复变函数论 第五章 解析函数的洛朗展式与孤立奇点

合集下载

复变函数论钟玉泉第五章

复变函数论钟玉泉第五章
12
证 (1) =>(2). 由(1)有
f z c0 c1z a c2z a2 0 z a R
则(因2)此=>lzi(m03,a).fz因l0zim,ca 0zf:z0|
b za
| ,有 |
f
(z)
b
|
,
于是,有 | f (z) || b | ,即f (z)在a的去心邻域内有界。
(1)f(z)在 z 的主要部分为零;
(2) lim f (z) b( ); z
(3)f(z)在 z 的某去心邻域N-{∞}内有界.
22
定理5.4/(对应于定理5.4)f(z)的孤立奇点z =∞为m 级极点的充要条件是下列三条中的任何一条成立:
(1) f(z)在 z=∞的主要部分为
b1z b2 z 2 bm z m (bm 0);
f (z) ei z(| z | 1), 其中α为一实常数.
14
4. 极点的性质
定理5.4 如果f(z)以a为孤立奇点,则下列三条是等价
的。因此,它们中的任何一条都是m阶极点的特征。
(1)
f(z)在a点的主要部分为
cm (z a)m
(2)f(z)在点a的某去心邻域内能表示成
fzc(z1a) (c(zm(az))0m);
(3)
=>(1).
因主要部分的系数
cn
1
2i
f
a n1
d
其中 : a , 可任意小,故
cn
1
2
f
a n1
d
1
2
M
n1
2
M n
cn 0 n 1,2,
13
3. 施瓦茨(Schwarz)引理

《复变函数》第5章

《复变函数》第5章

例: 对 f (z) z3 1.
f (1) 0, f (1) 3z 2 z 1 3 0
z 1 是 f (z)的一级零点.
2020/4/6
《复变函数》(第四版) 第五章
第7页
定理: z0 是 f (z)的m级极点
证:
f
(z)
(z
1 z0
)m
g
(z)
z0

f
1 的m级零点. (z)
f
复 变 函 数(第四版)
第五章 留 数
§1 孤立奇点 §2 留数 §3 留数在定积分计算上的应用 *§4 对数留数与辐角原理
2020/4/6
《复变函数》(第四版) 第五章
第1页
§1 孤立奇点
1. 定 义
如果函数 f (z)在 zo处不解析, 但在 zo的某 一去心邻域 0 < | z-zo |<δ处处解析, 则称zo 为函数 f (z)的孤立奇点. 例:z 0 为 f (z) sin 1 的孤立奇点 .
5
2020/4/6
《复变函数》(第四版) 第五章
第4页

z = 0 分别是 本性奇点.
sin z
z
,
sin z4
z
,
sin
1 z
的可去、3极、
(1) zo为 f(z)的可去奇点
相当于实函可去间断点
lim f (z)存在且有限
zz0
f (z)在zo点的某去心邻域内有界.
(2) zo为 f (z)的极点
例:
z
0

ez 1 z2
的一级极点.
z
1

(z 1)3 sin( z 1)
的二级零点.

复变函数论第5章第2节

复变函数论第5章第2节
f ( z) z ,

并且只有当f ( z) eia z 时等号才成立.
4 极点
1) 定义 如果洛朗级数中只有有限多个 z z0 的
m 负幂项, 其中关于 ( z z0 ) 的最高幂为 ( z z0 ) ,
1

f ( z ) cm ( z z0 )m c2 ( z z0 )2 c1 ( z z0 )1
z a
z a
由函数极限的性质, f ( z)在点a的某去心邻域内有界;
"(3) (1)" 设 f ( z) M , z K {a} 考察f ( z)在点a的主要部分 c n ( z a) n n 1 1 f ( ) c n d , (n 1, 2,...) ( n ) 1 2 i ( a) 而为K内的圆周 a , 可以充分小, 于是由 f ( ) 1 1 M c n d 2 ( n ) 1 ( n ) 1 2 a 2
2)极点的判定方法
(1) 由定义判别
f ( z ) 的洛朗展开式中含有 z z0 的负幂项为有 限项.
(2) 由定义的等价形式判别
g( z ) 在点 z0 的某去心邻域内 f ( z ) ( z z0 ) m
其中 g ( z ) 在 z0 的邻域内解析, 且 g ( z0 ) 0. (3) 利用极限 lim f ( z ) 判断(但不知道阶数) .
3) 如果f ( z )在点a主要部分为无穷多项,则称a为
f ( z ) 的本质奇点.
sin z z2 z4 z 2n n , 如: 1 (1) z 3! 5! (2n 1)!
0 点. z
2 n 2 sin z 1 1 z 2 z n ( 1) , 3 2 z z 3! 5! (2n 1)!

《复变函数》第五章习题全解钟玉泉版

《复变函数》第五章习题全解钟玉泉版

第五章 解析函数的洛朗展开与孤立奇点(一)1.解:(1):1)10<<z ,∑∞=---=-⋅+=-+0222221111)1(1n n z z z z z z z z z2)111<⇒+∞<<z z , ∑∞=++=-⋅+=-+032321211111)1(1n n z z zz z z z z (2)222121121()1212112f z z z z z z -=-=--+-+ =20012()(1)22n n n n n z z ∞∞+==---∑∑ (3)()f z =2(1)z e z z +231......!nz z z z n z z+++++=+ =2151 (26)z z z +-- 2.解:(1)2222])2)()1([)(41)1(1n n n n i i z i z z ∑∞=----=+ )20()2))(1()1()(412<-<-+---=∑∞=i z i i z n i z nn n n(2))0(1)!2(1!102212+∞<<⋅+==∑∑∞=∞-=+-z zn z n e z n n n n z(3) 令1zξ=,则21(1...)112ze eeξξξξξ-+++--==234542(1...)(1...)23!4!5!2ξξξξξξξ=-+-+--+345(1...)(1...)(1) (2)3!4!ξξξ---=23451 (2)385114ξξξξξ--+--=234511111141...8235z z z z z --+--+3.证明:根据洛朗定理,可设)0()]1(sin[0+∞<<=+∑∞=z z c z z t n nn其中 ⎰=+±=+=11),1,0()]1(sin[21ξξξξξπ n d t i c n n这里 )20(,1πθξξθ≤≤==i e于是 θθπθππθθπθθθd ed ie e e e t i c in i n i i i n ⎰⎰+=+=+-2020)1()cos 2sin(21)](sin[21 4.解:(1)因为函数为有理函数,且分子,分母无公共零点,因此分母的零点就是函数的极点,令分母0)4(2=+z z ,得0=z 以及i 2±,分别是分母的一级和二级零点,从而分别是函数的一级和二级极点,又因0)4(12∞→+-z z z z ,所以∞=z 为可去奇点.(2)由定理5.4(3)知函数z z cos sin +的m 级零点,就是zz cos sin 1+的m 级极点,且分母零点的极限点必为函数的极限点,因为)4sin(2cos sin π+=+z z z则令0cos sin =+z z ,得),1,0(4 ±=-=k k z ππ且又因),1,0(0)1(2cos 2])4sin([4±=≠-=='+-=k k z z k k z ππππ故),1,0(4±=-=k k z ππ各为分母z z cos sin +的一级零点即为zz cos sin 1+的一级极点.又因∞→-=4ππk z ,即∞=z 是极点的极限点,即为函数的非孤立奇点.(3)因i k z π)12(+=时,分母01=+z e ,且 01)1()12(≠-='++=ik z z e π所以i k z π)12(+=是分母的一级零点,而此时分子0)1()12(≠-+=ik z z e π故i k z π)12(+=各为函数的一级极点,因分母,分子在平面解析,所以除此之外在平面上无其他奇点. (4)令分母为0,解得)i 1(22z -±=,即为所给函数的极点. 且因,0])i z [(,0])i z [()i 1(22z 32)i 1(22z 32≠'+='+-±=-±=故)i 1(22z -±=均为所给函数的三级极点. 又因0z )1z (132∞→+,所以∞=z 为可去奇点. (5)因为zzz 222cos sin t an =,分子分母均在z 平面解析且无公共零点,所以分母的零点即为z 2tan 的极点,令0cos 2=z ,解得 0)(cos ,222='+=+=ππππk z z k z),1,0(0)(cos 22 ±=≠''+=k z k z ππ所以2ππ+=k z 是z 2cos 的二级零点,从而是z 2tan 的二级极点.(6) ++-=+2)(!2111cosi z i z 所以i z -=为其本性奇点,又因 11coslim =+∞→iz z ,所以∞=z 为可去奇点. (7)因21)2(22sin lim cos 1lim 2202==-→∞→z z z z z z 故0=z 为可去奇点, ∞=z 为本性奇点.(8)因为当且仅当i k z π2=时,分母0)1(,012≠'-=-=i k z z z e e π,所以i k z π2=为分母的一级零点,而分子是常数1,因此i k z π2=为其一级奇点. 5.解:先判断各函数的奇点类型. (1) 0=z ,∞=z 为奇点.(2) 0=z ,∞=z 为奇点.(3) 0=z 不是孤立奇点,是极点的极限点.(4)分母的零点是πk z =,这是ctgz 的极点,且01)(sin ≠-='πk z所以πk z =是分母的一级零点,因此是ctgz 的一极点,而∞=z 不是孤立奇点,是极点的极限点.由三个函数均为单值函数,由洛朗定理,在孤立奇点的去心邻域内均能展开成洛朗级数,在非孤立奇点的邻域内则不能.6.解:(1)当m n ≠时,a 为()()f z g z +的max(,)m n 级极点,为,f g 的m n +级极点,为fg的m n -()m n >级极点与n m -()m n <级零点 (2)当m n =时,a 为f g +的至多m 级极点(此时各种情况均有可能产生) 例:11,()()()kk m mf zg z k N z a z a +-=+=+∈-- a 为,f g 的m n +级极点,为fg的可去奇点. 7.证明:因)(z f 不恒等于零,如果a z =为)(z f 的零点,a z =只能为)(z f 的孤立奇点.(反证)如果a z =不是)(/)(),()(),()(z f z z f z z f z ϕϕϕ⋅±的本性奇点,则由上题的结论知,)(z ϕ就以a z =为可去奇点或极点,矛盾.8.解:(1) 1()(1)zzz e f z z e +-=-,奇点为0z =为一级极点, 2(1,2,...)z k i k π==±±为一级极点,z =∞为非孤立奇点(2) 0z =为函数的本性奇点, z =∞为函数的本性奇点. (3) z =∞是可去奇点, 0z =为本性奇点.(4) 0z =,z =∞为本性奇点. (5) 1=z 为本性奇点, i k z π2=为一级极点, z =∞为非孤立奇点.9.证明:因)(z f 在z 平面上解析,则)(z f 必为整函数,而整函数只以z =∞点为孤立奇点,而)(z f 在z =∞点解析,故z =∞点只能是)(z f 的可去奇点,由定理5.10知, )(z f 为常数.10.证明:(反证)设)(z f w =为整函数且非常数,若值全含于一圆之外,即存在0,00>εw ,使得对任何z ,恒有00)(ε>-w z f ,则有非常数整函数)(1)(w z f z g -=,所以在z 平面上任何点z ,分母不等于0,从而)(z g 在z 平面上解析,即为整函数.又因)(z f 非常数,所以)(z g 非常数,其值全含于一圆1)(ε<z g 之内,与刘维尔定理矛盾.11.证明:由题意,)(z f 在0z 的去心邻域内的洛朗展开式可设为∑∞=--≠-+-=01001)0()()(n n n c z z c z z c z f令01)()(z z c z f z g --=-,因01),(z z cz f --在r z ≤上除去0z 外解析,所以)(z g 在r z ≤上除去0z 外解析.又可知∑∞=-=00)()(n n n z z c z g )(z f 在0z 的邻域内解析,故)(z g 在r z ≤上解析.函数)(z g 在r z <内的泰勒展开式为∑∑∞=∞=+-+=0111)(n n n n nn z z c z a z g而直接法又给出∑∑∞=∞===00)(!)0()(n n n n nn z b z n g z g从而][0110101001z c z b z c z b z a a n n nn n n-++-+--=因为∑∞==0)(n nn z b z g 在r z ≤上解析,所以当0z z =时,级数∑∞=00n nn z b 是收敛的,一般项)(00∞→→n z b nn ,故即知01limz a a n nn =+∞→.(二)1.解:(1)不能(2)能,指定点不是所给函数的支点 (3)不能 (4)不能(5)能,指定点不是所给函数的支点2.解:不正确。

复变函数第五章

复变函数第五章

第五章小结一、函数()f z 孤立奇点0z 类型的确定1. 求0lim ()z z f z → 2. 求函数()f z 在0z 的去心解析邻域内的洛朗展式,观察洛朗级数的负幂项的项数 极点判断的特殊方法:确定相关函数零点的级数,将函数()f z 改写为0()()mg z z z -的形式,其中()g z 在点0z 解析且不为零二、求0Re [(),]s f z z 的方法1. 确定孤立奇点的类型,选择相应方法求解(1). 若0z 为()f z 的可去奇点,则0Re [(),]0s f z z =(2). 若0z 为()f z 的极点,则利用规则 010011Re [(),]lim [()()](1)!m m m z z d s f z z z z f z m d z--→=-- 说明:对一些特殊函数在孤立奇点处留数的计算,有时将m 取得比极点0z 的实际级数高时,利用上述规则反而简单2. 当极点的类型难以确定,直接求()f z 在0z 的去心解析邻域内的洛朗展式,观察10()z z --的系数特殊结论:若()f z 在孤立奇点0的去心解析邻域内为偶函数,则Re [(),0]0s f z =三、留数的应用1. 求封闭曲线积分()C f z dz ⎰:转化为()f z 在C 内奇点处的留数计算2. 求解三类定积分:确定定积分类型,选择对应方法求解第一种类型的定积分:难点在于利用i z e θ=将原定积分中关于θ的函数转化为关于z 的函数(较繁琐,容易出错,仔细)第二、三种类型的定积分:转化为求一些复变函数在其上半平面内奇点处留数的计算(这些复变函数的获得:将原定积分中的被积函数中的变量以z 代换)强调: ()cos()Re{()}aix R x ax dx R x e dx +∞+∞-∞-∞=⎰⎰;()sin()Im{()}aix R x ax dx R x e dx +∞+∞-∞-∞=⎰⎰如有侵权请联系告知删除,感谢你们的配合!。

五章解析函数的洛朗展式与孤立奇点

五章解析函数的洛朗展式与孤立奇点

0 z 1 1

f
z
z
1
2
z
1
2 1
1
1n z 2n
z 2 n0
5.2 解析函数的孤立奇点
• 1孤立奇点的分类 可去奇点、极点、本性奇点。
• 定义5.3 设 a 是 f z 的孤立奇点,
• ( 1 ) 若 主 要 部 分 为 0 , 则 称 f z 是 的可去奇点 f(z)。
• 定义5.4 设函数 f z 在无穷远点
(去心)邻域
N : r z
内解析,则称 为 f z 的一个孤
立奇点。
• 作变换 1 于是函数
z
f
1
f z
在去心邻域 K 0: 0 1
内解析。即 0 是 r
的一孤立奇点,
依此可规定 的类型。
• 定义5.5 若 0 为 的可去
1 1 z 1

z
2
f
z
1 2
1 1
z
1 z
1
1
1
2
z
1 z n 1 1
2 n0 2 n z n1 z n1
zn
1
2 z n1
n
n0
n1
• (3)在圆环 2 z 上
1 1
2 1

z
z
fz1 z源自1 121 z
1 1
1
z
z
1 2n 1 1
z n0 z n z n0 z n
z a R 0 R
• 对于主要部分 可作代换
, cn z an n1
z
1
a
• 成为一幂级数 C1 C2 2
• 它的收敛区域为 1

复变函数第四版余家荣答案

复变函数第四版余家荣答案

复变函数第四版余家荣答案【篇一:1第一章复数与复变函数】京1第一章复数与复变函数1 复数及其代数运算1.复数的概念①在解方程时,有时会遇到负数开方的问题,但在实数范围内负数是不能开平方的。

为此,需要扩大数系。

我们给出如下的代数形式的复数定义:复数的代数定义:把有序实数对(x,y)作代数组合所确定的形如x?iy的数称为(代数形式的)复数,记为z?x?iy,2其中,i满足i??1。

我们称i为虚单位;实数x和y分别称为复数z 的实部和虚部,并记为x?rez,y?imz。

特别地,当imz?0时,z?x?i0?rez?x是实数;当rez?0时且imz?0时,z?iimz?iy称为纯虚数;虚部不为零的复数称为虚数(即不为实数的复数称为虚数);z?0当且仅当rez?0且imz?0,即复数0?0?i?0。

z1?z2当且仅当rez1?rez2且imz1?imz2。

2.复数的代数运算2.1 四则运算设z1?x1?iy1,z2?x2?iy2为任意两个复数,它们的四则运算定义为: 加法:z1?z2?(x1?x2)?i(y1?y2) 减法:z1?z2?(x1?x2)?i(y1?y2) 乘法:z1z2?(x1x2?y1y2)?i(x1y2?x2y1) 除法:z1x1x2?y1y2y1x2?x1y2(z2?0) ??i2222z2x2?y2x2?y22【注】:(1).可见,复数的四则运算,可以按照多项式的四则运算进行,只要注意将i换成?1。

(2).关于除法的具体操作可以按两种方法来进行:①.先看成分式的形式,然后分子分母同乘以一个与分母的实部相等而虚部只相差一个正负号的复数(在后面将会看到,这被定义为共轭复数),再进行简化;②.用复数z1?x1?iy1除以非零复数z2?x2?iy2,就是要求出这样一个复数z?x?iy,使得z1?z2?z。

按乘法的定义,为求出z需要解方程组?x2x?y2y?x1??x2y?xy2?y12.2 共轭复数复数x?iy和x?iy互称为对方的共轭复数,如果记z?x?iy,则用记其共轭复数,即?x?iy?x?iy。

复变函数 课件

复变函数 课件
由此可 ,在 知圆环域内解析 展的 开函 成数 级数
就是 Laure级 nt数 .
由唯一性,将函数展开成Laurent级数,可 用间接法。在大都数情况,均采用这一简便的方 法求函数在指定圆环域内的Laurent展开式,只有 在个别情况下,才直接采用公式(5')求Laurent系 数的方法。
1.3 洛朗级数与泰勒级数的关系
n
R2
R1
R1
z0
R2
z0
R1 R2 有公共收敛域
R1 R2 无公共收敛域
定理5.1

(1)当 R 1R 2时 , 称cn(zz0)n处发 处 。 散
n
(2)在圆环域的边界z - z0=R1, z - z0=R2上,

cn(zz0)n可 能 有 点收 些敛 , 有 些 。点
n 0
负幂项部分:

c n (z z 0 ) n c 1 (z z 0 ) 1 c n (z z 0 ) n (3 )
n 1
级数(2)是一幂级数,设收敛半径为R2 , 则级数在 z - z0=R2 内收敛,且和为s(z)+; 在z - z0=R 2外发散。
c 1 (z z0) cn (z z0)n
本节将讨论在以z 0为中心的圆环域内解析 的函数的级数表示法。它是后面将要研究的解 析函数在孤立奇点邻域内的性质以及定义留数 和计算留数的基础。
1.1 双边幂级数 ---含有正负幂项的级数
定义 形如

cn(zz0)n cn(zz0)n c 1(zz0) 1
相 同, 但cn

f (n)(z0) ,f (z)在c内不是处处 n!
解 析 的.

复变函数第五章1留数

复变函数第五章1留数

sinz lz i0mz4
lz i0m((szi4)zn)' '
cosz lz im0 3z3
z 1为极点。
2020/6/16
11
5.1.2 零点与极点的关系
定义5.1:设f(z)在z0的邻域内解f析 (z0), 0若 ,
则称 z0为解析函 f(z)数 的零点 m阶零点: 若不恒等于零的解析数函 f (z)能表示成
z a为(z)(z)的 mn阶零 . 点
2)(z)(z)(za)m n 1 1((z z))
当 mn时z, a为 ((zz))的 (mn)阶零点, 当 202m 0/6/1 6 n时 当mz, na时 为 , z((zz))的 a为 (n ((m zz)))阶 的可 极去 点 . 奇 , 点 16
7!
z 0为可去奇点 .

(sizn z) 0,(sizn z)' 0,
z0
z0
(sizn z)' 0,(sizn z)(3) 0
z0
z0
z0是(sinzz)的三级零点。
z 0是z3的三级零点。
z 0为可去奇点 . (见7,例 m3n)
2020/6/16
19
3) f(z) (z2(s1)in(zz)32)3
问 1 ) (z)(z)、 2 )(z)(z)在 z a有何性质?
解 可设 (z) (za)m 1(z)(z) (za)n 1(z)
其 1 ( z ) 中 1 ,( z ) 在 z a 解( 1 析 a )1 ( a ) , 0 . 1 ) ( z )( z ) ( z a ) m n1 ( z )1 ( z ),
类似z, i为f(z)的一阶极点。
问题z: 是 1 的几阶极点?

复变函数第五章

复变函数第五章
C
这是由于 z 0 为f ( z ) 的孤立奇点而使积分 ∫ f ( z )dz 留下”的值 “留下”
11
定义: 的孤立奇点, 定义 设 z0 为 f (z) 的孤立奇点, f (z) 在 z0 邻域内的洛朗级数中负 称为f 在 留数, 幂次项 (z- z0)–1 的系数 c–1 称为 (z)在 z0 的留数,记作 Res [f (z), z0] 或 Res f (z0)。 。 由留数定义, 由留数定义 Res [f (z), z0]= c–1 (1)
z2 z4 z 2n sin z (1) = 1 − + − L + ( −1) n +L z 3! 5! ( 2n + 1)!
特点:没有负幂次项 特点:
e z 1 +∞ z n +∞ z n −1 1 z z n −1 ( 2) = ∑ = ∑ = + 1+ +L+ +L z z n = 0 n! n = 0 n! z 2! n!
1 把扩充z平面上 平面上∞ 作变换 w = 把扩充 平面上∞的去心邻域 R<|z|<+∞映射成扩充 ∞ z w平面上原点的去心邻域: <| w |< 1 . 平面上原点的去心邻域: 平面上原点的去心邻域 0 R 1
又 f ( z ) = f ( ) = ϕ ( w) .这样 我们可把在去心邻域 这样, 这样 我们可把在去心邻域R<|z|<+∞对f (z)的研 ∞ 的研 w 1 的研究.显然 究变为在 0 <| w |< 1 内对ϕ (w)的研究 显然ϕ (w)在 0 <| w |< 内解 的研究 在 R R 所以w=0是孤立奇点 是孤立奇点. 析, 所以 是孤立奇点 在无穷远点 ∞ lim f ( z ) = lim ϕ ( w ) ⇒ f (z)在无穷远点 z=∞ 的奇点类型

复变函数与积分变换第五章

复变函数与积分变换第五章

解 函数 f (z) 除点 z 0, 1, 2 外,
在 z 内解析 . 因(sin z) cos z 在 z 0, 1, 2, 处均不为零.
所以这些点都是 sin z 的一阶零点,
故这些点中除1, -1, 2外, 都是 f (z)的三阶极点.
30
因 z2 1 (z 1)(z 1), 以1与- 1为一阶零点,
展开式的前m项系数都为零 ,由泰勒级数的系数
公式知: f (n)(z0 ) 0, (n 0,1,2, m 1);
并且
f
(m)(z0 ) m!
c0
0.
(充分性) 由于 f (n)(z0 ) 0, (n 0,1,2, m 1);
f
( m ) ( z0 m!
)
c0
0.

邋 f (z) =
ゥ f (n) (z0 ) (z n= m n!
6
例3 sin z 1 1 z2 1 z4 中不含负幂项,
z
3! 5!
z
0

sin z z
的可去奇点
.
如果补充定义:
z 0 时, sin z 1, z
那末 sin z 在 z 0 解析. z
7
例4 说明 z 0 为 ez 1 的可去奇点. z
解 ez 1 1(1 z 1 z2 1 zn 1)
zz
2!
n!
1 1 z 1 zn1 , 0 z
2!
n!
无负幂项
所以 z 0 为 ez 1 的可去奇点. z
另解 因为 lim e z 1 lim ez 1, 作业2.4.8(洛必达法则)
z0 z
z0
所以 z 0 为 e z 1 的可去奇点. z

复变函数论第四版钟玉泉

复变函数论第四版钟玉泉

复变函数论第四版钟玉泉
目录
第一章复数与复变函数
第二章解析函数
第三章复变函数的积分
第四章解析函数的幂级数表示法
第五章解析函数的洛朗(Laurent)展式与孤立奇点
第六章留数理论及其应用
第七章共形映射
大学生必备资源库为大学生提供网课答案、大学课后答案、软件安装、大学考试考证资源以及学习资料、影视资源等,大学生必备资源库致力于为大学生打造全面的大学学习服务,感谢您的支持与厚爱!
我们的答案体系、软件安装体系、学习资源体系三大体系都在不断更新和完善之中,可能有些资源资料答案您无法找到,请您耐心向公众号平台后台留言,我们将第一时间为大家提供最多人所需求的资料资源。

我们大多数资源来源于互联网查找整理和搜集,不对资源内容附带任何法律责任,特此声明。

起初,公众平台由一人打理现在逐渐变为多人打理,内容资源将不断持续更新丰富,更加有条理、有逻辑、有内涵,以满足广大大学生对美好知识的向往,以解决大学生对知识向往与大学资源不平衡不充分的矛盾。

再次感谢各位一如既往的支持与厚爱!。

复变函数论第三版钟玉泉ppt 5 解析函数的洛朗展式与孤立奇点 shu 5.4 杨乐、张广厚

复变函数论第三版钟玉泉ppt 5 解析函数的洛朗展式与孤立奇点 shu 5.4 杨乐、张广厚

由此可见,每一有理函数都是亚纯函数.
定义5.7 非有理的亚纯函数称为超越亚 纯函数
1977年2月25日, 杨乐、张广厚研究函数理论获得重要成果。 在世界上第一次找到 函数值分布论研究中两个主要概念 “亏值”和“奇异方向”之间的有机联系。
中国科学院数学研究所
杨乐、张广厚两人长期从事复变函数论的研究,
张广厚
与华罗庚、杨乐、陈景润在一起
设f(z)为一整函数 ,则f(z)只以z=∞为孤立 奇点,且可设 f ( z ) cn z n (0 | z | ). (5.14) 于是显然有
n 0
定理5.10 若f(z)为一整函数,则 (1)z=∞为f(z)的可去奇点的充要条为:f(z)=c. (2)z=∞为f(z)的m级极点的充要条件:f(z)是 一个m次多项式 c c z c z m (c 0).
0 1 m m
(3)z=∞为f(z)的本性奇点的充要条件为: 展式(5.14)有无穷多个 n不等于零.(我们称这 样的f(z)为超越整函数).
c
2. 亚纯函数
定义5.6 在z平面上除极点外无其他类型 奇点的单值解析函数称为亚纯函数. 定理5.11 一函数f(z)为有理函数的充 要条件为:f(z)在扩充平面z平面上除极点外 没有其它类型的奇点.
特别在函数模分布论、辐角分布论、正规族 等方面取得一系列重要成果。 两人密切合作,在国际上首次提出并建立了值分布论中
过去被认为彼此无关的两个基本概念─ “亏值”和“奇异方向”的联系, 且作出了定量的表达。 他们的研究,推动了函数理论的发展,受到了国内外数学界的高度评价,
ห้องสมุดไป่ตู้
1978年获全国科学大会奖, 1982年获全国自然科学二等奖。

复变函数第五章1

复变函数第五章1

z sin z 例 4 计算 Ι = ∫ dz z 3 z =1 (1 − e ) 解: 在 z = 1内:z = 0为一级极点。
z sin z z 2 sin z z3 sin z Res ,0 = lim = lim ⋅ lim = ( −1)3 = −1 (1 − e z )3 z →0 (1 − e z )3 z →0 (1 − e z )3 z →0 z
+ Res[ f (z), i] + Res[ f (z),−i]}. P(z) z 1 由规 , 则3 = 3 = 2 ,故 Q′(z) 4z 4z 1 1 1 1 z ∫ z4 −1d z = 2πi(4 + 4 − 4 − 4) = 0. C
e dz, C 为正向圆周|z|=2. 例3 计 算积 ∫ 分 2 z(z −1) C
第五章 留数
§1 孤立奇点 函数不解析的点为奇点 如果函数 虽在z 函数不解析的点为奇点.如果函数 f (z)虽在 0不解 奇点 虽在 但在z 的某一个去心邻域0<|z−z0|<δ内处处解析 则 内处处解析, 析, 但在 0的某一个去心邻域 − z0称为 (z)的孤立奇点 称为f 的孤立奇点.
1. 可去奇点 如果在洛朗级数中不含 −z0的负幂项 则孤 如果在洛朗级数中不含z− 的负幂项, 立奇点z 的可去奇点. 立奇点 0称为 f (z)的可去奇点 的可去奇点
∫ f (z)d z = 2πi∑Res[ f (z), z ].
C k =1 k
n
D
zn C3 z3 Cn C2 z1 z2 C1
C
[证] 把在C简单闭曲线Ck围绕起来, 则根据复合闭路定理有
∫ f (z)d z = ∫ f (z)d z + ∫ f (z)d z +L+ ∫ f (z)d z.

复变函数论 第五章 解析函数的洛朗展式与孤立奇点

复变函数论 第五章 解析函数的洛朗展式与孤立奇点

第五章 解析函数的洛朗展式与孤立奇点§1 解析函数的洛朗展式教学目的与要求: 了解双边幂级数,了解洛朗级数与泰勒级数的关系,掌握解析函数在孤立奇点邻域内的洛朗展式的求法.重点: 解析函数的洛朗展式;解析函数在孤立奇点邻域内的洛朗展式的求法. 难点:解析函数的洛朗展式的证明. 课时:2学时定义5.1 级数101()()()n n n nn C C C z a C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+++-+⋅⋅⋅--∑(5.1) 称洛朗()Laurent 级数,n C 称为(4.22)的系数.对于点z ,如果级数01()()()nn nn n C z a C C z a C z a +∞=-∞-=+-+⋅⋅⋅+-+⋅⋅⋅∑ (5.2)收敛于1()f x ,且级数1()()n n n n n C C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+--∑ (5.3) 收敛于2()f x ,则称级数(4.22)在点z 收敛,其和函数为1()f x +2()f x 当0n C -=(1,2,)n =⋅⋅⋅时,(5.1)即变为幂级数.类似于幂级数,我们有定理5.1 设()f z 在圆环12:D R z a R <-<12(0)R R ≤<<+∞内解析,则在D 内()()nn n f z C z a +∞=-∞=-∑(5.4)其中11()2()n n f z C dz i z a π+Γ=-⎰ (0,1,)n =±⋅⋅⋅ (5.5) :z a ρΓ-=,且12R R ρ<<,系数n C 被()f z 及D 唯一确定.(5.4)称为()f z 的洛朗展式.证明:对:z H ∀∈作1:1z a ρΓ-=,2:2z a ρΓ-=,(其中12r R ρρ<<<) 且使z D ∈:12z a ρρ<-<,(如图5.1)由柯西积分公式,有()()2112f f z d i z ξξπξ-Γ+Γ==-⎰()212f d i z ξξπξΓ-⎰+()112f d i z ξξπξΓ-⎰图5.1对于第一个积分,只要照抄泰勒定理证明中的相应部分,即得:()212f d i z ξξπξΓ-⎰=()0nn n C z a ∞=-∑ 其中()()1212n n f C d i a ξξπξ+Γ=-⎰()!n f a n = 对于第二个积分()112f d i z ξξπξΓ-⎰: ()()()()()()1f f f z z a a z a z a a ξξξξξξ==----⎛⎫---⎪-⎝⎭当1ξ∈Γ时11az az aρξ-=<--1111n n a a z a z aξξ-∞=-⎛⎫∴=⎪--⎝⎭--∑ (右边级数对于1ξ∈Γ是一致收敛)上式两边乘上()f z a ξ-得:()f z ξξ=-()11n n f a z a z a ξξ-∞=-⎛⎫ ⎪--⎝⎭∑=()()()111n n n f z a a ξξ∞-+=--∑ 右边级数对1ξ∈Γ 仍一致收敛,沿1Γ逐项积分,可得()112f d i z ξξπξΓ-⎰=()11n n z a ∞=-∑()()1112n f d i a ξξπξ+Γ-⎰ 其中n C =()()1112n f d i a ξξπξ-+Γ-⎰113. 3.10P Th ()()112n f d i a ξξπξ-+Γ-⎰ 于是:()()nn n f z C z a +∞=-∞=-∑, 其中n C =()()112n f d i a ξξπξ+Γ-⎰ (n=0,1,± ) 下面证明展式唯一,若在H 内()f z 另有展开式()()'nnn f z C z a +∞=-∞=-∑右边级数在Γ上一致收敛,两边乘上()11m z a +-得:()()1m f z z a +-=()'1nm n n C z a ∞-+=-∞-∑,右边级数在Γ上仍一致收敛,沿Γ逐项积分,可得:()()112m f d i a ξξπξ+Γ-⎰=()'1112n m n n C d i a ξπξ+∞-+Γ=-∞-∑⎰ ∴'n C =n C 即展式是唯一的.注:1)定理中的展式称为洛朗展开式,级数称为洛朗级数. n C 称为洛朗系数.2)泰勒展式是洛朗展式的特例. 例1.求()()()112f z z z =--在(1)1,(2)12,(3)2(4)011z z z z <<<<<∞<-<中的洛朗展开式. 解:()1121f z z z =--- (1)()00111122212nnn n z f z z z z ∞∞==⎛⎫=-=-=⎪-⎛⎫⎝⎭- ⎪⎝⎭∑∑12nn n n n z z ∞∞+==-∑∑=10112n n n z ∞+=⎛⎫- ⎪⎝⎭∑ (1z <).(2) ()1121f z z z =---1112112z z z =--⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭100112n n n n n z z z ∞∞+==⎛⎫=-- ⎪⎝⎭∑∑ 110012n n n n n z z∞∞++==⎛⎫=-- ⎪⎝⎭∑∑. (12z <<)(3) ()1121f z z z =-=--112111z z z z -⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()1000121121n n n n n n n n z z z z∞∞∞+===⎛⎫=-=- ⎪⎝⎭∑∑∑ . (2z <<∞) (4)()()()0111111211111nn f z z z z z z z ∞==-=-=---------∑. (011z <-<)此例子说明:同一个函数在不同的圆环内的洛朗展式可能不同. 例2 求2sin z z 及sin zz在0z <<+∞内的洛朗展式 解 2s i n z z 3211(1)3!5!(21)!n n z z z z n --=-++⋅⋅⋅++⋅⋅⋅+ sin z z 242(1)13!5!(21)!n nz z z n -=-++⋅⋅⋅++⋅⋅⋅+例3 1ze 在0z <<+∞内的洛朗展式为 解 1z e 211112!!n z z n z=+++⋅⋅⋅++⋅⋅⋅ 作业: 第217页 1 (1) (3), 2(1)(3)§2解析函数的孤立奇点教学目的与要求: 掌握洛朗定理及孤立奇点的分类及判断方法. 重点:孤立奇点的分类及判断方法. 难点:函数在本质奇点的邻域的性质. 课时:2学时 一 . 定义:1.设()f z 在点a 的某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点;当主要部分为有限项时,设为(1)11(0)()()------+++≠--- m m m m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二.判定 1.可去奇点定理5.3 设a 为()f z 的孤立奇点,则下列条件等价(1)a 为f 的可去奇点 (2)lim ()()→=≠∞z af z b3()f 在a 的某去心邻域内有界证明:"(1)(2)"⇒设条件1()成立,则在a 的某一去心邻域内,有0()lim ()()∞→==∴=≠∞-∑nnz an f z f z z a c c"(2)(3)":⇒显然成立."(3)(1)"⇒设f 在a 的去心邻域{}:0-<-<k a z a R 内以M 为界考虑()f z 在点z 的主要部分:11()(1,2,): 02()ξξξρρπξ-+-Γ==Γ-=<<⎰- n n f d n a R i c a()112002πρρρπρ--+≤=→→n n n MC M 120--∴===∴ a c c 为可去奇点.例:说明0=z 是sin zz的可去奇点. 法一:324sin 1()1 03!3!5!=-+=-+<<∞ z z z z z z z z法二:0sin lim 1→=≠∞z zz2.极点定理5.4 设a 为()f z 的孤立奇点.则下列条件等价:1()a 为f 的m 级极点2()f 在a 的某去心邻域:{}:0-<-<k a z a R 内可表示为()()()λ=-mz f z z a 其中()λz 在k 内解析,且()0λ≠a1(3).()()=g z f z 从a 为m 级零点(可去奇点作为解析点看) 证明:"(1)(2)"⇒设条件(1)成立,即()f z 在a 的某去心邻域内有:101()()()--=++++-+-- m m c c f z c c z a z a z a(0)-≠m c1110()()()()---+-+-++-+-+=-m m m m mc c z a c z a c z a z a ()()记λ-mz z a(()λz 为幂级数的和函数,故解析)其中()λz 在a 的某邻域内解析,且从()0λ-=≠m a c"(2)(3)"⇒:设条件(2)成立,即f 在a 的某去心邻域{}:0-<-<k a z a R内有()()()λ=-mz f z z a ,其中()λz 满足已知的两个条件.由例知存在:.()ρ'-<≤'⊂K z a R K K ,使得在'K 内()0λ≠z . 故在'K 内1()λz 解析,且1()0()ϕλ=≠a a .即a 为1()f z 的m 级零点. "(3)(1)"⇒设条件(3)成立,即1()(),()ϕ=-m z a z f z 其中()ϕz 在a 的某领域内解析,且()0ϕ≠a ,由33P 的例1.28知:,ρ∃'-<K z a 使在K 内1()0,()ϕϕ≠∴z z 在'K 内解析.由Taylor 定理, 在'K 内有011()()ϕ=+-+ b b z a z∴在{}'-K a 内有0111()()[()]()()ϕ==+-+-- m mf z z b b z a z a z a01()()=++-- m mb b z a z a 0(0)≠b作业: 第218-219页 4(1) (3) (5), 5(1) (3).§3解析函数在无穷远点的性质教学目的与要求:掌握解析函数在无穷远点的性质. 重点: 解析函数在无穷远点的性质. 难点:解析函数在无穷远点的性质. 课时:2学时1. 基本概念1.1 2 3 2.如证令数引理:设()f z 在K :z <1内解析,且(0)0,()f f z =<1则 a )()f z z ≤, b )(0)1f '≤, c )若(0)1f '=,或00z∃≠,使00()f z z =则()()i f z z R e αα=∈.证明:由已知得:12()f z z z c c =++ (1)z <令212(),(0)()(0)f z c c z z z z c z ϕ⎧=++≠⎪=⎨⎪=⎩则()z ϕ在:1K z <内解析.对0,z K ∀∈取r ,使01,z r <<由最大模原理有:0()1()max ()maxz rz rf z z z zrϕϕ==≤=≤. 令1r →得0()1z ϕ≤,特别地,1(0)(0)1f c ϕ'==≤即(b )成立,又若00z ≠,由0()1z ϕ≤,得00()1f z z ≤,即00().f z z ≤以及(0)0f =,故对z K ∀∈,有()f z z ≤,即(a )成立.几何意义:在引理条件下,z 的象都比z 本身,距坐标原点要近.若有00z ≠,0z 的象与0z 本身距原点的距离相等,则变换仅仅是一个旋转.作业: 第219页6, 7, 8 (1) (3).。

复变函数论第5章第2节

复变函数论第5章第2节

考虑 ϕ ( z ) 在单位圆 | z |< 1 内任一点 z0 处的值 , 根据最大模原理, 如果 r 满足条件 | z0 |< r < 1 , 根据最大模原理 有
f (0) = 0 , | f ( z ) |< 1 (| z |< 1)
f (z) 1 | ϕ ( z0 ) |≤ max | ϕ ( z ) |= max < . | z| = r | z| = r z r 让 r → 1 即得
所以 a 是 f (z ) 的 m 阶极点 阶极点.
说明
此引理为判断函数的极点提供了一个较为
简便的方法. 简便的方法. 1 例2 函数 sin z 有些什么奇点 如果是极点 指出 有些什么奇点, 如果是极点, 它的阶. 它的阶 解 函数的奇点是使 sin z = 0 的点 的点, 是孤立奇点 这些奇点是 z = kπ ( k = 0 , ± 1 , ± 2L) , 是孤立奇点.
因为 (sin z )′ z = kπ = cos z z = kπ = ( −1) ≠ 0, 1 即 的一阶零点, 所以 z = kπ 是 sin z 的一阶零点, 的一阶极点. 的一阶极点 sin z
k
3z + 2 , z = 0 是二阶极点 例3 有理分式函数 f ( z ) = 2 极点, z ( z + 2) z = −2 是 一阶 极点 极点.
下面的定理也是极点的 一个特征 .
定理5.5 点 a 为函数 f (z ) 极点的充要条件是
lim f ( z ) = ∞ .
z→a
极点的判定方法 (1) 由定义判别
f (z ) 的洛朗展开式中含有 z − a 的负幂项为有 限项 限项.
(2) 由定义的等价形式判别 在点 z0 的某去心邻域内 f ( z ) =

第五章 解析函数的洛朗展式与孤立奇点 第三讲 解析函数在无穷远点的性质课件ppt课件

第五章 解析函数的洛朗展式与孤立奇点 第三讲 解析函数在无穷远点的性质课件ppt课件
1fz在z的主要部分有无穷多项正幂其中在z的邻域n内解析且上页下页结束返回首页导电性聚乙炔的出现不仅打破了高分子仅为绝缘体的传统观念而且为低维固体电子学和分子电子学的建立打下基础而具有重要的科学意义
5.3解析函数在无穷远点的性质
首页
上页
返回
下页
结束

定义5.4 设函数f(z)在无穷远点(去心)邻域 N-{∞}:+∞>|z|>r≥0 内解析,则称点∞为f(z)的一个孤立奇点.
首页
上页
返回
下页
结束

首页 上页 返回 下页 结束 铃
(1)对于扩充z平面上无穷远点的去心邻域 N-{∞},有扩充z/平面上的原点的去心邻域;
(2)在对应点z与z/上,函数
f ( z ) ( z' )
f ( z ) lim ( z' ), 或两个极限都不存在. (3) lim z z 0
定义5.5 若z/=0为 ( z ' ) 的可去奇点(解析点), m级极点或本性奇点,则我们相应地称z=∞为 f(z)的可去奇点(解析点),m级极点或本性奇点. ( z' ) 设在去心邻域K-{0}:0<|z’|<1/r内将 展成罗朗级数: ( z ' )
(5.13)为f(z)在无穷远点去心邻域N-{∞}: 0≤r<|z|<+∞内的罗朗展式.对应 ( z ' )在z’=0
的主要部分,我们称 n
n b z n
为f(z)在z=∞
的主要部分.
首页 上页 返回 下页 结束 铃
定理5.3/ (对应于定理5.3)f(z)的孤立奇点z=∞为可去奇 点的充要条件是下列三条中的任何一条成立: (1)f(z)在 z 的主要部分为零; f ( z ) b( ); (2) lim z (3)f(z)在 z 的某去心邻域N-{∞}内有界. 定理5.4/ (对应于定理5.4)f(z)的孤立奇点z=∞为m级

复变函数第五章解析函数的洛朗(Laurent)展式与孤立奇点知识点总结

复变函数第五章解析函数的洛朗(Laurent)展式与孤立奇点知识点总结

第五章解析函数的洛朗(Laurent)展式与孤立奇点§1.解析函数的洛朗展式1.双边幂级数2.(定理5.1):收敛圆环H,(1)H内绝对收敛且内闭一致收敛于f(z)=f1+f2(2)函数f在H内解析(3)f在H内可逐项求导p次(4)可沿H内曲线C逐项积分注:对应于定理4.133.(定理5.2 洛朗定理):在圆环内解析的函数f必可展成双边幂级数,其中c n=12πi∫f(ξ)(ξ−a)n+1Γdξ,(n=0,±1,±2…)Γ为圆周|ξ−a|=ρ,f和圆环唯一决定系数c n4.泰勒级数是洛朗级数的特殊情形5.孤立奇点(奇点:不解析点)注:多值性孤立奇点即支点6.如果a为f(z)的一个孤立奇点,则必存在正数R,使得f(z)在点a的去心邻域K-{a}:0<|z-a|<R内可展成洛朗级数§2.解析函数的孤立奇点1.正则部分、主要部分2.可去奇点、极点(m阶极点,单极点)、本质奇点3.(定理5.3)可去奇点的特征(三点等价):(1)f(z)在a点主要部分为零(2)可去奇点的判定条件:limz→af(z)=b(≠∞)(3)f(z)在a的去心邻域内有界4.施瓦茨(Schwarz)引理:如果函数f(z)在单位圆|z|<1内解析,并且满足条件f(0)=0,|f(z)|<1(|z|<1),则在单位圆|z|<1内恒有|f(z)|≤|z|,且有|f′(0)|≤1如果上式等号成立,或在圆|z|<1内一点z0≠0处前一式等号成立,则(当且仅当)f(z)=e iαz(|z|<1)其中α是一实常数。

5.(定理5.4):m阶极点的特征(三点等价)(1)主要部分为有限项(系数c−m≠0)(2)f(z)在点a的某去心邻域内能表示成f(z)=λ(z) (z−a)m其中λ(z)在点a的邻域内解析,且λ(a)≠0;(3)g(z)=1f(z)以点a为m阶零点(可去奇点要当作解析点看,只要令g(a)=0)注:f(z)以a为m阶极点⇔1f(z)以点a为m阶零点6.(定理5.5):函数f(z)的孤立奇点a为极点的充要条件是limz→af(z)=∞7.(定理5.6):函数f(z)的孤立奇点a为本质奇点的充要条件是lim z→a f(z)≠{b(有限数)∞,即limz→af(z)不存在8.(定理5.7):若z=a为函数f(z)之一本质奇点,且在点a的充分小去心邻域内部委零,则z=a亦必为1f(z)的本质奇点。

第5章、解析函数的罗朗展式与孤立奇点

第5章、解析函数的罗朗展式与孤立奇点

第五章 解析函数的罗朗展式与孤立奇点第一节 解析函数的罗朗展式在本节中,我们讲述解析函数的另一种重要的级数展式,即在圆环内解析函数的一种级数展式。

首先考虑级数+-+-+-+------n n z z z z z z )()()(02021010ββββ 其中 ,,,,,100n z --βββ是复常数。

此级数可以看成变量1z z -的幂级数;设这幂级数的收敛半径是R 。

如果+∞<<R 0,那么不难看出,此级数在R z z 10||>-内绝对收敛并且内闭一致收敛,在R z z 10||<-内发散。

同样,如果+∞=R ,那么此级数在0||0>-z z 内绝对收敛并且内闭一致收敛;如果0=R ,那么此级数在每一点发散。

在上列情形下,此级数在0z z =没有意义。

于是根据定理2.3,按照不同情形,此级数分别在)0(1||10+∞<<=>-R R Rz z 及0||0>-z z 内收敛于一个解析函数。

更一般地,考虑级数∑+∞-∞=-n n nz z )(0β这里),2,1,0(,0 ±±=n z n β是复常数。

当级数∑+∞=-00)(n nn z z β及∑-∞-=-10)(n n n z z β都收敛时,我们说原级数∑+∞-∞=-n n n z z )(0β收敛,并且它的和等于上式中两个级数的和函数相加。

设上式中第一个级数在20||R z z <-内绝对收敛并且内闭一致收敛,第二个级数在10||R z z >-内绝对收敛并且内闭一致收敛。

于是两级数的和函数分别20||R z z <-及10||R z z >-在内解析。

又设21R R <,那么这两个级数都在圆环201||:R z z R D <-<内绝对收敛并且内闭一致收敛,于是我们说级数∑+∞-∞=-n n nz z )(0β在这个圆环内绝对收敛并且内闭一致收敛;显然它的和函数是一个解析函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 解析函数的洛朗展式与孤立奇点§1 解析函数的洛朗展式教学目的与要求: 了解双边幂级数,了解洛朗级数与泰勒级数的关系,掌握解析函数在孤立奇点邻域内的洛朗展式的求法.重点: 解析函数的洛朗展式;解析函数在孤立奇点邻域内的洛朗展式的求法. 难点:解析函数的洛朗展式的证明. 课时:2学时定义5.1 级数101()()()n n n nn C C C z a C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+++-+⋅⋅⋅--∑(5.1) 称洛朗()Laurent 级数,n C 称为(4.22)的系数.对于点z ,如果级数01()()()nn nn n C z a C C z a C z a +∞=-∞-=+-+⋅⋅⋅+-+⋅⋅⋅∑ (5.2)收敛于1()f x ,且级数1()()n n n n n C C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+--∑ (5.3) 收敛于2()f x ,则称级数(4.22)在点z 收敛,其和函数为1()f x +2()f x 当0n C -=(1,2,)n =⋅⋅⋅时,(5.1)即变为幂级数.类似于幂级数,我们有定理5.1 设()f z 在圆环12:D R z a R <-<12(0)R R ≤<<+∞内解析,则在D 内()()nn n f z C z a +∞=-∞=-∑(5.4)其中11()2()n n f z C dz i z a π+Γ=-⎰ (0,1,)n =±⋅⋅⋅ (5.5) :z a ρΓ-=,且12R R ρ<<,系数n C 被()f z 及D 唯一确定.(5.4)称为()f z 的洛朗展式.证明:对:z H ∀∈作1:1z a ρΓ-=,2:2z a ρΓ-=,(其中12r R ρρ<<<) 且使z D ∈:12z a ρρ<-<,(如图5.1)由柯西积分公式,有()()2112f f z d i z ξξπξ-Γ+Γ==-⎰()212f d i z ξξπξΓ-⎰+()112f d i z ξξπξΓ-⎰图5.1对于第一个积分,只要照抄泰勒定理证明中的相应部分,即得:()212f d i z ξξπξΓ-⎰=()0nn n C z a ∞=-∑ 其中()()1212n n f C d i a ξξπξ+Γ=-⎰()!n f a n = 对于第二个积分()112f d i z ξξπξΓ-⎰: ()()()()()()1f f f z z a a z a z a a ξξξξξξ==----⎛⎫---⎪-⎝⎭当1ξ∈Γ时11az az aρξ-=<--1111n n a a z a z aξξ-∞=-⎛⎫∴=⎪--⎝⎭--∑ (右边级数对于1ξ∈Γ是一致收敛)上式两边乘上()f z a ξ-得:()f z ξξ=-()11n n f a z a z a ξξ-∞=-⎛⎫ ⎪--⎝⎭∑=()()()111n n n f z a a ξξ∞-+=--∑ 右边级数对1ξ∈Γ 仍一致收敛,沿1Γ逐项积分,可得()112f d i z ξξπξΓ-⎰=()11n n z a ∞=-∑()()1112n f d i a ξξπξ+Γ-⎰ 其中n C =()()1112n f d i a ξξπξ-+Γ-⎰113. 3.10P Th ()()112n f d i a ξξπξ-+Γ-⎰ 于是:()()nn n f z C z a +∞=-∞=-∑, 其中n C =()()112n f d i a ξξπξ+Γ-⎰ (n=0,1,± ) 下面证明展式唯一,若在H 内()f z 另有展开式()()'nnn f z C z a +∞=-∞=-∑右边级数在Γ上一致收敛,两边乘上()11m z a +-得:()()1m f z z a +-=()'1nm n n C z a ∞-+=-∞-∑,右边级数在Γ上仍一致收敛,沿Γ逐项积分,可得:()()112m f d i a ξξπξ+Γ-⎰=()'1112n m n n C d i a ξπξ+∞-+Γ=-∞-∑⎰ ∴'n C =n C 即展式是唯一的.注:1)定理中的展式称为洛朗展开式,级数称为洛朗级数. n C 称为洛朗系数.2)泰勒展式是洛朗展式的特例. 例1.求()()()112f z z z =--在(1)1,(2)12,(3)2(4)011z z z z <<<<<∞<-<中的洛朗展开式. 解:()1121f z z z =--- (1)()00111122212nnn n z f z z z z ∞∞==⎛⎫=-=-=⎪-⎛⎫⎝⎭- ⎪⎝⎭∑∑12nn n n n z z ∞∞+==-∑∑=10112n n n z ∞+=⎛⎫- ⎪⎝⎭∑ (1z <).(2) ()1121f z z z =---1112112z z z =--⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭100112n n n n n z z z ∞∞+==⎛⎫=-- ⎪⎝⎭∑∑ 110012n n n n n z z∞∞++==⎛⎫=-- ⎪⎝⎭∑∑. (12z <<)(3) ()1121f z z z =-=--112111z z z z -⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()1000121121n n n n n n n n z z z z∞∞∞+===⎛⎫=-=- ⎪⎝⎭∑∑∑ . (2z <<∞) (4)()()()0111111211111nn f z z z z z z z ∞==-=-=---------∑. (011z <-<)此例子说明:同一个函数在不同的圆环内的洛朗展式可能不同. 例2 求2sin z z 及sin zz在0z <<+∞内的洛朗展式 解 2s i n z z 3211(1)3!5!(21)!n n z z z z n --=-++⋅⋅⋅++⋅⋅⋅+ sin z z 242(1)13!5!(21)!n nz z z n -=-++⋅⋅⋅++⋅⋅⋅+例3 1ze 在0z <<+∞内的洛朗展式为 解 1z e 211112!!n z z n z=+++⋅⋅⋅++⋅⋅⋅ 作业: 第217页 1 (1) (3), 2(1)(3)§2解析函数的孤立奇点教学目的与要求: 掌握洛朗定理及孤立奇点的分类及判断方法. 重点:孤立奇点的分类及判断方法. 难点:函数在本质奇点的邻域的性质. 课时:2学时 一 . 定义:1.设()f z 在点a 的某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点;当主要部分为有限项时,设为(1)11(0)()()------+++≠--- m m m m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二.判定 1.可去奇点定理5.3 设a 为()f z 的孤立奇点,则下列条件等价(1)a 为f 的可去奇点 (2)lim ()()→=≠∞z af z b3()f 在a 的某去心邻域内有界证明:"(1)(2)"⇒设条件1()成立,则在a 的某一去心邻域内,有0()lim ()()∞→==∴=≠∞-∑nnz an f z f z z a c c"(2)(3)":⇒显然成立."(3)(1)"⇒设f 在a 的去心邻域{}:0-<-<k a z a R 内以M 为界考虑()f z 在点z 的主要部分:11()(1,2,): 02()ξξξρρπξ-+-Γ==Γ-=<<⎰- n n f d n a R i c a()112002πρρρπρ--+≤=→→n n n MC M 120--∴===∴ a c c 为可去奇点.例:说明0=z 是sin zz的可去奇点. 法一:324sin 1()1 03!3!5!=-+=-+<<∞ z z z z z z z z法二:0sin lim 1→=≠∞z zz2.极点定理5.4 设a 为()f z 的孤立奇点.则下列条件等价:1()a 为f 的m 级极点2()f 在a 的某去心邻域:{}:0-<-<k a z a R 内可表示为()()()λ=-mz f z z a 其中()λz 在k 内解析,且()0λ≠a1(3).()()=g z f z 从a 为m 级零点(可去奇点作为解析点看) 证明:"(1)(2)"⇒设条件(1)成立,即()f z 在a 的某去心邻域内有:101()()()--=++++-+-- m m c c f z c c z a z a z a(0)-≠m c1110()()()()---+-+-++-+-+=-m m m m mc c z a c z a c z a z a ()()记λ-mz z a(()λz 为幂级数的和函数,故解析)其中()λz 在a 的某邻域内解析,且从()0λ-=≠m a c"(2)(3)"⇒:设条件(2)成立,即f 在a 的某去心邻域{}:0-<-<k a z a R内有()()()λ=-mz f z z a ,其中()λz 满足已知的两个条件.由例知存在:.()ρ'-<≤'⊂K z a R K K ,使得在'K 内()0λ≠z . 故在'K 内1()λz 解析,且1()0()ϕλ=≠a a .即a 为1()f z 的m 级零点. "(3)(1)"⇒设条件(3)成立,即1()(),()ϕ=-m z a z f z 其中()ϕz 在a 的某领域内解析,且()0ϕ≠a ,由33P 的例1.28知:,ρ∃'-<K z a 使在K 内1()0,()ϕϕ≠∴z z 在'K 内解析.由Taylor 定理, 在'K 内有011()()ϕ=+-+ b b z a z∴在{}'-K a 内有0111()()[()]()()ϕ==+-+-- m mf z z b b z a z a z a01()()=++-- m mb b z a z a 0(0)≠b作业: 第218-219页 4(1) (3) (5), 5(1) (3).§3解析函数在无穷远点的性质教学目的与要求:掌握解析函数在无穷远点的性质. 重点: 解析函数在无穷远点的性质. 难点:解析函数在无穷远点的性质. 课时:2学时1. 基本概念1.1 2 3 2.如证令数引理:设()f z 在K :z <1内解析,且(0)0,()f f z =<1则 a )()f z z ≤, b )(0)1f '≤, c )若(0)1f '=,或00z∃≠,使00()f z z =则()()i f z z R e αα=∈.证明:由已知得:12()f z z z c c =++ (1)z <令212(),(0)()(0)f z c c z z z z c z ϕ⎧=++≠⎪=⎨⎪=⎩则()z ϕ在:1K z <内解析.对0,z K ∀∈取r ,使01,z r <<由最大模原理有:0()1()max ()maxz rz rf z z z zrϕϕ==≤=≤. 令1r →得0()1z ϕ≤,特别地,1(0)(0)1f c ϕ'==≤即(b )成立,又若00z ≠,由0()1z ϕ≤,得00()1f z z ≤,即00().f z z ≤以及(0)0f =,故对z K ∀∈,有()f z z ≤,即(a )成立.几何意义:在引理条件下,z 的象都比z 本身,距坐标原点要近.若有00z ≠,0z 的象与0z 本身距原点的距离相等,则变换仅仅是一个旋转.作业: 第219页6, 7, 8 (1) (3).。

相关文档
最新文档