点P向x轴、y轴作垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.(1)求点E、F的坐标(用a的代数式表示点E的坐标,用b的代数式表示点F的坐标,只须写出结果,不要求写出计算过程);(2)△AOF与△BOE是否相似?若相似,请给出证明;若不相似,请说明理由.(3)当点P在双曲线y=1/2x 上移动时,∠EOF大小是否始终保持不变?若是,求∠EOF度数;若不是,请说明理由.6.如图,反比例函数y1= k/x(k<0)的图象经过点A(-√3,m),连结AO并延长交双曲线于另一点D,过A作AB⊥x轴于点B,过D作DE⊥y轴交AB延长线于点E,且△AED 的面积为4 √3(1)求m与k的值;(2)若过A点的直线y2=ax+b与x轴正半轴交于C点,且∠ACO=30°,求直线解析式;(3)当y1>y2时,请直接写出自变量x的取值范围.7.已知直线y=4-x与x轴、y轴分别相交于C、D两点,有反比例函数y=m/x (m>0,x >0)的图象与之在同一坐标系.(1)若直线y=4-x与反比例函数图象相切,求m的值(2)如图1,若两图象相交于A、B两点,其中点A的横坐标为1,利用函数图象求关于x的不等式4-x<m/x的解集;(3)在(2)的情况下,过点A向y轴作垂线AM,垂足为M,如图2,有一动点P从原点O出发沿O→B→A→M(BA段为曲线)的路线运动,点P的横坐标为a,由点p分别向x、y轴作垂线,垂足为E、F,四边形OEPF的面积为S,求S关于a的函数关系式.8.反比例函数y= k/x与一次函数y=kx+1交于点P(1/2 ,m).(1)求反比例函数和一次函数的解析式;(2)若反比例函数与直线的另一个交点是Q,反比例函数上的一点M满足:∠PQM=60°,求M的坐标.9.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?10.某地计划用120-180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?11.某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.12.如图,平面直角坐标系中,直线y=1/2 x+ 1/2与x轴交于点A,与双曲线y=k/x 在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.13.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=k/x (x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.14.据媒体报道,近期“禽流感H7N9”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“禽流感H7N9”,对教室进行“薰药消毒”.已知药物在燃烧释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?15.如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y=kx+b 〔k<0〕与x轴交于点A.(1)求反比例函数的解析式;(2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COD的面积.16.已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,-3),B(4,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.17.如图,B为双曲线y=1/x (x>0)上一点,直线AB平行于y轴交直线y=x于点A,求(OB+AB)(OB-AB)的值.18.如图,Rt△OAB在平面直角坐标系,直角顶点B在x轴的正半轴上,已知∠OBA=90°,OB=3,sin∠AOB=4/5 .反比例函数P(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)若点C(m,2)是反比例函数B(x>0)图象上的点.①在x轴上是否存在点P,使得PA+PC最小?若存在,求出点P的坐标;若不存在,说明理由.②在x轴上是否存在点Q,使得QA与QC的差最大?若存在,求出点Q的坐标;若不存在,说明理由.19.南宁市某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.(1)列出原计划种植亩数y(亩)与平均每亩产量x(万斤)之间的函数关系式,并写出自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?20.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,电流能是4A吗?为什么?21.如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0)、B(6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.22.某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围(2)据测定,只有当空气中每立方米的含药量不低于5毫克时,对预防才有作用,且至少持续作用20分钟以上,才能完全杀死这种病毒,请问这次消毒是否彻底?23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数y=k/x(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF 交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图,梯形OABC,AB∥OC,∠B=90°,BC=2,底边OC与x轴重合,点D为BC的中点,且AD⊥OD.(1)求证:△ABD∽△DCO;(2)若双曲线y=k/x(x>0)经过点A 和点D,求k的值.25.如图,点P(4,3)是双曲线y=k1/x上一点,过点P作x轴、y轴的垂线,分别交x 轴、y轴于A、B两点,交双曲线y=k2/x (k2>0)于E、F两点.(1)k1= 12,四边形PAOB 的面积S= 12;(2)试判断AB与EF的位置关系,并说明理由.26.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?27.如图,已知直线AB与x轴交于点C,与双曲线y=k/x交于A(3,20/3 )、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.28.如图,已知反比例函数y=m/x (x>0)的图象与一次函数y=-x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC⊥x 轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2-S1,求S的最大值.29.如图,正比例函数y=1/2x的图象与反比例函数y=k/x(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B 点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?30.如图,在直角坐标平面内,函数y=m/x(x>0,m是常熟)的图象经过A(1,4),B (a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB(Ⅰ)求函数y=m/x 的解析式;(Ⅱ)若△ABD的面积为4,求点B的坐标.。
反比例函数考试题(含答案)
反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
反比例函数应用题
反比例函数应用题1.电阻和电流的关系:在电路中,电阻和电流之间存在反比例关系。
根据欧姆定律,电阻R和电流I之间的关系可以用反比例函数表示为R=k/I,其中k是一个常数。
这意味着电阻越大,电流越小,反之亦然。
这个反比例函数可以用于计算电路中的电阻值或电流值。
2.货车运输成本和运输距离的关系:在货车运输业中,货车的运输成本与运输距离之间存在反比例关系。
通常情况下,货车的运输成本随着运输距离的增加而减少,因为运输距离较短时,货车可以更高效地完成运输任务。
这个反比例函数可以用于计算货车运输业务中的成本。
3.人口密度和土地面积的关系:在城市规划中,人口密度与土地面积之间存在反比例关系。
当城市人口增加时,需要更多的土地来容纳这些人口,从而降低人口密度。
反之,当城市人口减少时,人口密度会增加。
这个反比例函数可以用于评估城市规划中的人口密度和土地面积之间的关系。
4.速度和时间的关系:根据物理学中的速度定义,速度V等于位移S除以时间T,即V=S/T。
这意味着速度与时间成反比。
当时间越长,速度越慢,反之亦然。
反比例函数可以用于计算物体的速度,只需要知道物体的位移和时间。
通过解决这些反比例函数应用题,我们可以更好地理解反比例函数的概念,并将其应用于解决实际问题。
在解决这些问题时,需要注意选择适当的变量来表示反比例关系,并确定常数k的值。
这些问题通常需要使用数学公式和计算技巧来解决。
总之,反比例函数在物理学、工程学、经济学和其他学科中都有广泛的应用。
通过解决反比例函数的应用题,我们可以更好地理解实际问题并提出解决方案。
反比例函数经典例题
反比例函数经典例题1.(北京模拟)如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P 为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC =x ,四边形OCPD 的面积为S .(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式;(2)若已知A (a ,0),B (0,b ),且当x = 时,S 有最大值,求直线AB 的解析式;3498(3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N 在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点2.(北京模拟)已知点A 是双曲线y = (k 1>0)上一点,点A 的横坐标为1,过点A 作k 1x 平行于y 轴的直线,与x 轴交于点B ,与双曲线y =(k 2<0)交于点C .点D (m ,0)k 2x 是x 轴上一点,且位于直线AC 右侧,E 是AD 的中点.(1)如图1,当m =4时,求△ACD 的面积(用含k 1、k 2的代数式表示);(2)如图2,若点E 恰好在双曲线y =(k 1>0)上,求m 的值;k 1x (3)如图3,设线段EB 的延长线与y 轴的负半轴交于点F ,当m =2时,若△BDF 的面积为1,且CF ∥AD ,求k 1的值,并直接写出线段CF 的长.图1图2图33.(上海模拟)Rt △ABC 在直角坐标系中的位置如图所示,tan ∠BAC =,反比例函数12y =(k ≠0)在第一象限内的图象与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),k x △BDE 的面积为2.(1)求反比例函数和直线AB 的解析式;(2)设直线AB 与y 轴交于点F ,点P 是射线FD 上一动点,是否存在点P 使以E 、F 、P 为顶点的三角形与△AEO 相似?若存在,求点P4.(安徽某校自主招生)如图,直角梯形OABC 的腰OC 在y 轴的正半轴上,点A (5n ,0)在x 轴的负半轴上,OA : AB : OC =5 : 5 :3.点D 是线段OC 上一点,且OD =BD .(1)若直线y =kx +m (k ≠0)过B 、D 两点,求k 的值;(2)在(1)的条件下,反比例函数y = 的图象经过点B .mx ①求证:反比例函数y =的图象与直线AB 必有两个不同的交点;mx ②已知点P (p ,-n -1),Q (q ,-n -2)在线段AB 上,当点E 落在线段PQ 上时,求n 的取值范围.5.(浙江杭州)在平面直角坐标系中,反比例函数与二次函数y =k ( x 2+x -1)的图象交于点A (1,k )和点B (-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.6.(浙江义乌)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数y =在第一象限内的图象经过点k x D 、E ,且tan ∠BOA = .12(1)求反比例函数的解析式;(2)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正轴交于点H 、G ,求线段OG 的长.7.(浙江某校自主招生)已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 重合),以PQ 为边,∠PQM =60°作菱形PQMN ,使点M 落在反比例函数y =- 的图象上.(1)如图所示,若点P 的坐标为(1,0),图中已经画出一个符合条件的菱形PQMN ,若另一个菱形为PQ 1M 1N 1,求点M 1的坐标;(2)探究发现,当符合上述条件的菱形只有两个时,一个菱形的顶点M 在第四象限,另一个菱形的顶点M 1在第二象限.通过改变P 点坐标,对直线MM 1的解析式y =kx +b 进行探究可得k =__________,若点P 的坐标为(m ,0),则k =__________(用含m 的代数式表示);(3)继续探究:①若点P 的坐标为(m ,0),则m 在什么范围时,符合上述条件的菱形分别为两个、三个、四个?8.(浙江模拟)如图,在平面直角坐标系中,△AOB 的顶点O 是坐标原点,点A 坐标为(1,3),A 、B 两点关于直线y =x 对称,反比例函数y =(x >0)图象经过点A ,点P k x 是直线y =x 上一动点.(1)填空:B 点的坐标为(______,______);(2)若点C 是反比例函数图象上一点,是否存在这样的点C ,使得以A 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,求出点C 坐标;若不存在,请说明理由;(3)若点Q 是线段OP 上一点(Q 不与O 、P 重合),当四边形AOBP 为菱形时,过点Q 分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,当QE +QF +QB 的值最小时,求出Q 点坐标.9.(浙江模拟)已知点P (m ,n )是反比例函数y =(x >0)图象上的动点,PA ∥x 轴,6x PB ∥y 轴,分别交反比例函数y =(x >0)的图象于点A 、B ,点C 是直线y =2x 上的一3x 点.(1)请用含m 的代数式分别表示P 、A 、B 三点的坐标;(2)在点P 运动过程中,连接AB ,△PAB 的面积是否变化,若不变,请求出△PAB 的面积;若改变,请说明理由;(3)在点P 运动过程中,以点P 、A 、B 、C 为顶点的四边形能否为平行四边形,若能,请求出此时m的值;若不能,请说明理由.备用图11.(江苏泰州)如图,已知一次函数y 1=kx +b 的图象与x 轴相交于点A ,与反比例函数y 2= 的图象相交于B (-1,5)、C (,d )两点.点P (m ,n )是一次函数y 1=kx +b 的c x 52图象上的动点.(1)求k 、b 的值;(2)设-1<m < ,过点P 作x 轴的平行线与函数y 2=的图象相交于点D .试问△PAD 32c x 的面积是否存在最大值?若存在,请求出面积的最大值及此时点P 的坐标;若不存在,请说明理由;(3)设m =1-a ,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,求实数a 的取值范围.12.(江苏模拟)如图,双曲线y =(x >0)与过A (1,0)、B (0,1)的直线交于316x P 、Q 两点,连接OP 、OQ .(1)求证△OAQ ≌△OBP ;(2)若点C 是线段OA 上一点(不与O 、A 重合),CD ⊥AB 于D ,DE ⊥OB 于E .设CA =a .①当a 为何值时,CE =AC ?②是否存在这样的点C ,使得CE ∥AB ?若存在,求出点C 的坐标;若不存在,说明理由.13.(河北)如图,四边形ABCD 是平行四边形,点A (1,0),B (3,1),C (3,3).反比例函数y =(x >0)的图象经过点D ,点P 是一次函数m x y =kx +3-3k (k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k (k ≠0)的图象一定过点C ;(3)对于一次函数y =kx +3-3k (k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围(不必写出过程).14.(山东济南)如图,已知双曲线y = 经过点D (6,1),点C 是双曲线第三象限分支k x 上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;(3)判断AB 与CD 的位置关系,并说明理由.15.(山东淄博)如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线y =-x +b 12点F ,求点F 的坐标;(3)连接OF ,OE ,探究∠AOF 与∠EOC 的数量关系,并证明.16.(湖北某校自主招生)在直角坐标系中,O 为坐标原点,A 是双曲线y =(k >0)在k x 第一象限图象上的一点,直线OA 交双曲线于另一点C .(1)如图1,当OA 在第一象限的角平分线上时,将OA 向上平移 个单位后与双曲线在32第一象限的图象交于点M ,交y 轴于点N ,若 =,求k 的值;MN OA 12(2)如图2,若k =1,点B 在双曲线的第一象限的图象上运动,点D 在双曲线的第三象17.2=0,直线y =(1)求反比例函数的解析式;(2)将线段BC 绕坐标平面内的某点M 旋转180°后B 、C 两点恰好都落在反比例函数的图象上,求点M 的坐标;(3)在反比例函数的图象上是否存在点P ,使以PB 为直径的圆恰好过点C ?若存在,求点P18.(广西北海)如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2).(1)求d 的值;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B ′、C ′ 正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B ′C ′ 的解析式;(3)在(2)的条件下,设直线B ′C ′ 交y 轴于点G .问是否存在x 轴上的点M 和反比例函数图象上的点P ,使得四边形PGMC ′是平行四边形.如果存在,请求出点M 和点P 的坐标;如果不存在,请说明理由.19.(广西玉林、防城港)如图,在平面直角坐标系xO y 中,梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,过点A 的双曲线y =的一支在第一象限交梯形对角线OC k x 于点D ,交边BC 于点E .(1)填空:双曲线的另一支在第_________象限,k 的取值范围是_______________(2)若点C 的坐标为(2,2),当点E 在什么位置时,阴影部分面积S 最小?(3)若 = ,S △OAC =2,求双曲线的解析式.OD OC 1220.(福建厦门)已知点A (1,c )和点B (3,d )是直线y =k 1x +b 与双曲线y = (k 2>0)的交点.k 2x (1)过点A 作AM ⊥x 轴,垂足为M ,连接BM .若AM =BM ,求点B 的坐标;(2)设点P 在线段AB 上,过点P 作PE ⊥x 轴,垂足为E ,并交双曲线y =(k 2>0)k 2x 于点N .当 取最大值时,有PN =,求此时双曲线的解析式.PN NE 1221.(福建莆田)如图,一次函数y =k 1x +b 的图象过点A (0,3),且与反比例函数y = (x >0)的图象相交于B 、C 两点.k 2x (1)若B (1,2),求k 1·k 2的值;(2)若AB =BC ,则k 1·k 2的值是否为定值?若是,请求出该定值;若不是,请说明理由.22.(福建某校自主招生)如图1,已知直线y =- x +m 与反比例函数y =的图象在第一12k x 象限内交于A 、B 两点(点A 在点B 的左侧),分别与x 、y 轴交于点C 、D ,AE ⊥x 轴于E .(1)若OE ·CE =12,求k 的值;(2)如图2,作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,EF =,AB =2,P 是x 轴正半轴上一点,且△PAB 是以55P 为直角顶点的等腰直角三角形,求P 点的坐标.。
完整版)反比例函数经典习题及答案
完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。
y = 1/xB。
y = -1/xC。
y = 2/xD。
y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。
第一、二象限B。
第一、三象限C。
第二、四象限D。
第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。
k。
2B。
k ≥ 2C。
k ≤ 2D。
k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。
2B。
-2C。
4D。
-45.对于反比例函数y = 2/x,下列说法不正确的是()A。
点(-2.-1)在它的图象上B。
它的图象在第一、三象限C。
当x。
0时,y随x的增大而增大D。
当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。
0时,y随x 的增大而增大,则m的值是()A。
±1B。
小于1的实数C。
-1D。
1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。
A。
S1 < S2 < S3B。
S2 < S1 < S3C。
S3 < S1 < S2D。
S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。
3B。
2C。
1D。
09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。
反比例函数的应用专题练习(含答案)
初二数学反比例函数的应用课后练习(答题时间:60分钟)一、选择题1. 某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A . x y 300=(x >0)B . xy 300=(x≥0) C . y =300x (x≥0) D . y =300x (x >0)2. 根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (Pa )与它的体积V (m 3)的乘积是一个常数k ,即pV =k (k 为常数,k >0),下列图象能正确反映p 与V 之间函数关系的是( )3. 小华以每分钟x 字的速度书写,y 分钟写了300字,则y 与x 的函数关系为( )A . x=300yB . y=300x (0>x )C . x+y=300D . y=300x x- 二、解答题4. 王大爷家需要建一个面积为2 500米2的长方形养鸡厂.(1)养鸡厂的长y 米与宽x 米有怎样的函数关系?(2)王大爷决定把养鸡厂的长确定为250米,那么宽应是多少?(3)由于受厂地限制,养鸡厂的宽最多为20米,那么养鸡厂的长至少应为多少米?5. 一个圆台形物体的上底面积是下底面积的23,如图所示,放在桌面上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?6. 一定质量的二氧化碳,当它的体积V=5m 3时,它的密度ρ=1.98kg/m 3.(ρ、V 成反比例)(1)求ρ与V 的函数关系式;(2)求当V=9m 3时ρ的值.7. 某地上年度电价为0.8元,年用电量为1亿度,•本年度计划将电价调至0.55~0.75元之间.经测算,若电价调至x 元,则本年度新增用电量y (亿度)与(x-0.4)元成反比例,又当x=0.65元时,y=0.8.求y 与x 之间的函数关系式.8. 为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (min )成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)求药物燃烧时y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?一、选择题1. A ;xy=300,注意自变量的取值范围2. C ;解题思路:vk p =,如果不与实际相结合,图象分布在一、三象限,但事实上,自变量的取值范围应为y>0.3. B二、解答题4. (1)y=2500x(2)y=250,x=10米 (3)125,20y 2500,2500≥≤==y x xy ,长至少为125米 5. •300Pa6. (1)V=5m 3时,ρ=1.98kg/m 3 ,ρ=9.9V(2)V=9m 3 ,ρ=1.1kg/m 3 7. 设4.0y -=x k ,当 x=0.65元时,y=0.8. k=0.2,化简得y=152x - 8. 解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k = 145k =.∴此阶段函数解析式为45y x = (2)设药物燃烧结束后的函数解析式为22(0)k y k x=≠, 由题意得:2810k = 280k =.∴此阶段函数解析式为80y x= (3)当 1.6y <时,得80 1.6x< 0x >1.680x >50x >∴从消毒开始经过50分钟后学生才可以回教室.。
反比例函数经典例题(有答案)
一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。
反比例函数练习题及答案6套
反比例函数练习(1)一、判断题 1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ___; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y与x 的函数关系是______________ 三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( )(A ) 12+=x y (B )22x y = (C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.②这是一个反比例函数吗? ③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.五.已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。
反比例函数》测试题(含答案)
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
完整版)反比例函数练习题含答案
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
反比例函数练习题及答案
反比例函数练习题一、填空题(每空3分,共42分) 1.已知反比例函数()0≠=k xky 的图象经过点(2,-3),则k 的值是_______,图象在__________象限,当x>0时,y 随x 的减小而__________.2.已知变量y 与x 成反比,当x =1时,y =-6,则当y = 3时,x=________。
3.若反比例函数y=(2m-1)22m x - 的图象在第一、三象限,则函数的解析式为___________.4.已知反比例函数xm y )23(1-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大;5.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为 ; 6.已知111222(,),(,)P x y P x y 是反比例函数xky =(k≠0)图象上的两点,且12x x <<0时,12y y < ,则k________。
7.已知正比例函数y=kx(k≠0),y 随x 的增大而减小,那么反比例函数y=kx,当x< 0时,y 随x 的增大而_______.8.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,12),则8k 1+5k 2的值为________. 9. 若m <-1,则下列函数:①()0 x xmy =;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。
10.当>0,<0时,反比例函数的图象在__________象限。
11.老师给出一个函数,甲、乙、丙、丁四人各指出这个函数的一个性质,甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:y 随x 的增大而减小;丁:当2<x 时,0>y 。
反比例函数应用题
反比例函数应用题
1. 如果8个工人需要10天完成某项工作,那么需要多少天才能由6个工人完成同样的工作?
2. 一辆汽车以每小时60公里的速度行驶,那么行驶120公里需要多长时间?
3. 一箱苹果卖出去总共收入300元,如果每箱销售的数量减少1/3,那么平均每箱的售价是多少?
4. 某种商品的价格每降低10%,销量就增加20%,如果原价是100元,降价后的售价是多少?
5. 一辆自行车以每分钟30米的速度行驶,那么行驶150米需要多长时间?
6. 一个水库的水位下降速度是每小时2米,如果继续以相同速度下降,需要多少小时水位下降10米?
7. 一根铁丝长80米,如果每段长度增加4米,那么可以分成多少段?
8. 某种药物的剂量与患者体重成反比,如果一个50公斤的患者需要100毫升的药物,那么一个60公斤的患者需要多少毫升?
9. 一根绳子每天缩短长度为原来的1/5,如果第一天长度为100米,那么第6天的长度是多少?
10. 一支笔每经过1小时,墨水消耗原来的1/3,如果一开始有完整的墨水,那么经过3个小时后,还剩下多少的墨水?。
2022年中考复习《反比例函数应用题》专项练习附答案
反比例函数应用题1、〔2021•曲靖〕某地资源总量Q 一定,该地人均资源享有量与人口数n的函数关系图象是〔〕A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:根据题意有:=;故y与x 之间的函数图象双曲线,且根据,n 的实际意义,n 应大于0;其图象在第一象限.解答:解:∵由题意,得Q=n,∴=,∵Q为一定值,∴是n的反比例函数,其图象为双曲线,又∵>0,n>0,∴图象在第一象限.应选B.点评:此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2、〔2021•绍兴〕教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温〔℃〕与开机后用时〔min〕成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.假设在水温为30℃时,接通电源后,水温y〔℃〕和时间〔min〕的关系如图,为了在上午第一节下课时〔8:45〕能喝到不超过50℃的水,那么接通电源的时间可以是当天上午的〔〕A.7:20 B.7:30 C.7:45 D.7:50考反比例函数的应用.点:分析:第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.解答:解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将〔0,30〕,〔7,100〕代入y=k1x+b得k1=10,b=30∴y=10x+30〔0≤x≤7〕,令y=50,解得x=2;设反比例函数关系式为:y=,将〔7,100〕代入y=得k=700,∴y=,将y=30代入y=,解得x=;∴y=〔7≤x≤〕,令y=50,解得x=14.所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x≤时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.应选A.点评:此题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.3、〔2021•玉林〕工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y 〔℃〕与时间x〔min〕成一次函数关系;锻造时,温度y〔℃〕与时间x〔min〕成反比例函数关系〔如图〕.该材料初始温度是32℃.〔1〕分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;〔2〕根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?考点:反比例函数的应用;一次函数的应用.分析:〔1〕首先根据题意,材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;〔2〕把y=480代入y=中,进一步求解可得答案.解答:解:〔1〕停止加热时,设y=〔k≠0〕,由题意得600=,解得k=4800,当y=800时,解得x=6,∴点B的坐标为〔6,800〕材料加热时,设y=ax+32〔a≠0〕,由题意得800=6a+32,解得a=128,∴材料加热时,y与x的函数关系式为y=128x+32〔0≤x≤5〕.∴停止加热进行操作时y与x的函数关系式为y=〔5<x≤20〕;〔2〕把y=480代入y=,得x=10,故从开始加热到停止操作,共经历了10分钟.答:从开始加热到停止操作,共经历了10分钟.点评:考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式。
反比例函数实际问题应用专 题
反比例函数实际应用问题1.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)根据图像填空:AB的解析式为:_______________(0≤x<10)BC的解析式为:_______________(10≤x<25)CD的解析式为:_______________(x≥25)(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?2.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用正比例函数y=100x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:当x=5时,y=45,求k的值.(2)若依据某人甲的生理数据显示,当y≥80时肝部正被严重损伤,请问甲喝半斤低度白酒后,肝部被严重损伤持续多少时间?(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.3.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?(4)若小明在通电开机后随即进书房学习40分钟,中途出来接水,水温不低于50°的概率是_______.4.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第n天第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克) 400 250 240 200 150 125 120销售量y(千克) 30 40 48 60 80 96 100观察表中数据,发现这种海产品的每天销售量y(千克)是销售价格x(元/千克)的函数.且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?6.教室里的饮水机接通电源就进入自动程序,开机加热时水温上升,加热到100℃停止加热,水温开始下降,水温降至30℃,饮水机自动开始加热,重复上述程序.值日生小明7点钟到校后接通饮水机电源,在水温下降的过程中进行了水温检测,记录如下表:时间x7:007:027:057:077:107:147:20水温y30℃50℃80℃100℃70℃50℃35℃(1)在图中的平面直角坐标系,画出水温y关于饮水机接通电源时间x的函数图象;(2) 借助(1)所画的图象,判断从7:00开始加温到水温第一次降到30℃为止,水温y和时间x之间存在怎样的函数关系?试求出函数关系并写出自变量x取值范围;(3) 上午第一节下课时间为8:20,同学们刚下课时能不能喝到不超过50℃的水?请通过计算说明.(4)课间为10分钟,第二节课上课前能否喝到不超过50 °的水?能持续多长时间?7.某学校小组利用暑假中前40天参加社会实践活动,参与了一家网上书店经营,了解到一种成本每本20元的书在x天销售量P=50-x.在第x天的售价每本y元,y与x的关系如图所示.已知当社会实践活动时间超过一半后.y=20+(1)请求出当1≤x≤20时,y与x的函数关系式,并求出第12天此书的销售单价;(2)这40天中该网点销售此书第几天获得的利润最大?最大的利润是多少?(3)若每天的利润不低于600元,则符合条件的天数分别是那些天?8.六⋅一儿童节,小文到公园游玩。
反比例函数的应用题
反比例函数的应用题1、走同一段路,小玲要12分,小丽要18分,已知小玲和小丽两家相距600米,这天两人同时从家出发向对方家走去,相遇时两人各走多少米,2、某工厂计划生产一批零件,12个人工作6小时,完成了计划的60%,照这样计算,其余的由20个工作来做,还要工作几小时,3、用弹簧秤称物体,称2千克的物体,弹簧长12.5厘米,称6千克的物体,弹簧长13.5厘米,求称5千克的物体时,弹簧全长多少厘米,4、快车从甲站开往乙站,需要8小时,慢车从乙站开往甲站需要10小时,两车同时从两站相向而行,相遇时慢车行了240千米,求两站的距离。
5、客车和货车同时从甲、乙两地的中点反向行驶,3小时后客车到达甲地,货车离乙地还有22千米,已知货车与客车的速度比是5:6,甲、乙两地相距多少千米,6、客、货两车同时从甲、乙两地相对开出,客车每小时行50千米,货车每小时行1全程的,相遇时客车和货车所行路程的比是5:6,甲、乙两地相距多少千米,167、甲、乙两车同时从A、B两地相向而行,当甲到达B地时,乙距A地30千米,当乙车到达A地时,甲车超过B地40千米,问A、B两地相距多少千米,18、一对互相咬合的齿轮,主动轮100个齿,每分钟转90转。
要使从动轮每分钟转300转,从动轮应有多少个齿,9、甲城和乙城相距368千米,一摩托车从甲城到乙城,每小时的速度比原计划减少1,结果推迟2小时到达,求原计划每小时行多少千米, 510、一车汽车从A地到B地,如果每小时行54千米,比原定时间提前1小时到达,如果每小时行45千米,比原定时间推迟1小时到达,那么A地到B地相距多少千米,111、甲乙两车从相距180千米的A地去B地,甲车比乙车晚1小时出发,结果两2车同时到达,甲乙两车速度的比是4:3,甲车每小时行多少千米,12、东风机械厂加工一批零件,30人工作,每天工作8小时,20天可以完成,后来实际工作人数减少5人,并且提前4天完成任务,问每天工作几小时,1113、一项工程,甲乙两队合做8天完成,已知单独做时甲完成与乙完成所用的43时间相等,求单独做时,甲、乙各需多少天,1114、一项工程,甲乙两队合做10天完成,已知单独做时,甲小时与乙小时的工23作量相等,求单独做时,甲、乙各需多少天,215、如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递(动点表示火炬位置,火炬从离北京路10米处的点开始传递,到离北京路1000Tmn(),M米的点时传递活动结束(迎圣火临时指挥部设在坐标原点(北京路与奥运路的十字路口),NO为少先队员鲜花方阵, OATB(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的长是宽的4倍时,确定此时火炬的位置(用坐标表示);(3)设tmn,,,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示)( y 北 M 奥林匹克广场京路 T(火炬) B 鲜花方阵 N A x O (指挥部) 奥运路16、为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。
(完整版)反比例函数练习题集锦(含答案)
反比例函数练习题集锦(含答案)一、选择题1. 反比例函数y=1/x的图像在()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第一、四象限2. 反比例函数y=1/x的图像是()A. 一条直线B. 一条曲线C. 一条抛物线D. 一条双曲线3. 反比例函数y=1/x的图像经过()A. 原点B. x轴C. y轴4. 反比例函数y=1/x的图像与x轴、y轴的交点坐标分别是()A. (0,0),(0,0)B. (1,0),(0,1)C. (0,1),(1,0)D. (0,0),(1,1)5. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 06. 反比例函数y=1/x的图像在第二象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 07. 反比例函数y=1/x的图像在第三象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 08. 反比例函数y=1/x的图像在第四象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 09. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的比值是()A. 1B. 1C. 0纵坐标的比值是()A. 1B. 1C. 0答案:1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.A 9.C 10.B反比例函数练习题集锦(含答案)二、填空题11. 反比例函数y=1/x的图像在第一、三象限,因为当x>0时,y<0,当x<0时,y>0,所以图像在第一、三象限。
12. 反比例函数y=1/x的图像是一条双曲线,因为它的图像是由两条互相渐近的曲线组成的。
13. 反比例函数y=1/x的图像与x轴、y轴的交点坐标分别是(0,0),(0,0),因为当x=0时,y=0,当y=0时,x=0。
14. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的乘积是1,因为y=1/x,所以xy=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数应用题练习
1.在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其图象如图所示.
(1) 求p与S之间的函数关系式;
(2) 求当S=0.5 m2时物体承受的压强p.
2、某蓄水池的排水管每时排水8m3,6小时(h)可将满水池全部排空.
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系式
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?
3、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。
(1)求I与R之间的函数关系式
(2)当电流I=0.5安培时,求电阻R的值;
4.某校科技小组进行野外考察,途中遇到一片十几米宽的料泥地.为了完全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,•构筑成一条临时通道,木板对地面的压强P (Pa)是木板面积S(m2)的反比例函数,•其图象如下图所示.
(1)请直接写出一函数表达式和自变量取值范围;
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板的面积至少要多大?
5.某厂从2002年起开始投入技术改进资金,经技术改进后,•某产品的生产成本不断降低,具体数据如下表:
年度2002 2003 2004 2005
投入技改资金x(万元)2.5 3 4 4.5
产品成本y(万元/件)7.2 6 4.5 4
(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式;(2)按照这种变化规律,若2006年已投入技改资金5万元.
①预计生产成本每件比2005年降低多少万元?
②如果打算在2006年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)。