材料力学第5版(孙训方编)第六章
孙训方《材料力学》(第5版)笔记和课后习题(含考研真题)详解
目录分析
1.2课后习题详解
1.1复习笔记
1.3名校考研真题 详解
2.2课后习题详解
2.1复习笔记
2.3名校考研真题 详解
3.2课后习题详解
3.1复习笔记
3.3名校考研真题 详解
4.2课后习题详解
4.1复习笔记
4.3名校考研真题 详解
5.2课后习题详解
5.1复习笔记
5.3名校考研真题 详解
16.1复习笔记
16.3名校考研真题 详解
作者介绍
读书笔记
这是《孙训方《材料力学》(第5版)笔记和课后习题(含考研真题)详解》的读书笔记模板,可以替换为自 己的心得。
精彩摘录
这是《孙训方《材料力学》(第5版)笔记和课后习题(含考研真题)详解》的读书笔记模板,可以替换为自 己的精彩内容摘录。
6.2课后习题详解
6.1复习笔记
6.3名校考研真题 详解
7.2课后习题详解
7.1复习笔记
7.3名校考研真题 详解
8.2课后习题详解
8.1复习笔记
8.3名校考研真题 详解
9.2课后习题详解
9.1复习笔记
9.3名校考研真题 详解
10.2课后习题详解
10.1复习笔记
10.3名校考研真题 详解
11.2课后习题详解
孙训方《材料力学》(第5版) 笔记和课后习题(含考研真题)
详解
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
习题
真题
习题
笔记
分析
真题
材料
笔记
材料力学第五版孙训方版课后习题答案高等教育出版社
材料力学 高等教育出版社 孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
孙训方材料力学第五版课后的习题答案
孙训⽅材料⼒学第五版课后的习题答案第⼆章轴向拉伸和压缩2-1 试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。
(a )解:;;(b )解:;;(c )解:;。
(d) 解:。
[习题2-3] ⽯砌桥墩的墩⾝⾼m l 10=,其横截⾯⾯尺⼨如图所⽰。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩⾝底部横截⾯上的压应⼒。
解:墩⾝底⾯的轴⼒为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=+?--=墩⾝底⾯积:)(14.9)114.323(22m A =?+?=因为墩为轴向压缩构件,所以其底⾯上的正应⼒均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图⽰⼀混合屋架结构的计算简图。
屋架的上弦⽤钢筋混凝⼟制成。
下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm ×8mm 的等边⾓钢。
已知屋⾯承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截⾯上的应⼒。
解:=1)求内⼒取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积 A =11.5 cm 2(拉)(拉)2-5图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。
如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。
解:2-6 ⼀⽊桩柱受⼒如图所⽰。
柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)[习题2-7] 图⽰圆锥形杆受轴向拉⼒作⽤,试求杆的伸长。
解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =? ,??==?l l x A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+?-=, 2211222)(u d x ld d x A ?=??? ??+-=ππ,dx l d d du d x l d d d 2)22(12112 -==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -?-=?-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l--===?πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2??+--=???-=ππ-+--=21221)(2111221d d l l d d d d E Fl π2-10 受轴向拉⼒F 作⽤的箱形薄壁杆如图所⽰。
材料力学第五版孙训方版课后习题答案高等教育出版社
材料力学 高等教育出版社 孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u du d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
材料力学第五版(孙训方著)课后答案下载
材料力学第五版(孙训方著)课后答案下载材料力学一般是机械工程和土木工程以及相关专业的大学生必须修读的课程,以下是为大家的材料力学第五版(孙训方著),仅供大家参考!点击此处下载???材料力学第五版(孙训方著)课后答案???固体力学的一个分支,研究结构构件和机械零件承载能力的基础学科。
其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。
在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:①不发生断裂,即具有足够的强度;②构件所产生的弹性变形应不超出工程上允许的范围,即具有足够的刚度;③在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。
对强度、刚度和稳定性这三方面的要求,有时统称为“强度要求”,而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。
为了确保设计安全,通常要求多用材料和用高质量材料;而为了使设计符合经济原则,又要求少用材料和用廉价材料。
材料力学的目的之一就在于为合理地解决这一矛盾,为实现既安全又经济的设计提供理论依据和计算方法。
在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。
运用材料力学知识可以分析材料的强度、刚度和稳定性。
材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化结构设计,以达到降低成本、减轻重量等目的。
在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。
但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。
材料力学的研究内容包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。
材料力学第五版孙训方版课后习题答案
[习题2-2]一打入基地内的木桩如以下图,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如以下图。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向紧缩构件,因此其底面上的正应力均匀散布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ [习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体〔微元体〕。
那么微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如以下图。
孙训方材料力学(I)第五版课后习题答案完整版
第二章轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx²(k为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰1x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为 的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
孙训方材料力学第五版课后习题答案详解
Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
孙训方材料力学(I)第五版课后习题答案.(优选)
第二章 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:;; (b )解:;;(c )解: ; 。
(d) 解: 。
[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1) 求内力 取I-I 分离体得(拉)取节点E 为分离体,故 (拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(l xr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π 2-10 受轴向拉力F 作用的箱形薄壁杆如图所示。
材料力学第5版(孙训方编)第六章
(压应力)
30
第六章 简单的超静定问题
§6-3 扭转超静定问题
例题6-5 两端固定的圆截面等直杆AB,在截面C处受 扭转力偶矩Me作用,如图a。已知杆的扭转刚度为GIp。试 求杆两端的约束力偶矩以及C截面的扭转角。
(a)
31
第六章 简单的超静定问题
MA (a)
FN l EAt
6. 杆的横截面上的温度应力为 FN l Et A
29
第六章 简单的超静定问题
FN l Et A
若该杆为钢杆而l =1.2×10-5/(˚C),E=210GPa,则当
温度升高t =40˚时有
l Et 1.2 105 / C 210109 GPa40 C
4. 将补充方程与平衡方程联立求解得:
FN1 FN 2
eEA 1 , l 1 2 EA E3 A3
FN 3
eE3 A3 1 EA l 1 3 3 2 EA
所得结果为正,说明原先假定杆1,2的装配内力为拉
力和杆3的装配内力为压力是正确的。 5. 各杆横截面上的装配应力如下:
FN1 1 2 74.53 MP a A FN3 3 19.51 MP a A3
(拉应力) (压应力)
25
第六章 简单的超静定问题
(2) 温度应力 也是由于超静定杆系存在“多余”约束,杆件会因温 度变化产生的变形受到限制而产生温度内力及温度应力。 铁路上无缝线路的长钢轨在温度变化时由于不能自由伸缩,
的弹性模量E=210 GPa,铜的弹
性模量E3=100 GPa。
22
第六章 简单的超静定问题
孙训方材料力学第五版课后习题答案详细讲解
Microsoft Corporation训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
孙训方第五版 材料力学课件-高等教育出版社
T n
纯弯曲
M
M
第二章 轴向拉伸和压缩
主讲教师:郑新亮
2016年12月13日星期二
第一节 轴向拉伸与压缩的概念及实例
轴向拉伸与压缩是四种基本变形中最基本、最 简单的一种变形形式。 1、工程实例
拉杆 P
压杆
P
P
第一节 轴向拉伸与压缩的概念及实例
2、轴向拉伸与压缩的概念
受力特点:作用于杆端外力的合力作用线与杆件轴线重合 变形特点:沿轴线方向产生伸长或缩短
变 形
{
弹性变形 塑性变形
材料力学是在弹性范围内研究构件的承载能力
第二节 变形固体的基本假设
材料力学对变形固体所做的几个基本假设:
1 均匀连续性假设
变形固体的机械性质在固体内各点都是一样的,并且组成变形 固体的物质毫无空隙的充满了构件的整个几何容积。
2 各向同性假设
变形固体在各个方向上具有相同机械性质。具有相同机械性质 的材料为各向同性材料。
第二节 受轴向拉伸或压缩时横截面上的内力和应力
横截面上的应力分布:
F
ζ
1、正应力的概念:
内力在横截面上的分布集度
N A
单位: 帕斯卡 Pa (=N/m2)
常用单位: MPa=106 Pa GPa=109 Pa
第二节 受轴向拉伸或压缩时横截面上的内力和应力
2、正应力的符号规定:
当轴向力为正时,正应力为正(拉应力),反之 为负(压应力)
2
第二节 受轴向拉伸或压缩时横截面上的内力和应力
讨论: cos 2 sin 2 2
45 90
0
o
o
,max
材料力学I第五版孙训方版课后习题答案.doc
材料力学I第五版孙训方版课后习题答案2-2 解由题意可得2-3 解墩身底面的轴力为2-3图墩身底面积因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
2-7图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解取长度为截离体(微元体)。
则微元体的伸长量为,,,,,因此,2-10 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该材料的弹性常数为,试求C与D两点间的距离改变量。
解式中,,故,,2-11 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量,已知,,,。
试求C点的水平位移和铅垂位移。
变形协调图受力图2-11图解(1)求各杆的轴力以AB杆为研究对象,其受力图如图所示。
因为AB平衡,所以,,由对称性可知,,(2)求C 点的水平位移与铅垂位移。
A点的铅垂位移B点的铅垂位移1、2、3杆的变形协(谐)调的情况如图所示。
由1、2、3杆的变形协(谐)调条件,并且考虑到AB为刚性杆,可以得到C点的水平位移C点的铅垂位移2-12 图示实心圆杆AB和AC在A点以铰相连接,在A点作用有铅垂向下的力。
已知杆AB和AC的直径分别为和,钢的弹性模量。
试求A点在铅垂方向的位移。
解(1)求AB、AC杆的轴力以节点A为研究对象,其受力图如图所示。
由平衡条件得出 a b a b联立解得;(2)由变形能原理求A点的铅垂方向的位移式中,;;故2-13 图示A 和B两点之间原有水平方向的一根直径的钢丝,在钢丝的中点C加一竖向荷载F。
已知钢丝产生的线应变为,其材料的弹性模量,钢丝的自重不计。
试求(1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2)钢丝在C点下降的距离;(3)荷载F的值。
解(1)求钢丝横截面上的应力(2)求钢丝在C点下降的距离。
其中,AC和BC各。
(3)求荷载F的值以C结点为研究对象,由其平稀衡条件可得2-15水平刚性杆AB由三根BC,BD和ED支撑,如图,在杆的A端承受铅垂荷载F20KN,三根钢杆的横截面积分别为A112平方毫米,A26平方毫米,A,39平方毫米,杆的弹性模量E210Gpa,求(1)端点A的水平和铅垂位移。
材料力学第五版(I)孙训方版课后习题答案
材料力学第五版(I)孙训方版课后习题答案材料力学第五版孙训方版课后习题答案材料力学第五版(一)孙迅芳对课后练习的回答[习题3-2]实心圆轴的直径d?100mm,长l?1m,其两端所受外力偶矩me?14kn?m,材料的切变模量g?80gpa。
试求:(1)最大剪应力和两端之间的相对旋转角;(2)图示截面上a、b、c三点处切应力的数值及方向;(3)c点处的切应变。
解:(1)计算最大切应力及两端面间的相对转角?max?mt?e。
wpwp11?d3??3.14159?1003?196349(mm3)。
3-21616式中,wp?故:?maxme14?106n?mm???71.302mpa3wp196349mm??t?l11,式中,ip??d4??3.14159?1004?9817469(mm4)。
故:gip3232t?l14000n?m?1m??0.0178254(rad)?1.02o92?124gip80?10n/m?9817469?10m??(2)求图示截面上a、b、c三点处切应力的数值及方向? A.B最大值?71.302 MPa,根据横截面上的剪应力分布规律:a、b、c三点的切应力方向如图所示。
?c??b?0.5?71.302?35.66mpa,(3)计算c点处的切应变?c?12?cg?35.66mpa?4?3?4.4575?10?0.446?10380?10mpa4-3试着利用荷载集中、剪力和弯矩之间的微分关系来绘制弯矩图和剪力E和F(以下梁的问题)1材料力学第五版孙迅芳版课后练习答案(e)(f)(h)4-8用叠加法绘制梁的弯矩图。
4-8(b)4-8(c)二材料力学第五版孙训方版课后习题答案三材料力学第五版孙训方版课后习题答案6-124材料力学第五版孙迅芳版课后练习答案[习题7-14]单元体各面上的应力如图所示。
试用应力圆的几何关系求主应力及最大切应力。
[习题7-15(a)]解:坐标平面应力:X(70,-40),y(30,-40),Z(50,0)单元体图应力圈由xy平面内应力值作a、b点,连接a、b交应力圆半径:C轴中心(50,0)[习题7-15(b)]解:坐标平面应力:X(60,40),y(50,0),Z(0,-40)单元体图应力圈轴于c点,oc=30,故应力圆圆心c(30,0)五由xz平面内应力作a、b点,连接a、b交。
材料力学(II)第六章 材料力学 孙训方
18
Ek = 0
(c) (d)
1 Vεd = Fd ⋅ ∆d 2
材 料 力 学 Ⅱ 电 子 教 案
动荷载·交变应力 第六章 动荷载 交变应力
Fd l 由 ∆d = ,得 EA EA (e) Fd = ∆d l 将(e)式代入(d)式,得 1 EA 2 Vεd = ( ) ∆d (f) 2 l 将(b),(c)和(f)式代
3
材 料 力 学 Ⅱ 电 子 教 案
动荷载·交变应力 第六章 动荷载 交变应力
例 6-1 一钢索起吊重物M(图a),以等加速度a提升。 - 重物M的重量为P,钢索的横截面面积为A,不计钢索的重量。 试求钢索横截面上的动应力σd 。 解:设钢索的动轴力为FNd ,重物
P a(↓)(图b),由重 M 的惯性力为 g
13
材 料 力 学 Ⅱ 电 子 教 案
动荷载·交变应力 第六章 动荷载 交变应力
解:由于轴在制动时产生角加速度α,使飞轮产生惯性力矩 Md(图b)。设飞轮的转动惯量为I0 ,则Md=I0α ,其转向与α相 反。轴的扭矩Td=Md 。
2πn nπ = 轴的角速度为 60 30 ω nπ 1 000 π 角加速度为 α = − = − =− = −10 472.0 rad/s 2 t 30t 30 × 0.01 其转向与n的转向相反。
动荷载·交变应力 第六章 动荷载 交变应力
§6-1 概 -
述
前面各章中研究了在静荷载作用下,构件的强度,刚度和稳 定性问题。本章研究动荷载问题。 动荷载: 动荷载:荷载随时间作急剧的变化,或加载过程中构件内 各质点有较大的加速度。本章研究以下几种动荷载问题: 本章研究以下几种动荷载问题: 本章研究以下几种动荷载问题 Ⅰ. 构件作等加速直线运动或等速转动时的动应力问题; Ⅱ. 构件受冲击荷载作用时的动应力; Ⅲ. 构件在交变应力作用下的疲劳破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
36
第六章 简单的超静定问题
Tb Ta
(b)
解: 1. 铜杆和钢管的横截面上各有一个未知内力矩── 扭矩Ta和Tb(图b), 但只有一个独立的静力平衡方程Ta+Tb= Me,故为一次超静定问题。
2. 位移相容条件为
Ba Bb
37
第六章 简单的超静定问题
Tb Ta
(b)
3. 利用物理关系得补充方程为
25
第六章 简单的超静定问题
(2) 温度应力 也是由于超静定杆系存在“多余”约束,杆件会因温度变化产生的变形
受到限制而产生温度内力及温度应力。铁路上无缝线路的长钢轨在温度变化 时由于不能自由伸缩,其横截面上会产生相当可观的温度应力。
26
第六章 简单的超静定问题
例题6-4 试求两端与刚性支承连接的等截面杆(图a)当温度升高t 时横 截面上的温度应力。杆的横截面面积为A,材料的弹性模量为E,线膨胀系数 为l。
FN 2
FN3
2 c os
2
c
os
l3 E3 A3
e
2E1
l1 A1 cos2
压力
至于各杆横截面上的装配应力只需将装配内力(轴力)除以杆的横截面面 积即得。
由此可见,计算超静定杆系(结构)中的装配力和装配应力的关键,仍在于 根据位移(变形)相容条件并利用物理关系列出补充方程。
21
第六章 简单的超静定问题
Fa FBl 0 EA EA
由此求得
FB
Fa l
所得FB为正值,表示FB的指向与假设的指
向相符,即向上。
12
4. 由平衡方程 FA+FB-F=0
第六章 简单的超静定问题
得
FA=F-Fa/l=Fb/l。
5. 利用相当系统(如图)求得
ΔC
FAa EA
Fb a l EA
Fab lEA
13
第六章 简单的超静定问题
并求C截面的位移。杆的拉压刚度为EA。
解: 1. 有两个未知约束力FA , FB(见图a),但只有一 个独立的平衡方程
FA+FB-F=0 故为一次超静定问题。
11
2. 取固定端B为“多余”约束。相应 的相当系统如图b,它应满足相容条件 ΔBF+ΔBB=0,参见图c,d。
第六章 简单的超静定问题
3. 补充方程为
18
第六章 简单的超静定问题
(a)
(b)
图a中所示杆系(E1A1=E2A2)中杆3的长度较应有长度短了e,装配后各 杆的位置将如图中虚线所示。此时,杆3在结点 A' 处受到装配力FN3作用
(图b),而杆1,2在汇交点A' 处共同承受与杆3相同的装配力FN3作用(图b)。
19
求算FN3需利用位移(变形)相容条件(图a)
I pa
Ga M e
Ga Ipa Gb Ipb
0 a
钢管横截面上任意点的切应力为
b
Tb
I pb
GbM e
Ga Ipa Gb Ipb
a b
39
第六章 简单的超静定问题
b a a a
上图示出了铜杆和钢管横截面上切应力沿半径的变化情况。需要注意的是, 由于铜的切变模量Ga小于钢的切变模量Gb,故铜杆和钢管在 = a处切应力并不 相等,两者之比就等于两种材料的切变模量之比。这一结果与铜杆和钢管由于紧 配合而在交界处切向的切应变应该相同是一致的。
BMe
BM B
注:这里指的是两个扭转角的绝对值相等。
33
第六章 简单的超静定问题
3. 根据位移相容条件利用物理关系得补充方程:
Mea M Bl GI p GI p
由此求得“多余”未知力,亦即约束力偶矩MB为
MB
Mea l
另一约束力偶矩MA可由平衡方程求得为
MA
Me
MB
Me
Mea l
M eb l
9
第六章 简单的超静定问题
(4) “多余”约束的选择虽然是任意的,但应以计算方便为原则。
如上所示连续梁若取B处铰支座为“多余”约束,则求解比较复杂。
y
q
A
C
Bx
l/2
l/2
q
A
Bx
C
l/2
l/2
FB
10
第六章 简单的超静定问题
§6-2 拉压超静定问题
Ⅰ. 拉压超静定基本问题 例题6-1 求图a所示等直杆AB上,下端的约束力,
FAx
FN1
FN3
FN2
FAy
F
(b)
3
C
D
(c)
15
第六章 简单的超静定问题
3. 相当系统应满足的变形相容条件如图d所示为
E
(d) C l1
FN1
l3
l1 2
,Δ
l2
2Δ l1
F
FN1 3 FN2
AC
D
B
l1
l3 l2
F
F
D l2 FN2
4. 根据相容条件,利用物理方程得补充方程:
FN3 2a 1 FN1a ,
eEA l
1
1 2
EA
,
E3 A3
FN3
eE3 A3 l
1
1 E3 A3
2EA
所得结果为正,说明原先假定杆1,2的装配内力为拉力和杆3的装配内力 为压力是正确的。
5. 各杆横截面上的装配应力如下:
1
2
FN1 A
74.53
MPa
(拉应力)
3
FN3 A3
19.51
MPa
(压应力)
Tal Tbl ,即 Ga Ipa Gb Ipb
Ta
Ga Ipa Gb Ipb
Tb
4. 联立求解补充方程和平衡方程得:
Ta
Ga Ipa Ga Ipa Gb Ipb
Me,Tb
Gb Ipb Ga Ipa Gb Ipb
Me
38
5. 铜杆横截面上任意点的切应力为
第六章 简单的超静定问题
ρa
Ta
4
Ⅱ. 解超静定问题的基本思路 例1 解除“多 余”约束
(例如杆3与接点A 的连接)
第六章 简单的超静定问题
超静定结构(statically indeterminstatically determinate system)
5
第六章 简单的超静定问题
例题6-3 两端用刚性块连接在一起的 两根相同的钢杆1, 2(图a),其长度l =200 mm,直径d =10 mm。试求将长度为 200.11 mm,亦即e=0.11 mm的铜杆 3(图b)装配在与杆1和杆2对称的位置后 (图c)各杆横截面上的应力。已知:铜杆3 的横截面为20 mm×30 mm的矩形,钢的 弹性模量E=210 GPa,铜的弹性模量 E3=100 GPa。
在基本静定系上加上原有 荷载及“多余”未知力
并使“多余”约束处满 足变形(位移)相容条件
B
1
2
FN3
A
ΔA'
A'
F
C
ΔA
D
A
A
FN3
相当系统 (equivalent system)
6
第六章 简单的超静定问题
B 1
C 2
FN3
A
ΔA'
A'
ΔA
F
D
由位移相容条
件
,利用物理关系
(位Δ移A或 变Δ形A计 算公式)可得
EA
2 EA
FN2a 2 FN1a
EA
EA
即
FN1=2FN3, FN2=2FN1=4FN3
16
第六章 简单的超静定问题
FN1=2FN3, FN2=2FN1=4FN3
FAx
FN1
FN3
FN2
FAy
F
(b)
5. 将上述二个补充方程与由平衡条件ΣMA=0所得平衡方程
联立求解得
FN1a FN3
1 2
34
第六章 简单的超静定问题 (a)
4. 杆的AC段横截面上的扭矩为
TAC
M A
M eb l
从而有
C
TAC a GI p
M eab lGI p
35
第六章 简单的超静定问题
例题6-6 由半径为a的铜杆和外半径为b的钢管经紧配合而成的组合杆, 受扭转力偶矩Me作用,如图a。试求铜杆和钢管横截面上的扭矩Ta和Tb,并 绘出它们横截面上切应力沿半径的变化情况。
第六章 简单的超静定问题
AA AA e
列出补充方程
FN3l3 E3 A3
FN3l1
2 E1 A1cos2
e
由此可得装配力FN3,亦即杆3中的装配内力为
FN3
l3 E3 A3
e
l1
2 E1 A1cos2
(拉力)
(a)
20
第六章 简单的超静定问题
而杆1和杆2中的装配内力利用图b中右侧的图可知为
FN1
(a)
27
第六章 简单的超静定问题
解: 1. 由平衡方程只能知道杆两端的轴向支约束力数值相等而指向相反, 但不能给出约束力的值,可见这是一次超静定问题。
2. 以刚性支撑B为“多余”约束后的基本静定系由于温度升高产生的 伸长变形lt和“多余”未知力FN产生的缩短变形lF分别如图所示。
28
3. 变形相容条件为 4. 补充方程为 5. 由此得多余未知力
100106 Pa 100 MPa (压应力)
30
第六章 简单的超静定问题
§6-3 扭转超静定问题
例题6-5 两端固定的圆截面等直杆AB,在截面C处受扭转力偶矩Me作用, 如图a。已知杆的扭转刚度为GIp。试求杆两端的约束力偶矩以及C截面的扭转 角。