人教版初三数学中心对称

合集下载

初三数学全册基本知识点总结

初三数学全册基本知识点总结

初三数学全册基本知识点总结数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺。

下面是小编为大家整理的关于初三数学基本知识点总结,希望对您有所帮助!初三数学知识总结圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。

2、弦心距从圆心到弦的.距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r 点P在⊙O上;d>r 点P在⊙O外。

过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。

2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。

初三数学轴对称知识点归纳1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

新人教版初三数学上册旋转和中心对称单元卷

新人教版初三数学上册旋转和中心对称单元卷

旋转和中心对称单元试题一、 选择题(每小题3分,共30分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.下列图形中,是中心对称图形的有( )A .4个B .3个C .2个D .1个 3.在平面直角坐标系中,已知点,若将绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在( )A.第一象限B.第二象限C.第三象限D.第四象限 4.已知0a <,则点(2,1a a --+)关于原点的对称点 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知点、点关于原点对称,则的值为( )A.1B.3C.-1D.-3 6.下列命题中是真命题的是( )A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形 7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( ) A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形8. 如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕点C 顺时针旋转至△A ′B ′C ,使得点A ′恰好落在AB 上,则旋转角度为( )9.如图所示,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在 上, 则的长是( )A .1B .2C .3D .410.如图,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45° 二、填空题(每小题3分,共24分) 11.如图所示,把一个直角三角尺绕着角的顶点顺时针旋转,使得点落在的延长线上的点处,则∠的度数为_____ .12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合________次.13.如图所示,ABC △与DEF△关于O点成中心对称.则AB _______DE , ∥______,AC =________.14.边长为的正方形绕它的顶点旋转,顶点所经过的路线长为______.15.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.16. 点(34)P -,关于原点对称的点的坐标为________. 17.已知点与点关于原点对称,则的值是_______.18.直线3y x =+上有一点,则点 关于原点的对称点为________.三、解答题(共46分) 19.如图所示,在△中,90OAB ∠=︒,6OA AB ==,将OAB ∆ 绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.20.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.21.如图所示,网格中有一个四边形和两个三角形. (1)请你画出三个图形关于点的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请你写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合?22.如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.23. 如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;平移△ABC 若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得P A+PB 的值最小,请直接写出点P 的坐标.24、在平面直角坐标系中,如图所示,△AOB 是边长为2的等边三角形,将△AOB 绕着点B 按顺时针方向旋转得到△DCB ,使得点D 落在x 轴的正半轴上,连接OC ,AD .(1)求证:OC =AD ;(2)求OC 的长;(3)求过A 、D 两点的直线的解析式.25、如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△GBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.26、数学是丰富多彩的,想学好数学,就要学会探究、思考。

九年级数学:23.2.1中心对称课件18

九年级数学:23.2.1中心对称课件18

中心对称性质
B' A
C O
C'
A' B
(1)关于中心对称的两个图形是全等形;
(2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
中心对称的作图
例1、已知A点和O点,画出点A关于点O的 对称点A'
连结OA 并延长到A’,使OA’=OA,
则A’是所求的点
A
O
A'
例2、已知线段AB和O点,画出线段AB关于点O的 对称线段A’B’
23.2.1 中心对称
温故知新
1观察下面的图形,你有什么发现?
温故知新
1. 什么是轴对称呢?
把一个图形沿着某一条直线折叠能与另一个图形完全重合, 那么就说这两个图形关于这条直线对称或轴对称.
2. 关于轴对称的两个图形有哪些性质?
① 两个图形是全等形. ② 对称轴是对称点连线的垂直平分线.
2观察下面的几个图形你又有什么发现?
例题解析
如图,在平面直角坐标系中,若▲ABC与▲A’B’C’关 E 点成中心对称,则对称中心 E 点的坐标是______.
例题解析
如图,两个任意四边形中心对称,请找出它们的对 称中心.
随堂练习
1.如图▲ABC与▲DEF关于 O 点成中心对称.
则 AB_____DE,BC∥_____,AC=______.
随堂练习
2.如图,如果▲ABC与▲A’B’C’关于点 O 成中心对称, 那么:
(1) ▲ABC绕点 O 旋转______°后能与▲A’B’C’重合;
(2) 线段AA’、BB’、CC’都经过点_____;
(3) OA= _____,
OB’= _____, AC= ____,

初三数学上册期末考点练习:中心对称和中心对称图形

初三数学上册期末考点练习:中心对称和中心对称图形

精品基础教育教学资料,仅供参考,需要可下载使用!中心对称和中心对称图形知识点一 中心对称与中心对称图形中心对称概念:把一个图形绕着某一点旋转180︒,如图它能够与另一个图形重合,那么就说这两个U 形关于这个点对称或中心对称,这个点叫作对称中心(简称中心).这两个图形再旋转后能重合的对应点叫作关于对称中心的对称点.如图,ABO ∆绕着点O 旋转180︒后,与CDO ∆完全重合,则称CDO ∆和ABO ∆关于点O 对称,点C 是点A 关于点O 的对称点.中心对称图形概念:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫作中心对称图形,这个点就是它的对称中心. 中心对称与中心对称图形的区别与联系:ODABC典例1下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【详解】A. 不是轴对称图形,是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C. 是轴对称图形,不是中心对称图形,故不符合题意;D. 是轴对称图形,不是中心对称图形,故不符合题意;故选B.典例2 下列所给图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.【答案】D【详解】解:A. 是轴对称图形,不是中心对称图形,不符合题意;B. 是轴对称图形,不是中心对称图形,不符合题意;C. 不是轴对称图形,是中心对称图形,不符合题意;D. 既是轴对称图形,又是中心对称图形,符合题意,故选:D.典例3如图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】C【详解】A、是中心对称图形,不是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、不是中心对称图形,不是轴对称图形,故此选项错误;故选:C.知识点二作中心对称图形的方法中心对称图形的性质:➢中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;➢中心对称的两个图形是全等图形.作中心对称图形的一般步骤(重点):➢作出已知图形各顶点(或决定图形形状的关键点)关于中心的对称点——连接关键点和中心,并延长一倍确定关键的对称点.➢把各对称点按已知图形的连接方式依次连接起来,则所得到的图形就是已知图形关于对称中心对称的图形.找对称中心的方法和步骤:对于中心对称图形和关于某一点对称的两个图形,它们的对称中心非常重要,找不对称中心是解决先关问题的关键.由中心对称的特征可知,对称中心为对应点连线的中点或两组相对应点连线的交点,因此找对称中心的步骤如下:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.典例1如图,在小正方形组成的网格中,每个小正方形的边长均为1个单位(1)画出三角形ABC向右平移4个单位所得的三角形A1B1C1.(2)若连接AA1、CC1,则这两条线段之间的关系是_______.(3)画出三角形ABC绕点O逆时针旋转180°所得的三角形A2B2C2.【答案】(1)见解析;(2)平行且相等;(3)见解析.【详解】(1)见图:(2)平行且相等;(3)见图.典例2如图,在边长为1个单位长度的88 的小正方形网格中.(1)将ABC △先向右平移3个单位长度,再向下平移2个单位长度,作出平移后的A B C ''';(2)请画出A B C '''''△,使A B C '''''△和A B C '''关于点C '成中心对称;(3)直接写出A A B '''''△的面积.【答案】(1)详见解析;(2)详见解析;(3)3. 【详解】(1)如图所示: (2)如图所示:(3)13232A AB S '''''=⨯⨯=△.知识点三 关于原点对称的点的坐标规律两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点P’(-x ,-y)典例1在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点E(﹣3,4)关于第二象限的平分线对称D.点A与点F(3,﹣4)关于原点对称【答案】D【详解】解:A、点A的坐标为(-3,4),∴则点A与点B(-3,-4)关于x轴对称,故此选项错误;B、点A的坐标为(-3,4),∴点A与点C(3,-4)关于原点对称,故此选项错误;C、点A的坐标为(-3,4),∴点A与点E(-3,4)重合,故此选项错误;D、点A的坐标为(-3,4),∴点A与点F(3,-4)关于原点对称,故此选项正确;故选:D.典例2若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.3-,2 B.3,2-C.3-,2-D.3,2【答案】C【详解】点P(m,2)与点Q(3,n)关于原点对称,得m=-3,n=-2,故选:C.典例3若P(x,3)与点Q(4,y)关于原点对称,则xy的值是( )A .12B .﹣12C .64D .﹣64【答案】A【详解】∵()P x,3与点()Q 4,y 关于原点对称, ∴x 4=-,y 3=-, ∴xy 12=. 故选:A .巩固训练一、单选题(共10小题)1.下列图形中,既是中心对称图形,又是轴对称图形的是( ) A . B . C . D .【答案】C【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误; B 、不是中心对称图形,是轴对称图形,故本选项错误; C 、既是中心对称图形,又是轴对称图形,故本选项正确; D 、是轴对称图形,不是中心对称图形,故本选项错误. 故选:C . 【名师点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、()6,1,90BAC ∠=︒,AB AC =,直线AB 交y 轴于点P ,若ABC ∆与A B C '''∆关于点P 成中心对称,则点A '的坐标为( )A .(4,5)--B .(5,4)--C .(3,4)--D .(4,3)--【答案】A【解析】详解:∵点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC , ∴△ABC 是等腰直角三角形, ∴A (4,3),设直线AB 解析式为y=kx+b ,则4321k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,∴直线AB 解析式为y=x ﹣1, 令x=0,则y=﹣1, ∴P (0,﹣1),又∵点A 与点A'关于点P 成中心对称, ∴点P 为AA'的中点,设A'(m ,n ),则42m +=0,32n+=﹣1, ∴m=﹣4,n=﹣5, ∴A'(﹣4,﹣5), 故选:A .3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( ) A . B . C .D .【答案】C【解析】∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .4.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)【答案】B【解析】试题解析:AC=2,则正方形ABCD 绕点A 顺时针方向旋转180°后C 的对应点设是C′,则AC′=AC=2, 则OC′=3,故C′的坐标是(3,0). 故选B .5.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )A .B B .JC .4D .0 【答案】D【解析】选项A 是轴对称图形,不是中心对称图形,故此选项错误;选项B 不是轴对称图形,不是中心对称图形,故此选项错误;选项C 不是轴对称图形,不是中心对称图形,故此选项错误;选项D 是轴对称图形,又是中心对称图形,故此选项正确, 故选D .6.已知点A(a +b ,4)与点B(-2,a -b)关于原点对称,则a 2-b 2等于( ) A.8 B.-8 C.5 D.-5【答案】B【详解】∵点A (a+b ,4)与点B (-2,a-b )关于原点对称,24a b a b +⎧⎨--⎩==, ∴a 2-b 2=(a+b )(a-b )=2×(-4)=-8. 故选:B . 【名师点睛】考查了关于原点对称点的性质,正确应用平方差公式是解题关键.7.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 ( )A .2种B .3种C .4种D .5种【答案】C【解析】解:如图所示:组成的图形是轴对称图形,又是中心对称图形, 则这个格点正方形的作法共有4种.故选:C .8.已知点()11,1p a -和()22,1p b -关于原点对称,则()2008a b +的值为( )A .1B .0C .-1D .()20053-【答案】A【解析】试题解析:根据题意得:a-1=-2,b-1=-1,解得:a=-1 b=0.则(a+b )2008=1.故选A .9.如图,已知长方形的长为10cm ,宽为4cm ,则图中阴影部分的面积为()A.20cm2 B.15cm2 C.10cm2 D.25cm2【答案】A【解析】由图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得,图中阴影部分的面积即是长方形面积的一半,则图中阴影部分的面积=1×40=20cm2,故选A.210.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)【答案】C【解析】点P(-2,3)向右平移3个单位得到点P1,则P1(1,3),点P2与点P1关于原点对称,则P2(−1,−3).故选C.二、填空题(共5小题)11.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.【答案】12【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为:12.【名师点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.12.若点(a ,1)与(﹣2,b )关于原点对称,则a b =_______.【答案】12. 【解析】试题分析:∵点(a ,1)与(﹣2,b )关于原点对称,∴b=﹣1,a=2,∴a b =2−1=12.故答案为:12. 13.已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____.【答案】1【解析】∵M (a ,﹣3)和N (4,b )关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=. 14.点()2,3M -关于x 轴对称的点A 的坐标是________,点M 关于y 轴对称的C 的坐标是________,点M 关于原点对称的点B 的坐标是________.【答案】(-2,-3), (2,3), (2,-3)【详解】点A (-2,3)关于x 轴对称的点的坐标是(-2,-3),关于y 轴对称的点的坐标是(2,3),关于原点对称的点是(2,-3).故答案为(-2,-3),(2,3),(2,-3).【名师点睛】本题考查了关于坐标轴对称的点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标和纵坐标都为互为相反数.15.抛物线y =2x 2-4x +5绕它的坐标原点O 旋转180°后的二次函数表达式为________.【答案】y =-2(x +1)2-3【解析】详解:y =2x 2-4x +5=2(x -1)2+3,顶点坐标是(1,3),二次项系数是2,绕原点旋转180°后的二次函数的顶点是(-1,-3),二次项系数是-2,所以表示式为y =-2(x +1)2-3.故答案为y =-2(x +1)2-3.三、解答题(共2小题)16.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .【答案】(1)画图见解析;(2)(2,-1).【解析】试题解析:(1)、△A 1B 1C 如图所示, △A 2B 2C 2如图所示; (2)、如图,对称中心为(2,﹣1).17.在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【答案】(1)画图见解析;(2)(0,2).【解析】详解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.。

人教版初三数学图形的旋转3

人教版初三数学图形的旋转3

(2)尝试与思考:如图,将一块半径足够 长的扇形纸板的圆心放在边长为a的正三角 形的中心点O点处,并将纸板绕O点旋转, 当扇形纸板的圆心角为_____时,正三角 形的边被纸板覆盖部分的总长为定值a;当 扇形纸板的圆心角为______时,正五边形 的边被纸板覆盖部分的总长也为定值a;
四、范例精析
6. ( 接上页)
结束
;
/
熔炼炉
svc70svt
乡人永铭记,造福乡人永铭记!若我丹心感动天,多磨难,佑我爹爹尚活在人间;若我丹心感动天,再艰辛,佑我兄妹 创业有明天;若我丹心感动天,十年后,佑我父子殊途同日归家园;若我丹心感动天,待他日,佑我爹爹的梦想早日圆! 演唱到这里,耿正兄妹三人的情感,已经不知不觉地完全融入到了词曲之中:往日与爹爹在一起的开心、快乐、艰辛与 磨难;失去爹爹后的痛苦、挣扎,思念和奋发全都交织在了一起他们不知道自己身在演唱台上,看不见眼前的众人,忘 记了赌约酒店内外的众人也忘记了鼓掌与喝彩,一起随着他们的感动而感动,随着他们的悲伤而悲伤!已经忘记一切的 耿正,随着自己心中悲喜情怀的迸发,兴手拉出的乐曲更加激昂!耿直奋力敲击的竹板声更加响亮,耿英演唱的歌声更 加高亢荡气回肠一曲唱,只为铭志告苍天;只要三寸气还在,我兄妹三人哪,不实现遗愿誓不甘,不实现遗愿我们誓不 甘!我们告苍天啊,告大地,各位仁人贤士啊,请听我言:景德镇胸襟开阔海纳四方人,让我们一起共创瓷都更繁荣, 让我们共创瓷都啊,更繁荣!激昂的二胡声、有力的竹板声、喷发的演唱声,在同一时刻戛然而止!大厅内外一片寂静, 所有的人鸦雀无声,完全沉寂其中少顷,那位在当地特别德高望重的,作为证人的老先生首先激动地站起来,眼含热泪 大声叫好并拼命鼓掌!沉醉的众人终于被惊醒了,雷鸣一般的掌声和欢呼声经久不息耿正兄妹三人一起走上前台,并排 向全场深深鞠躬更响亮的掌声和欢呼声一浪刚落,一浪又起阔佬及其狐朋狗友们的嚣张气焰彻底熄灭了!良久,掌声和 欢呼声终于渐渐平息了。酒店老板眼含热泪走上演唱台,对耿正兄妹三人深深鞠躬,激动得有点儿语无伦次:“谢,谢 了,多,多谢,谢谢你们啊!你们挽救了酒店,也给我上了一课。我代表酒店里所有的伙计们谢谢你们,谢谢你们啦!” 说完了,再次连连鞠躬。耿正兄妹三人赶快还礼。耿正说:“也谢谢您,谢谢那位老先生,谢谢在场的各位!我们都上 了一课,我们都上了一课啊!”再看看那个适才还蛮横无比的阔佬,此时已经是霜打的茄子了。他明知,即使自己再强 词夺理,狐朋狗友们再以势压人,也已经不可能扭转眼下的局面了,只好站起来装模作样地对演唱台上的酒店老板拱拱 手,嗓子干巴地说一声:“老板,得罪了!”看到全场人对自己的这一举动并无一点儿反应,他又对耿正兄妹三人拱拱 手,说:“后生可畏,后生可畏啊!我吴某和弟兄们得罪了,也见教了!区区九十两纹银的小费,请三位笑纳!”等一 等,看全场人依然没有反应,他又转身向一直端坐在一旁的老者拱拱手,说:“三日之内,我定将‘景德镇第一酒店’ 的烫金牌匾亲自带人挂在酒店的门楼上!”此时,讥笑声和口哨声东一串西

初中数学九年级上册知识点及公式总结大全(人教版)

初中数学九年级上册知识点及公式总结大全(人教版)

九年级数学(上)知识点(2)被开方数中不含有开得尽方的整数或整式。

3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。

注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。

8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。

在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。

9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。

第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).2这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:2(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.2(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.2 2(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子第二十三章旋转一.知识框架二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。

人教课标版初中数学初三上册第二十三章中心对称

人教课标版初中数学初三上册第二十三章中心对称

人教课标版初中数学初三上册第二十三章23【教材分析】本节课是九年级上册第23章“23.2中心对称”的第三课时,是在学生差不多学习中心对称和中心对称图形的基础,在平面直角坐标系中研究两个点关于原点对称时的坐标关系,并进一步探究运用这种规律作关于原点对称的图形的方法。

【学情分析】学生差不多在第十二章“轴对称”的学习中,积存了一定在坐标系中探究图形变换的学习体会。

能够通过类比学习,具体的例子,让学生经历动手操作,观看猜想,验证归纳,得出两个点关于原点对称时的坐标关系。

在利用坐标作中心对称中强化明白得.【教学目标】明白得P与点P′点关于原点对称时,它们的横纵坐标的关系,把握运用关于原点的对称点的坐标规律作关于原点对称的图形的方法.经历操作——猜想——验证的实践过程,从专门到一样,归纳两个点关于原点对称时的坐标关系。

通过用坐标关系找对称点的方法,探究作关于原点对称的图形的一样步骤。

情感态度与价值观目标:体会数与形之间的联系,培养学生学习善于观看、勤于摸索、大胆猜想、勇于实践、合作交流学习适应.【教学重难点】1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.【教学过程】(一)复习引入1 、什么叫中心对称?2、点P(-1,2)关于x轴对称的点的坐标为,点P到x轴的距离为,点P 到y轴的距离为3、 点P (-3,- 4)关于y 轴对称的点的坐标为 ,点P 到x 轴的距离为 ,点P 到y 轴的距离为(二)合作交流、探究规律1、如图,在直角坐标系中,已知A (4,0)、B (0,-3)、C (2,1)、D (-1,2)、E (-3,-4),作出A 、B 、C 、D 、E 点关于原点O 的中心对称点,并写它们的坐标,并回答:这些点与已知点的坐标有什么关系?分组讨论:(每四人一组):讨论的内容:关于原点作中心对称时,•它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?(让每组派代表发表本组的结论,并利用三角形全等证明规律。

九年级数学课本知识点人教版

九年级数学课本知识点人教版

九年级数学课本知识点人教版初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角的外心就是斜边的中点。

)8、直线与圆的位置关系。

d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

9、中,A(x1,y1)、B(x2,y2)。

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

九年级上册数学ppt课件

九年级上册数学ppt课件
一、教材分析
(一)教材所处的地位及作用。 本节课是九年级上册(人教版)
第二十三章第二节 中心对称的第一课 时。它是初中数学的一项重要内容。 它与轴对称、轴对称图形、旋转有着 密不可分的联系,实际生活中也随处可 见中心对称的应用。
(二)教学目标
1 、知识目标:
(1)理解并掌握中心对称的概念和性质。
2.动手操作
学生在教师的引导下动手操作, 旋转三角板,画出关于点O对称的 两个三角形,在学生画出两个中心 对称的三角形后,及时展开中心对 称性质的研究。
设计意图
通过学生动手操作、合作交流, 来获取知识,这样设计有利于突破 难点,也让学生体会到观察、猜想、 归纳的数学思想及学习过程,提高 学生分析问题和解决问题的能力。
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你又有什么发现?
O
重合
B
(2) C
重合
设计意图
鼓励学生通过观察、思考 和讨论,用自己的语言来描述 这些图案的共同特征,初步感 受中心对称的概念。这种以实 际问题为切入点导入新课,不 仅自然,而且也反映了数学来 源于生活,学习数学是为了服 务于生活。
3、归纳验证
归纳:通过动手操作、合作交流,探索 中心对称的性质,让学生在整个学习过 程中感受学习数学的乐趣,使学生学会 “文字语言”与“数学语言”这两种表 达方式。
验证:学生在探究过程中进行了画图、 旋转还有证明等活动,引导学生从中体 会到数形结合和从特殊到一般的数学思 想,而且这一过程也有利于培养学生严 谨、科学的学习态度。
教法
数学是一门培养人的思维,发展 人的思维的重要学科,因此在教学中, 不仅要使学生“知其然”,而且还要 使学生“知其所以然”。针对初三年 级学生的认知结构和心理特征,本节 课可选择“引导探索法”,引导学生 自主探索,合作交流,这种教学理念 紧随新课改理念,也反映了时代精神。

人教版初三数学下册中考知识点梳理:第24讲平移、对称、旋转与位似

人教版初三数学下册中考知识点梳理:第24讲平移、对称、旋转与位似

第七单元图形与变换第24讲平移、对称、旋转与位似中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.2.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=4【答案】D【解析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.3.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°【答案】D【解析】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A .1个B .2个C .3个D .4个【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0 即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( ) A .12B .13C .14D .16【答案】D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案. 【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【答案】C【解析】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.7.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A .115°B .120°C .130°D .140°【答案】A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A . 8.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( )A .1B .3C .14-D .74【答案】D【解析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解.【详解】解:3,354,x y x y +=⎧⎨-=⎩①② +①②,得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型. 9.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个【答案】D【解析】解:①正方体的主视图与左视图都是正方形; ②球的主视图与左视图都是圆; ③圆锥主视图与左视图都是三角形; ④圆柱的主视图和左视图都是长方形; 故选D .10.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题. 详解:∵y=2x 2+4x-1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误, 当x <-1时,y 随x 的增大而减小,故选项C 错误, 当x=-1时,y 取得最小值,此时y=-3,故选项D 正确, 故选D .点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本题包括8个小题)11.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.【答案】13【解析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答. 【详解】∵共有15个方格,其中黑色方格占5个, ∴这粒豆子落在黑色方格中的概率是515=13, 故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键. 12.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围. 【详解】方程两边同乘以x-1,得,m-1=x-1, 解得x=m-2, ∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0, 即m-2>0且m-2-1≠0, ∴m >2且m ≠1, 故答案为m >2且m≠1. 13.若分式的值为零,则x 的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1. 考点:分式的值为零的条件.14.写出一个大于3且小于4的无理数:___________. 【答案】如10π,等,答案不唯一.【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16都是完全平方数,10,11,12,,15都是无理数.15.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.【答案】同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行 考点:平行线的判定16.不等式组2x+1x{4x 3x+2>≤的解集是 ▲ . 【答案】﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此, 解第一个不等式得,x >﹣1, 解第二个不等式得,x≤1, ∴不等式组的解集是﹣1<x≤1.17.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23+. 其中正确的序号是 (把你认为正确的都填上).【答案】①②④【解析】分析:∵四边形ABCD 是正方形,∴AB=AD 。

人教版初三数学:中心对称与中心对称图形--知识讲解

人教版初三数学:中心对称与中心对称图形--知识讲解

中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

人教版初三数学上册23.2.3 关于原点对称的点的坐标教案.2《中心对称》(第3课时)教案

人教版初三数学上册23.2.3   关于原点对称的点的坐标教案.2《中心对称》(第3课时)教案

23.2.3 关于原点对称的点的坐标官道口中学常自留[复习引入]1、把一个图形绕着某一个点旋转180°,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点就叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2、中心对称的性质(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(2)关于中心对称的两个图形是全等形;3、两个点关于x轴对称时,点P(X,Y)的对称点为P′(_____,_____).4、两个点关于y轴对称时,点P(X,Y)的对称点为P′(_____,_____).5、(1)点P(-1,2)关于x 轴对称点的坐标为,点P 到x 轴的距离为,点P 到y 轴的距离为;(2)点P(-3,-4)关于y 轴对称的点的坐标为,点P 到x 轴的距离为,点P 到y 轴的距离为.[学习目标]1.理解点 P 与点 P′关于原点对称时,它们的横纵坐标的关系;2.会用关于原点对称的点的坐标的关系解决有关问题.学习重点:点 P(x,y)关于原点的对称点 P (-x,-y)及其应用.[探究新知]问题:在直角坐标系中,作出下列已知点关于原点O 的对称点,并写出它们的坐标.这些坐标与已知点的坐标有什么关系?A(4,0),B(0,-3),C(2,1),D(-1,2),E(-3,-4)y)关于原点O 的对称点为P′(-x,-y).[巩固练习]1、填空:(1)点A(3,4)关于原点的对称点的坐标为;(2)点A(a,2)与点B(8,b)关于原点对称,a = ,b = ;(3)点(2,1)与点(2,-1)关于对称;点(2,1)与点(-2,-1)关于对称;点(2,1)与点(-2,1)关于对称.2、下列各点中哪两个点关于原点O对称?A(-5,0),B(0,2),C(2,-1),D (2,0),E (0,5),F(-2,1),G(-2,-1).解:关于原点O对称的点有点C和点F3、利用关于原点对称的点的坐标的关系,作出与△ABC关于原点对称的图形.解: ∵P (x,y)关于原点的对称点为P'(__,__)∴△ABC的三个顶点关于原点的对称点为:A(-4,1)关于原点的对称点A'(___,___),B(-1,-1)关于原点的对称点为B'(___,___),C(-3,2)关于原点的对称点为C'(___,___).依次连接就可得到与△ABC关于原点对称的△A'B'C'.(请在下图作出△A'B'C')A'(4,-1),B'(1,1),C'(3,-2)[归纳小结]1、两个点关于原点对称时,它们的坐标间有什么关系,即点P(x,y)关于原点O 的对称点P′的坐标是什么?P′(-x,-y)2、在平面直角坐标系下,作一个图形的中心对称图形的步骤是什么?(1)图形的对称转化为点的对称.标出点的中心对称点.(2)连接线段.[达标检测]1.若设点M(a,b),M点关于X轴的对称点M1()M点关于Y轴的对称点M2(),M点关于原点O的对称点M3()2.点A(-1,-3)关于x轴对称点的坐标是____________.关于原点对称的点坐标是____________.3.若点A(m,-2),B(1,n)关于原点对称,则m=_____,n=_____ .4、写出下列各点关于原点的对称点A',B',C',D'的坐标:A(3,1),B(-2,3),C(-1,-2),D(2,-3).解:A'(-3,-1),B'(2,-3),C'(1,2),D'(-2,3),5、若点P(a,1)与点Q(5, b)关于原点对称,则a+b=_______.6、点M(5,6)和点N是关于原点对称的两点,则点N在第________象限.7、在如图所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为;关于坐标原点O对称的两个三角形的编号为;8、(2008河南中招题)如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A的坐标是(1,3),则点M 和点N 的坐标分别是:; 。

九年级数学知识点总结人教版

九年级数学知识点总结人教版

九年级数学知识点总结人教版学习从来无捷径,循序渐进登高峰。

如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。

学习需要勤奋,做任何事情都需要勤奋。

下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

1、概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180° ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180° ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点 P(x,y)关于原点 O 的对称点P′(-x,-y).(一)平行四边形的定义、性质及判定.1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4 ·对称性:平行四边形是中心对称图形.(二)矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.2 ·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4 ·对称性:矩形是轴对称图形也是中心对称图形.(三)菱形的定义、性质及判定.1 ·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。

人教版 九年级数学讲义 图形的旋转与中心对称(含解析)

人教版 九年级数学讲义 图形的旋转与中心对称(含解析)

第8讲图形的旋转与中心对称知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习旋转变换,重点掌握旋转三要素以及旋转的性质,能够结合图形的性质处理简单几何问题,其次学习中心对称以及中心对称图形,掌握中心对称的性质,了解坐标关于原点对称的特征。

本节课的难点在于旋转与三角形以及四边形等知识点的结合考查,具有一定的综合性,希望同学们认真学习,熟练掌握相关性质和应用。

知识梳理讲解用时:20分钟图形的旋转(1)旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角。

从以下几点理解定义:①旋转中心在旋转过程中保持不变;①图形的旋转是由旋转中心、旋转角度和旋转方向共同决定(三要素);①旋转角度一般小于360°。

(2)旋转的特征①旋转后图形上每一点都绕着旋转中心旋转了同样的角度;①旋转后的图形与原图形对应线段相等、对应角相等;①对应点到旋转中心的距离相等;①旋转后的图形与原来的图形的形状和大小都没有发生变化。

课堂精讲精练【例题1】将小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是()A.B.C.D.【答案】B【解析】本题考查的是图形的旋转变化,小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是B中图案,故选:B.讲解用时:3分钟解题思路:根据旋转的意义,找出图中眼、尾巴等关键处按顺时针方向旋转90°后的形状即可选择答案。

教学建议:看清是顺时针还是逆时针旋转,旋转多少度。

难度:3 适应场景:当堂例题例题来源:大渡口区模拟年份:2017 【练习1】观察下列图案,其中旋转角最大的是()。

A.B.C.D.【答案】A【解析】根据旋转的定义来判断旋转的度数,A、旋转角是120°;B、旋转角是90°;C、旋转角是72°;D、旋转角是60°.故选:A.讲解用时:2分钟解题思路:根据定义,一个图形围绕一个定点旋转一定的角度,得到另一个图形叫做旋转。

初三数学第6讲图形旋转和中心对称(学生版)

初三数学第6讲图形旋转和中心对称(学生版)

第 5 讲图形的旋转和中心对称图形的旋转和中心对称1、旋转的定义:在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点 O 叫做 ______,转动的角叫做______.所以,图形的旋转是由______和______ 决定的.2、中心对称的定义:把一个图形绕着某一个点旋转______,那么称这两个图形对于这个点对称或中心对称,的对应点叫做对于中心的______.______,假如它能够与另一个图形这个点叫做 ______,这两个图形中3、旋转的特色:旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.4、中心对称的特色:(1) 对于中心对称的两个图形,对称点所连______ 都经过______ ,并且被对称中心所______.(2)对于中心对称的两个图形是______.5、中心对称图形:把一个图形绕着某一个点旋转 ______,假如旋转后的图形能够与本来的图形 ______,那么这个图形叫做中心对称图形,这个点就是它的 ______.1、旋转的定义和性质;2、中心对称的定义和性质;3、会画旋转后的图形和中心对称图形;例 1、以下列图中,不是旋转对称图形的是( ).例 2、有以下四个说法,此中正确说法的个数是 ( ) .①图形旋转时,地点保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了同样的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4 个例 3、以下列图形中,不是中心对称图形的是 ( ) ...A.圆B.菱形 C .矩形 D .等边三角形例 4、以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1 个例 5、:如图,E是正方形ABCD的边CD上随意一点,F是边AD上的点,且FB均分∠ABE.求证: BE=AF+ CE.例 6.:如图,在四边形ABCD中,∠ B+∠ D=180°, AB=AD,E,F 分别是线段BC,CD上的点,且BE+ FD=EF.求证:EAF 1BAD.2A1、下边各图中,哪些绕一点旋转180°后能与本来的图形重合?( ).A.①、④、⑤B.①、③、⑤C.②、③、⑤D.②、④、⑤2、如图,假定正方形DCEF旋转后能与正方形ABCD重合,那么图形所在平面内可作为旋转中心的点共有 ( ) 个.A.1B.2C.3D.43、以下列图形中,是轴对称图形而不是中心对称图形的是( ).4、如图 4 能够看作是一个等腰直角三角形旋转假定干次而生成的,那么每次旋转的度数能够是( )图4(A)90 °(C)45 °(B)60 °(D)30 °5.以下列图形中,既是轴对称图形,又是旋转对称图形的是(A) 等腰三角形(B) 平行四边形(C) 等边三角形(D) 等腰梯形()6.将点A(4 , 0) 绕着原点O顺时针方向旋转30°角到对应点A′,那么点 A′的坐标是( )(A) (23,2)(B)(4 ,- 2)(C) (23, 2)(D) (2, 2 3)7.要使正十二边形旋转后与自己重合,起码应将它绕中心逆时针旋转( )(A)9 °(B)18 °(C)30 °(D)36 °8、如图,D,E分别是正三角形的边BC和CA上的点,且AE=CD,AD与BE交于P,求∠ BPD的度数?9、,如图 7,E、F分别在正方形ABCD边AB和BC上,AB= 1,∠EDF= 45°,求△BEF的周长.图 7B1.如图 3,将正方形图案绕中心O旋转180°后,获得的图案是( )图 3(A) (B) (C) (D)2.以下说法中,正确的个数有( )(1)假如两个图形对于一点中心对称,那么对称点的连线必经过对称中心;(2)假如两个图形对于一点中心对称,那么对应线段必定平行或在同向来线上;(3)假如一个图形经过平移获得另一个图形,那么它们的对应点的连线必定平行.(A)0 个(B)1 个(C)2 个(D)3 个3、如图,在平面直角坐标系中,△和△为等边三角形,= ,点,,D在ABC DEF AB DE B Cx 轴上,点 A, E, F在 y 轴上,下边判断正确的选项是( ) .A.△DEF是△ABC绕点O顺时针旋转90°获得的B.△DEF是△ABC绕点O逆时针旋转90°获得的C.△DEF是△ABC绕点O顺时针旋转60°获得的D.△DEF是△ABC绕点O顺时针旋转120°获得的4.以下说法错误的选项是( )(A)全等的两个图形不必定成中心对称(B)中心对称的两个图形必定是全等图形(C)能够完整重合的两个图形中心对称(D)中心对称是指两个全等图形之间的互相地点关系5、如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到以下列图的虚线处后绕点M按逆时针方向旋转22°,那么三角板的斜边与射线OA的夹角为______°.C1.以下正方体的平面睁开图中,既不是轴对称图形,也不是中心对称图形的是( )(A)(B)(C)(D)2.以下语句中,不正确的选项是( )(A)图形的平移是由挪动的方向和挪动的距离所决定的(B)图形的旋转是由旋转中心、旋转方向和旋转角度所决定的(C)中心对称图形是旋转角度为180°的旋转对称图形(D)旋转对称图形是中心对称图形3、如图,把边长为 1 的正方形ABCD绕极点 A逆时针旋转30°到正方形A′ B′ C′D′,那么它们的公共局部的面积等于______.CD绕点4、如图,梯形ABCD中, AD∥ BC,∠ B=90°, AD=3, BC=5, AB=1,把线段D逆时针旋转90°到DE地点,连接AE,那么 AE的长为______.5.:如图,四边形 ABCD中,∠ D=60°,∠ B=30°, AD=CD.222求证: BD=AB+ BC.1.在以下列图形中,中心对称图形有( )(A) ③(B) ①③ (C) ②③ (D) ③④2.以下列图形中,既是轴对称图形又是中心对称图形的是( )3.点P(5 ,- 3) 对于原点对称的点的坐标是 ( )(A)( -5, 3)(B)( -5,- 3)(C)(3 ,- 5)(D)( -3, 5)4.如图 3,△ABC中,∠B= 90°,∠C= 30°,AB=1,将△ABC绕极点A旋转 180 °,点C 落在′处,那么′的长为 ( )C CC图3(A)43(B)4(C) 23(D) 255.点M( m,n) 在第二象限,那么点(A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限M′( mn-n, n- m)对于原点对称的点在()6.如图,把一个直角三角尺ACB绕着30°角的极点 B 顺时针旋转,使得点 A 与CB的延伸线上的点 E 重合.(1)三角尺旋转了多少度 ?(2)连接 CD,试判断△ CBD的形状;(3)求∠ BDC的度数.7、:直线l 的分析式为y=2x+3,假定先作直线l对于原点的对称直线l 1,再作直线 l 1对于 y 轴的对称直线l 2,最后将直线l 2沿 y 轴向上平移 4 个单位长度获得直线l 3,试求l 3 的分析式.8.:如图,Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且 DE⊥ DF.(1)222假如 CA=CB,求证: AE+ BF=EF;(2)假如 CA< CB,(1)中的结论还建立吗?假定建立,请证明;假定不建立,请说明原因.1.以下列图形中,既是轴对称图形又是中心对称图形的是( )2.以下列图形中,既是中心对称图形又是轴对称图形的是( ).A.等边三角形B.菱形C.等腰梯形D.平行四边形3.以下命题正确的选项是( )(A)两个会重合的三角形必定成轴对称(B)两个会重合的三角形必定成中心对称(C)成轴对称的两个图形中,对应线段平行且相等(D)成中心对称的两个图形中,对应线段平行( 或在同一条直线是 ) 且相等4.以下列图形中,旋转 60°后能够和原图形重合的是( )(A) 正六边形(B) 正五边形(C) 正方形(D) 正三角形5、如图,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC为边作DCE, B, E 在C, D的同侧.假定AB2, 那么BE=______.6.如图 1,P为正方形ABCD内的一点,△ABP绕点B顺时针旋转获得△CBE,那么△ BPE 是______ 三角形.图 17.如图 3,将△AOB绕点O逆时针旋转 90°,获得△A′OB′.假定点A的坐标为 ( a,b) ,那么点 A′的坐标为______.图 38.如图 5,△是△绕点O 旋转 40°后所得的图形,点C恰幸亏上,∠AODCOD AOB AB=90°,求∠B的度数.9.:如图,P 是正方形 ABCD内一点,∠APB 135 , BP 1, AP7. 求PC的长.初三数学第6讲图形旋转和中心对称(学生版)课程顾问署名:教课主管署名:。

人教版九年级数学上册教案:24.1 圆的有关性质

人教版九年级数学上册教案:24.1 圆的有关性质

数学教学设计人教版九年级数学第二十四章《圆》——24.1圆的有关性质(一)课题:圆圆一、教学设计思想本节课是九年义务制教育九年级上册第二十四章第一节的内容,选用的是人民教育出版社教材。

圆是初中几何中重要的内容之一。

本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。

讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。

《新课程标准》提出“使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。

”本节课在遵循这一基本理念下,尽量实现几何课程的教育价值。

数学源于生活,又服务于生活,最终要解决生活中的问题。

利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。

形成应用数学意识和创新思维,进而使学生获得对数学知识理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教学背景分析(一)教学内容分析圆是继三角形、四边形等基本图形后的又一个重要内容。

圆的知识在科学技术和日常生活中有广泛应用。

圆是平面几何中最基本的图形之一,它在几何中有重要的地位。

圆的有关概念是圆这一章的起始课,在本节课之前学生小学已经学习了圆的初步知识,联系学生实际,整合课外资源来充实课堂教学内容。

圆的有关概念是中学阶段应用圆知识解决实际问题的开端,也是为今后学习圆的知识奠定基础.通过对实际问题的探索让学生初步感受从实际问题中抽象出数学问题的过程,培养学生的数学价值观,增强学数学、用数学的意识。

(二)学生情况分析初三年级的学生是初中阶段的高年级的学生,课堂中的学习行为趋于理性化,思维的成熟度,内心深处探求真理的欲望比初二年级高,因此要引导轻松和谐的课堂气氛,充分激活学生的创造欲望,让学生在教师创设的情境中充满好奇心的学,留给学生充分的自主活动和相互交往的空间,在观察中不断地发现数学问题,在实践中日益领悟数学思想,在评价中逐步形成数学价值观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档