第2章 双变量回归模型(2)

合集下载

第二章 双变量模型

第二章 双变量模型

概念: 概念:
在给定解释变量Xi条件下被解释变量Yi的期 望轨迹称为总体回归线 总体回归线(population 总体回归线 regression line),或更一般地称为总体回 总体回 归曲线(population regression curve)。 归曲线 相应的函数: E (Y | X i ) = f ( X i ) 称为(双变量)总体回归函数(population 总体回归函数( 总体回归函数 regression function, PRF)。 )
变量间的关系
经济变量之间的关系,大体可分为两类: (1)确定性关系 函数关系:研究的是确定 确定性关系或函数关系 确定性关系 函数关系: 现象非随机变量间的关系。
相关关系: (2)统计依赖 相关关系: 研究的是非确定现 )统计依赖或相关关系 象随机变量间的关系。
回归与相关
相关分析的主要目的在于研究变量之间统计 线性关联的程度,将变量均视为随机变量。 回归分析的主要目的在于研究变量之间统计 关联的形式,目的在于揭示被解释变量如何依赖 解释变量的变化而变化的规律,将解释变量视为 确定性的,而将被解释变量视为随机变量。
二、回归分析的基本概念
回归分析(regression analysis)是研究一个变量关 回归分析 是研究一个变量关 于另一个( 于另一个(些)变量的具体依赖关系的计算方法 和理论。 和理论 其用意:在于通过后者的已知或设定值, 其用意:在于通过后者的已知或设定值,去估计和 预测前者的(总体)均值。 (或)预测前者的(总体)均值 这里:前一个变量被称为被解释变量(Explained 被解释变量( 被解释变量 Variable)或应变量(Dependent Variable), 应变量( ) 应变量 ), 后一个(些)变量被称为解释变量 解释变量 (Explanatory Variable)或自变量 ) 自变量 (Independent Variable)。 )

计量经济学第二章经典线性回归模型

计量经济学第二章经典线性回归模型

Yt = α + βXt + ut 中 α 和 β 的估计值 和
,
使得拟合的直线为“最佳”。
直观上看,也就是要求在X和Y的散点图上
Y
* * Yˆ ˆ ˆX
Yt
* **
Yˆt
et * *
*
*
**
*
**
**
*
Xt
X
图 2.2
残差
拟合的直线 Yˆ ˆ ˆX 称为拟合的回归线.
对于任何数据点 (Xt, Yt), 此直线将Yt 的总值 分成两部分。
β
K
βK
β1 β1
...
βK
βK
Var(β 0 )
Cov(β1 ,β
0
)
Cov(β 0 ,β1 )
Var(β1 )
...
Cov(β
0

K
)
...
Cov(β1

K
)
...
...
...
...
Cov(β
K

0
)
Cov(β K ,β1 )
...
Var(β K )
不难看出,这是 β 的方差-协方差矩阵,它是一 个(K+1)×(K+1)矩阵,其主对角线上元素为各 系数估计量的方差,非主对角线上元素为各系 数估计量的协方差。
ut ~ N (0, 2 ) ,t=1,2,…n
二、最小二乘估计
1. 最小二乘原理
为了便于理解最小二乘法的原理,我们用双
变量线性回归模型作出说明。
对于双变量线性回归模型Y = α+βX + u, 我 们
的任务是,在给定X和Y的一组观测值 (X1 ,

第2章:线性回归的基本思想:双变量模型

第2章:线性回归的基本思想:双变量模型
如: P(Y=460|X=5000)=1/5。
因此,给定收入X的值Xi,可得分数Y的条件均值 ( conditional mean ) 或 条 件 期 望 ( conditional
expectation):
2-17
E(Y|X=Xi)
2.2 总体归函数(PRF):假想一例
描出散点图发现:随着收入的增加,成绩“平均 地说”也在增加,且Y的条件均值均落在一根正斜 率的直线上。这条直线称为总体回归线。
皮尔逊收集过一些家庭群体的1千多名成员的身 高记录。他发现,对于一个父亲高的群体,儿 辈的平均身高低于他们父辈的身高,而对于一 个父亲矮的群体,儿辈的平均身高则高于其父 辈的身高。这样就把高的和矮的儿辈一同“回 归”到所有男子的平均身高。用加尔顿的话说, 这是“回归到中等”。
2-2
2.1 回归的含义
对变量间统计依赖关系的考察主要是通过相关分析 (correlation analysis) 和 回 归 分 析 (regression analysis)来完成的:
正相关
线性相关 不相关 相关系数:
统计依赖关系
2-4
负相关 1 XY 1
正相关 非线性相关 不相关
负相关
有因果关系 无因果关系
回归分析 相关分析
经济变量之间的关系,大体可分为两类: (1)确定性关系或函数关系:研究的是
确定现象非随机变量间的关系。
(2)统计依赖或相关关系:研究的是非确 定现象随机变量间的关系。
2-3
2.1 回归的含义
例如:
函数关系: 圆面积 f ,半径 半径2
统计依赖关系/统计相关关系:
农作物产量 f 气温, 降雨量, 阳光, 施肥量
2-23
2.3 总体回归函数的统计或随机设定

双变量回归模型估计问题

双变量回归模型估计问题
i 1
^
n
这说明 1 是 Yi 的一个线性函数,它是以 k 为
i
^
权的一个加权平均数,从而它是一个线性估计
量。同理, 0 也是一个线性估计量。
^

(2)无偏性
^ E 0 0
^ E 1 1
^
1 就是说,虽然由不同的样本得到的 0 , 1,但平均 可能大于或小于它们的真实值 0, 1 。 起来等于它们的真实值 0 ,
2 i 2 i i
yi Yi Y
2
式(3-13)可表示为
TSS=ESS+RSS
(3-14)
这说明 Yi 的观测值围绕其均值的总变异
可分解为两部分,一部分来自回归线,而另 一部分则来自扰动项ui 。

Y
ui =来自残差
Yi
2
SRF
Yi 0 1 X i

n i 1 i i
3.2 高斯-马尔可夫定理
最小二乘估计量有何优良的统计性质呢? 假定5:同方差性
Var ui X i E ui E ui X i
E ui X i
2


f Y X i
2
Y
2
E Y X i 0 1 X i
X

2
i
se 1

x
i 1
n
n
2
i
var ( 0 )

X
i 1
2 i 2
n xi

2
se 0 i 1n 2 n xi
i 1
X
2 i

双变量回归

双变量回归
第三章
双变量回归模型:估计问题
简单的线性回归模型
Yi = 1 + 2 X i + ui
Yi = 每周家庭支出 X i = 每周家庭收入
对于给定的 xi的水平, 预期的食物支 出将是: E(Yi|X i) = 1 + 2 X i
参数
1和 2是未知常数.
^ ^ ) 的公 产生样本估计量 b1 (或 1)和 b2(或 2 式就是 1 和 2的估计。
b1 和b2的预期值
简单线性回归下的估计量的公式:
b2 =
nXiYi - XiYi nX2 -(Xi)2 i
xiyi = xi2
b1 = Y - b2X
这里
Y = Yi / n 和 X = Xi / n
将 Yi = 1 + 2xi + 替代到 b2 公式中并得:
ui
nxi ui - xi ui b2 = 2 + 2 2 nxi -(xi)

)2
=
yi
i
2
=
^

xi2 yi2
Sx2 Sy2
xiyi)2 xiyi 2 xi2 = = 2 2 xi2yi2 xi yi
Y
当R2 = 0 SRF
哪个是SRF ?Leabharlann X Y当 R2 = 1
SRF
SRF 通过所有点
X
高斯马尔可夫定理
在经典的线性回归模型条件下, 最小二乘 (OLS) 估计量 b1 和 b2 是1和 2 的最优线 性无偏估计量 (BLUE). 这意味着 b1和 b2 在1 和2所有线性无偏估计量中拥有 最小 方差.
错误的模型设定 先前的无偏结果假定使用了正确 的设定形式

第二章 双变量回归分析(计量经济学,南开大学)

第二章  双变量回归分析(计量经济学,南开大学)

ˆ 和 ˆ 1 2

i
为Yi的线性函数
i 2 i
ˆ
2
xY x

(
xi )Yi 2 x i
k Y
i
i
其中k i
xi xi2 1 xi2
ki k i2
x

2
i
0
2 xi

1 xi2 1 xi2

i
1 xi2
6、样本回归函数(SRF) 由于在大多数情况下,我们只知道变量值得一个样本,要用样本信息的基础 上估计PRF。(表) 样本1
X(收入) Y(支出) 80 55 100 65 120 79 140 80 160 102 180 110 200 120 220 135 240 137 260 150
样本2
ˆ ) VAR( 2

x
2 i
2
2 i
x
ˆ: 对于 1
ˆ Y ˆ X 1 ˆ X Yi 1 2 2 n 1 ˆ X ( 1 2 X i ui ) 2 n u 1 i X k i ui n ˆ ) E[( ui X 方差:VAR( k i ui ) 2 ] 1 n
ˆ ) E( ki E (ui ) 2 2 2 ˆ Y ˆ X 1 2 ( 1 2 X i ui ) ( 1 k i u i ) X 1 u i X k i u i ˆ ) E( 1 1
1 1 2 21
估计量(Estimator):一个估计量又称统计量(statistic),是指一个规则、公式 或方法,以用来根据已知的样本所提供的信息去估计总体参数。在应用中,由估 计量算出的数值称为估计(值)(estimate)。 样本回归函数SRF的随机形式为:

第2章习题

第2章习题

3. 美国各航空公司业绩的统计数据公布在《华尔街日报 1999 年年鉴》(The Wall Street Journal Almanac 1999)上。航班正点到达的比率和每 10 万名乘客投诉的次数的数据如下。
航空公司名称
航班正点率(%)
投诉率(次/10 万名乘客)
西南(Southwest)航空公司
D (X,Y)
16. 以 Y 表示实际观测值, Yˆ 表示 OLS 估计回归值,则用 OLS 得到的样本回归直线
Yˆ i=βˆ0 + βˆ1Xi 满足( )
∑ A (Yi-Yˆ i)=0 ∑ B (Yi-Yi)2=0 ∑ C (Yi-Yˆ i)2=0 ∑ D (Yˆ i-Yi)2=0
17. 若一正常商品的市场需求曲线向下倾斜,则可断定( ) A 它具有不变的价格弹性 B 随需求量增加,价格下降 C 随需求量增加,价格上升 D 需求无弹性
6. 在总体回归直线 E(Yˆ )=β0 + β1X 中, β1表示( ) A 当 X 增加一个单位时,Y 增加 β1 个单位 B 当 X 增加一个单位时,Y 平均增加 β1 个单位 C 当 Y 增加一个单位时,X 增加 β1 个单位 D 当 Y 增加一个单位时,X 平均增加 β1 个单位
7. 最小二乘准则是指使(
C Yi=βˆ0 + βˆ1Xi + ei
D Yˆ i=βˆ0 + βˆ1Xi + ei
E E(Yi )=βˆ0 + βˆ1Xi
4. Yˆ 表示 OLS 估计回归值,u 表示随机误差项。如果 Y 与 X 为线性相关关系,则下列哪些
是正确的(

A Yi=β0 + β1Xi
B Yi=β0 + β1Xi+ui

第2章_线性回归的基本思想:双变量模型 (2)

第2章_线性回归的基本思想:双变量模型 (2)

200 35 31 30 28 26 22 20
225 36 34 31 29 27 26 23
250 38 36 33 30 28 25 23
275 40 37 32 30 29 27 25
300 42 39 34 31 30 29 26
325 43 35 31 30 29 33 32
350 375 45 39 33 30 27 30 28 46 40 34 31 28 32 30
2019/2/21
R 2 0.99
2
回归分析可以用来:
1、找到被解释变量(Y)与解释变 量(X)运动的相互关系,并检验 某些假设 如:固定其它条件不变,施肥 量每增加一单位, 收成变化多 少?是增收还是减产? 2、在已知解释变量(X)的基础上, 估计或预测被解释变量(Y)的均 值 如:估计身高170的父亲,其 儿子的平均身高 3、综合分析、指导决策
随机干扰项的性质和意义 Yi B1 B2 X i ui
它是从模型中省略下来,但又集体地影
响着Y的全部变量的替代物。
博 彩 支 出
系统成分/定性:可支配收入(X) 其它变量的影响 如性格、年龄、 性别
B1+B2 X i
非系统/随机成分:
ui
另外一些说不清的随机事件: 如某几天心情好,多买点
slope
Regression coefficients
12
2019/2/21
度量了X每变动一单位,Y(条件) 均值的变化率
2、总体回归函数(PRF)
(Population Regression Function)
条件回归分析
E(Y Xi )=B1+B2 X i
E( Y )
B1

第2章 双变量回归模型(2)

第2章 双变量回归模型(2)
小结:
计量经济学模型有两种类型:一是总体回归模型,另一是 样本回归模型。两类回归模型都具有确定的形式与随机形式两 种: 总体回归模型的确定形式——总体回归函数
EY X B1 B2 X
总体回归模型的随机形式——总体回归模型
很难知道
Y B1 B2 X
样本回归模型的确定形式——样本回归函数
因此,由该样本估计的回归方程为:
ˆ Yi 103.172 0.777X i
即可支配收入每上升一个百分点,则消费支出上升0.777个百 分点;截距-103.172表明没有收入是负支出,这里没有经济意义。 另一样本结果
ˆ Yi 99.978 0.757 X i
综合图示
不同可支配收入水平组家庭消费支出的条件分布图
1、用OLS法得出的样本回归线经过样本均值点,即
Y b1 b2 X
2、残差的均值总为0,即
e e
n
i
0
3、对残差与解释变量的积求和,其值为0,即
e X
i
i
0
三、用EXCEL和Eviews实现最小二乘法
以“美国高年级学生平均智能测试结果”建立词汇分数 与数学分数的关系,用数学分数(X) 来预测词汇分数(Y) 。
3500 每 月 消 费 支 出 (元) 3000 2500 2000 1500 1000 500 0 0 500 1000 1500 2000 2500 3000 3500 4000 每月可支配收入(元) 每月家庭消费支出Y 条件均值Y* 样本1 预测 样本 样本2 预测 样本2
问题:如何检验?
二、普通最小二乘估计量的一些重要性质
一、参数的普通最小二乘估计(OLS)
建立双变量总体回归模型PRF

双变量回归模型分析案例及模型形式的探讨

双变量回归模型分析案例及模型形式的探讨

双变量回归模型分析案例及模型形式的探讨双变量回归模型是一种用于分析两个变量之间关系的统计模型。

它可以用来预测一个变量(因变量)受另一个变量(自变量)的影响程度,或者研究两个变量之间的相关性。

本文将探讨一个双变量回归模型的分析案例,并探讨该模型的形式。

假设我们想要分析一个人的身高和体重之间的关系。

我们收集了一组数据,包括100个人的身高和体重数据。

我们想要建立一个双变量回归模型,来预测一个人的体重受其身高的影响程度。

首先,我们需要将收集到的数据进行整理和描述性统计分析。

我们可以计算身高和体重的平均值、方差和相关系数等指标。

这些指标可以提供有关数据的整体特征和两个变量之间的关系强度的信息。

接下来,我们可以使用散点图来可视化身高和体重之间的关系。

散点图可以显示每个人的身高和体重,并观察它们之间的模式和趋势。

基于散点图的观察,我们可以大致判断两个变量之间是否存在线性关系。

然后,我们可以使用最小二乘法来估计回归方程的系数。

回归方程的形式可以表示为:Y=β0+β1X,其中Y代表体重,X代表身高,β0和β1分别是回归方程的截距和斜率。

最小二乘法的目标是最小化实际观测值和回归方程预测值之间的误差平方和。

在估计回归系数之后,我们可以对回归方程进行模型拟合和评估。

拟合优度指标,如R平方和调整后的R平方,可以用来评估模型的拟合程度。

R平方的取值范围在0到1之间,越接近1说明模型对数据的解释能力越强。

最后,我们可以使用回归模型进行预测和推断。

通过将新的身高值代入回归方程,我们可以预测对应的体重。

此外,我们还可以进行假设检验和置信区间估计,以评估回归系数的显著性和区间估计。

总之,双变量回归模型可以用于分析两个变量之间的关系,并进行预测和推断。

在实际应用中,我们需要注意模型的前提假设、数据的合理性和模型的解释力。

另外,还可以通过添加交互项、多项式项或考虑其他模型形式来扩展双变量回归模型。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归分析:一些基本思想)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归分析:一些基本思想)【圣才出品】

第2章双变量回归分析:一些基本思想2.1 复习笔记考点一:总体回归函数相关概念★★★★1.条件期望函数(CEF)条件期望值E(Y|X i)是关于X i的一个函数,其中X i是X的某个给定值,用符号表示:E(Y|X i)=f(X i)。

该式也被称为条件期望函数(CEF)或总体回归函数(PRF),或简称为总体回归(PR),表明在给定X i下Y的分布的(总体)均值与X i有函数关系。

2.线性总体回归函数假定总体回归函数E(Y|X i)是系数的线性函数,表达为:E(Y|X i)=β1+β2X i。

其中β1和β2为未知但却固定的参数,称为回归系数;β1和β2也分别称为截距和斜率系数。

方程本身则称为线性总体回归函数,或简称线性总体回归。

3.“线性”的含义(1)对变量为线性Y的条件期望值是X i的线性函数。

从几何意义上说,这时回归曲线是一条直线。

(2)对参数为线性Y的条件期望E(Y|X i)是参数β的一个线性函数,X和Y都可以以任何形式存在(二次项、对数等)。

本书中所有的“线性回归”总是指对参数β为线性的一种回归(即参数只以它的一次方出现)。

4.PRF的随机设定(1)随机误差项个别的Y i围绕它的期望值的离差为:u i=Y i-E(Y|X i),其中离差u i是一个不可观测的可正可负的随机变量,称为随机干扰项或随机误差项。

解释方程Y i=E(Y|X i)+u i,给定X i水平,Y i可表示为两个成分之和:E(Y|X i)被称为系统性或确定性成分;u i为随机或非系统性成分。

(2)随机误差项的条件均值方程Y i=E(Y|X i)+u i的两边取期望,得到:E(Y i|X i)=E[E(Y|X i)|X i]+E(u i|X i)=E(Y|X i)+E(u i|X i)因为E(Y i|X i)=E(Y|X i),则E(u i|X i)=0。

5.随机干扰项的意义不将随机误差项清晰地引进模型中的原因:(1)理论的含糊性;(2)数据的欠缺;(3)核心变量与周边变量;(4)人类行为的内在随机性;(5)糟糕的替代变量;(6)节省原则;(7)错误的函数形式。

第二章双变量回归分析基本概念

第二章双变量回归分析基本概念
1-14
第七节 样本回归函数(SRF)
对应(2.3.2)的SRF
Yˆi ˆ1 ˆ2 Xi 其中 Yˆ读为Y-帽,是 E(Y 的Xi估) 计量。
• 注意,一个估计量(estimator),又称(样本)统计量 (statistic),是指一个规则或公式或方法。在一项应用中, 由估计量算出的一个具体的数值,称为估计值 (estimate) 。
1-12
第七节 样本回归函数(SRF)
总体是观测不到的,大多数情况下,对应于一个 解释变量X,只能观测到被解释变量Y的一个值。
• 我们只能得到对应于某些固定X 值的Y 值的一个(有限 个)样本。
1-13
第七节 样本回归函数(SRF)
样本回归函数(sample regression function, SRF)
(2.3.1)
PRF的形式是一个经验问题,线性方程是常
用的形式:
E(Y Xi ) f ( Xi ) 1 2 Xi (2.3.2)
• 其中 1 和 2为未知但却固定的参数,称为回归系 数( regression coefficient)。1 和 2 分别称为截距
和斜率系数。方程(2.3.2)本身则称为线性总体回归 函数或简称线性总体回归。
Yi 1 2 X i ui
(2.5.2)
(2.5.2)为PFR的随机设定形式,与(2.3.2)等价。
1-11
第六节 随机扰动项的意义
为什么要引入随机扰动项?
• 理论的含糊性 • 数据的缺失 • 变量的解释力(核心变量与周边变量) • 人类行为的内在随机性 • 糟糕的替代变量(永久消费与当前消费等) • 节省原则 • 错误的函数形式
• 父母身高、子女身高 • 儿女的身高趋向人口总体平均,普遍回归定律(law of

计量经济学-双变量回归模型估计问题PPT课件

计量经济学-双变量回归模型估计问题PPT课件

01
03
随着大数据和人工智能技术的不断发展,未来的研究 可以结合这些技术,对双变量回归模型进行改进和优
化,提高模型的预测能力和适应性。
04
在实际应用中,需要考虑更多的因素,如时间序列数 据、异方差性、自相关性等问题,需要进一步完善和 改进双变量回归模型。
06 参考文献
参考文献
[1] 李子奈,潘文卿. 计量经济学 (第四版)[M]. 北京:高等教育出版
03
探讨模型结果的经济学意义和实际应用价 值。
04
提出可能的改进方向和未来研究展望。
05 结论与展望
研究结论
双变量回归模型在计量经济学中具有 重要应用,能够有效地分析两个变量 之间的线性关系。
在实际应用中,需要考虑变量的选择、 数据的收集和处理、模型的适用性和 检验等问题,以确保模型的准确性和 可靠性。
变量,另一个变量是自变量。
假设条件
双变量回归模型假设因变量和自 变量之间存在稳定的线性关系, 且误差项是独立的、同分布的。
应用场景
双变量回归模型适用于分析两个 变量之间的因果关系,例如分析 收入与教育程度之间的关系、消
费与收入之间的关系等。
02 双变量回归模型的理论基 础
线性回归模型的定义
01
线性回归模型是一种预测模型, 用于描述因变量与一个或多个自 变量之间的线性关系。
计量经济学的重要性
01
02
03
实证分析
计量经济学提供了一种实 证分析的方法,通过数据 和模型来检验经济理论。
政策制定
计量经济学可以帮助政策 制定者评估政策效果,制 定更加科学合理的政策。
预测
计量经济学可以通过建立 预测模型,对未来经济趋 势进行预测。

《双变量回归模型》课件

《双变量回归模型》课件
研究意义
通过对双变量回归模型的深入研究,可以更好地理解数据之间的关系和规律,为相关领域的决策提供 科学依据。同时,本研究也有助于推动双变量回归模型的发展和完善,为未来的研究提供更多的思路 和方法。
02
双变量回归模型的理论 基础
线性回归模型的定义
线性回归模型是一种预测模型,用于描述因变量与一个或多个自变量之间的线性关系。在双变量回归模型中,因变量与两个 自变量之间存在线性关系。
在许多领域,如经济学、金融学、生 物统计学等,双变量回归模型都发挥 着重要的作用。通过对两个变量之间 关系的建模和分析,可以更好地理解 数据背后的规律和机制。
研究目的和意义
研究目的
双变量回归模型虽然被广泛应用,但仍然存在一些问题和挑战。本研究旨在深入探讨双变量回归模型 的原理、方法和应用,以期为相关领域的
数据预处理
在建立双变量回归模型之前,需要对数据进 行清洗和整理,包括缺失值处理、异常值剔
除、数据类型转换等。
模型的建立和检验
01
模型选择
根据研究目的和数据特征,选择 线性回归模型作为本案例的模型 。
模型建立
02
03
模型检验
利用SPSS软件,通过输入自变量 和因变量,设置回归选项,运行 模型。
对回归结果进行统计检验,包括 拟合优度检验、显著性检验等, 以确保模型的可靠性和有效性。
双变量线性回归模型的假设
线性关系假设
自变量与因变量之间存在线性关系,即因变量的 变化可以用自变量的线性组合来解释。
无异方差性假设
误差项的方差应该相等且恒定,即误差项的方差 不随自变量或因变量的值的变化而变化。
ABCD
无多重共线性假设
自变量之间不存在多重共线性,即自变量之间没 有高度的相关性,各自独立地影响因变量。

线性回归分析——双变量模型

线性回归分析——双变量模型

线性回归分析双变量模型回归分析的含义回归分析是研究一个叫做因变量的变量对另一个或多个叫做解释变量的变量的统计依赖关系。

其用意在于,通过解释变量的已知值或给定值去估计或预测因变量的总体均值。

双变量回归分析:只考虑一个解释变量。

(一元回归分析,简单回归分析)复回归分析:考虑两个以上解释变量。

(多元回归分析)统计关系与确定性关系统计(依赖)关系:非确定性的关系。

在统计依赖关系中,主要处理的是随机变量,也就是有着概率分布的变量。

特别地,因变量的内在随机性是注定存在的。

例如:农作物收成对气温、降雨、阳光以及施肥的依赖关系便是统计性质的。

这些解释变量固然重要,但是并不能使我们准确地预测农作物的收成。

确定性关系:函数关系。

例如物理学中的各种定律。

)/(221r m m k F回归与因果关系❑回归分析研究因变量对于解释变量的统计依赖关系,但并不一定意味着因果关系。

一个统计关系式,不管多强和多么具有启发性,都永远不能确立因果联系。

❑因果关系的确立必须来自于统计关系以外,最终来自于这种或那种理论(先验的或是理论上的)。

回归分析与相关分析(一)❑相关分析:用相关系数测度变量之间的线性关联程度。

例如:测度统计学成绩和高等数学成绩的的相关系数。

假设测得0.90,说明两者存在较强的线性相关。

❑回归分析:感兴趣的是,如何从给定的解释变量去预测因变量的平均取值。

例如:给定一个学生的高数成绩为80分,他的统计学成绩平均来说应该是多少分。

回归分析与相关分析(二)❑在相关分析中,对称地对待任何两个变量,没有因变量和解释变量的区分。

而且,两个变量都被当作随机变量来处理。

❑在回归分析中,因变量和解释变量的处理方法是不对称的。

因变量被当作是统计的,随机的。

而解释变量被当作是(在重复抽样中)取固定的数值,是非随机的。

(把解释变量假定为非随机,主要是为了研究的便利,在高级计量经济学中,一般不需要这个假定。

)双变量回归模型(一元线性回归模型)双变量回归模型(最简单的回归模型)模型特点因变量(Y)仅依赖于唯一的一个解释变量(X)。

双变量回归模型基本概念PPT课件

双变量回归模型基本概念PPT课件
33
第33页/共39页
34
该样本的散点图(scatter diagram):
每月消费支出Y(元)
3500 3000 2500 2000 1500 1000
500 0 0
1000 2000 3000 4000 5000 6000 每月可支配收入X(元)
系列1
样本散点图近似于一条直线,画一条直线以尽好地拟合该 散点图。由于样本取自总体,可以认为该线近似地代表总 体回归线,该线称为样本回归线(SRF)。
2)变量观测值的观测误差的影响;
3)模型关系的设定误差的影响;
4)其它随机因素的影响。
产生并设计随机误差项的主要原因:
1)理论的模糊性;
2)数据的欠缺;
3)核心变量和周边变量;
4)人类行为的内在随机性;
5)糟糕的替代变量; 第28页/共39页
28
样本回归函数
总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一个样本。 问题:能从一次抽样中获得总体的近似的信息吗?如果可以,如何从抽样中获得总体的近似信息?
(2)对回归方程、参数估计值进行显著性检验;
5
第5页/共39页
几个例子
• 1. Reconsider Galton’s law of universal regression.
• In the modern view our concern is finding out
how the average height of sons changes given
• 函数形式:
可以是线性或非线性的。 引例中,将消费支出看成是其可支配收入的线性函数时:
21
第21页/共39页
“线性”的两种含义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-973 1314090 1822500 947508 -929 975870 1102500 863784 -445 334050 562500 198381 -412 185580 202500 170074 -159 23910 22500 25408 28 4140 22500 762 402 180720 202500 161283 511 382950 562500 260712 1018 1068480 1102500 1035510 963 1299510 1822500 926599 5769300 7425000 4590020
可支配收入与消费支出的样本图
消费支出Y 3000 2500 2000 1500 1000 500 0 0
ˆ Yi 103.172 0.777 X i
b2
x y x
i 2 i
i
5769300 0.777 7425000
可支配收入X 1000 2000 3000 4000
b1 Y b2 X 1567 0.777 2150 103.172
3500 每 月 消 费 支 出 (元) 3000 2500 2000 1500 1000 500 0 0 500 1000 1500 2000 2500 3000 3500 4000 每月可支配收入(元) 每月家庭消费支出Y 条件均值Y* 样本1 预测 样本 样本2 预测 样本2
问题:如何检验?
二、普通最小二乘估计量的一些重要性质
选择的直线处于样本数据的中心位置最合理。怎样用数学 语言描述“处于样本数据的中心位置”? 普通最小二乘法(Ordinary least squares, OLS)给出的判 断标准是: 选择参数b1,b2,使得残差平方和最小。
ˆ Q Yi Yi
i 1 n

Y b b X
ˆ Yi 380.4791.6418X i
说明:男生的数学分数每增加1 分,平均而言,其词汇将增加1.64 分,-380.479没有什么实际意义。
Coefficients 准误差 t Stat P-value Lower 95%Upper 95% 标 下限 95.0% 限 95.0% 上 Intercept -380.479 63.32969 -6.00791 4.78E-06 -511.817 -249.141 -511.817 -249.141 男生 1.641791 0.126648 12.96341 8.9E-12 1.379139 1.904443 1.379139 1.904443
条件均值Y*
样本
E(Y | X i ) B1 B2 X i
或都说使bi (i=0,1)
尽可能接近Bi (i=0,1)。
1000 500 0 0 500 1000 1500 2000 2500 3000
PRF
收入X 3500 4000
§2.2 一元线性回归模型的参数估计
一、参数的普通最小二乘估计(OLS)
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
小结:
计量经济学模型有两种类型:一是总体回归模型,另一是 样本回归模型。两类回归模型都具有确定的形式与随机形式两 种: 总体回归模型的确定形式——总体回归函数
EY X B1 B2 X
总体回归模型的随机形式——总体回归模型
很难知道
Y B1 B2 X
样本回归模型的确定形式——样本回归函数
一、参数的普通最小二乘估计(OLS)
建立双变量总体回归模型PRF
P105
Yi B1 B2 X i ui
用下面的样本回归模型SRF来估计它。
Yi b1 b2 X i ei
估计PRF的要求是:
残差
求B1,B2的估计量b1,b2,使得残差ei尽可能小。
ˆ ei 实际的Yi 估计的Yi ˆ Yi Yi Yi b1 b2 X i
引例分析:利用公式计算回归参数
在上述家庭可支配收入-消费支出例中,对于所抽出的一 组样本数,参数估计的计算可通过下面的表2.2.1进行。
表 2.2.1 参数估计的计算表
xi yi b2 xi2 b1 Y b2 X
Xi
Yi
xi
yi
xi y i
xi2
y i2
X i2
ˆ Y b1 b 2 X
样本回归模型的随机形式——样本回归模型
Y b1 b2 X e
Y表示“真实 其中带“^”者表示“估计值”。 值”。
用来估计总体 回归模型
表示“误差”。
▼回归分析的主要任务:
根据样本回归函数SRF,估计总体回归函数PRF。
ˆ 即,根据 Yi Yi ei b1 b2 X i ei
因此,由该样本估计的回归方程为:
ˆ Yi 103.172 0.777X i
即可支配收入每上升一个百分点,则消费支出上升0.777个百 分点;截距-103.172表明没有收入是负支出,这里没有经济意义。 另一样本结果
ˆ Yi 99.978 0.757 X i
综合图示
不同可支配收入水平组家庭消费支出的条件分布图
二、最小二乘估计量的性质
三、利用EXCEL和Eviews回归步骤
四、实例
单方程计量经济学模型分为两大类
线性模型中,变量之间的关系呈线性关系
非线性模型中,变量之间的关系呈非线性关系
直线上各点斜率相同
2 需 1.5 求 1 量 0.5 0 0 0.5 1 价格 1.5 2
15 需 10 求 量 5 0 0 0.5 价格 1
1、用“EXCEL实现最小二乘法”步骤
①调出EXCEL中“美国高年级学生平均智能测试”工作表
②利用菜单中“工具→数据分析→回归” 出现如下对话框
③把 “男生词汇成绩送入Y值输入区域”,把 “男生数学成绩 送入X值输入区域”,点中“输出区域”,选择一空白格,选择 线性拟合图选项,出现如下对话框。
男生数学分数(X) 与词汇分数(Y)的回归方程为:
上式表明:残差是Y的真实值与估计值之差。
步骤
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要求样本回 可支配收入与消费支出的样本图 归函数尽可能好地拟合这组值.
消费支出Y 3000
ˆ Yi b1 b2 X i
2000 1000 0 0 1000 2000 3000 可支配收入X 4000
2 n i 1 i 1 2 i
2
问题转化为:在给定的样本观测值下,b1=?,b2=? 时,Q最小?
推导:
Q b 2 (Yi b1 b2 X i ) (1) 0 1 Q 2 (Y b b X ) ( X ) 0 i 1 2 i i b2
估计
样本回归模型 总体回归模型
ˆ Yi b1 b2 X i
Yi E(Y | X i ) ui B1 B2 X i ui
消费Y
▼这就要求:
散点图
3500 3000 2500 2000 1500
设计一”方法”构
造SRF,以使SRF尽可 能”接近”PRF。
SRF
每月家庭பைடு நூலகம்费支出Y
( X i X )(Yi Y ) X iYi nXY b2 ( X i X )2 X i2 nX 2 得b1 , b2的求解公式为: b1 Y b2 X
变形公式
在计量经济学中,往往以小写字母表示对均值的离差。 记
1 2 x (X i X ) X n X i
1、用OLS法得出的样本回归线经过样本均值点,即
Y b1 b2 X
2、残差的均值总为0,即
e e
n
i
0
3、对残差与解释变量的积求和,其值为0,即
e X
i
i
0
三、用EXCEL和Eviews实现最小二乘法
以“美国高年级学生平均智能测试结果”建立词汇分数 与数学分数的关系,用数学分数(X) 来预测词汇分数(Y) 。
Yi 2
1 800 594 -1350 2 1100 638 -1050 3 1400 1122 -750 4 1700 1155 -450 5 2000 1408 -150 6 2300 1595 150 7 2600 1969 450 8 2900 2078 750 9 3200 2585 1050 10 3500 2530 1350 求和 21500 15674 平均 2150 1567
曲线上各点斜率不同
(1)解释变量线性:
(2)参数线性:
EY B1 B X i
2 2
1 E Y B1 B2 Xi
EY B1 B2 X
2 i
非线性
非线性
双变量线性回归模型的特征
只有一个解释变量
Yi B1 B2 X i ui
i=1,2,…,n
Yi为被解释变量,Xi为解释变量,B1与B2为待估参数,ui为 随机干扰项 估计方法有多种,其中最广泛使用的是普通最小二乘法 (ordinary least squares, OLS)。 为保证参数估计量具有良好的性质,通常对模型提出若干 基本假设。(即普通最小二乘法是有条件的,在下一章讲解)
④单击确定,出现如下结果:
SUMMARY OUTPUT 回归统计 Multiple R0.940341 R Square 0.884241 Adjusted R0.878979 Square 标准误差 4.146637 观测值 24 方差分析 df 回归分析 残差 总计 SS MS 1 2889.552 2889.552 22 378.2811 17.1946 23 3267.833 F Significance F 168.05 8.9E-12
相关文档
最新文档