MATLAB图像分割毕业设计开题报告

合集下载

基于MATLAB的图像分割算法研究设计.doc

基于MATLAB的图像分割算法研究设计.doc

2.3
基于二阶导数的边缘检测算法.................................................................................... 9 2.3.1 2.3.2 Laplacian 算子边缘检测方法.............................................................................9 LOG 算子边缘检测方法.................................................................................. 10
2.2
基于边缘的图像分割.................................................................................................... 6 2.2.1 2.2.2 2.2.3 2.2.4 基于梯度的边缘检测......................................................................................... 7 Roberts 算子边缘检测........................................................................................ 8 Sobel 算子边缘检测........................................................................................... 8 Prewitt 算子边缘检测.........................................................................................9

开题报告基于MATLAB图像处理软件设计

开题报告基于MATLAB图像处理软件设计

西安邮电学院毕业设计(论文)开题报告通信工程系通信工程专业 10 级 1005 班课题名称:基于MATLAB图像处理软件设计学生姓名:田敏学号:03101182指导教师:李瑛报告日期: 2014-3-101.本课题所涉及的问题及应用现状综述MATLAB语言的产生是与数学计算紧密联系在一起的。

1980年,美国新墨西哥州大学计算机系主任CleveMoler为学生编写的程序,收到了广泛的欢迎。

所涉及问题如下:(1)研究图像处理技术,包括图像处理技术的分类、数字图像处理的特点、主要内容以及应用。

(2)学习MATLAB软件的相关知识,以及其优缺点。

(3)熟练掌握MATLAB软件在图像处理中的应用。

(4)完成系统的整体设计,各功能模块设计。

(5)向做好的平台中添加图像,图像读取、存储、显示、去色、图像翻转、局部放大、透明度调整、去噪、平滑、锐化压缩等操作。

应用现状如下:在现代生活中,随着计算机的不断发展,人们对图像信息的需求越来越大,这已经涉及到空间科学,工程科学,医学以及日常生活的方方面面。

国内外一些比较有实力的大学和公司,如:清华大学,华盛顿大学和sonny公司等都开发了相当成熟的图像处理系统。

MATLAB软件越来越被广泛的应用到图像处理中,它具有强大的图像处理工具箱和相当丰富的源代码,语法比较简单,是一种基于矩阵为基本变量的可视化语言。

国内研究具有代表性的是清华大学研制的数字图像处理实验开发系统TDB—IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。

TDB—IDK 系列产品是一款基于TMS320C6000 DSP数字信号处理器的高级视频和图像系统。

该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。

2.本课题需要重点研究的关键问题、解决的思路及实现预期目标的可行性分析关键问题:(1)学习数字图像处理的相关知识及MTALAB软件的使用方法。

(2)熟练掌握MATLAB在图像处理中各方面的应用。

基于MATLAB的图像分割算法研究开题报告

基于MATLAB的图像分割算法研究开题报告
1011周采用分水岭分割方法实现图像分割。
1213周系统测试,完善程序功能。
1415周按照规定要求完成毕业论文。
六、指导教师意见
签字: 年见
签字: 年 月 日
2、图像边缘检测方法用于图像处理的历史
在图像分割中,边缘检测方法可以说是人们研究的最多的方法,它试图通过检测包含不同区域的边缘来解决图像分割问题。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较剧烈的地方,也即我们通常所说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常我们将边缘划分为阶跃状和屋顶状两种类型。阶跃边缘中边缘两边的灰度值有明显的变化;而屋顶状边缘中边缘位于灰度增加与减少的交界处。在数学上可利用灰度的导数来刻划边缘点的变化,对阶跃边缘、屋顶状边缘分别求其一阶、二阶导数。可见,对阶跃边缘点儿其灰度变化曲线的一阶导数在A点达到极大值;二阶导数在A点与零交叉。对屋顶状边缘点B,其灰度变化曲线的一阶导数在B点与零交叉,二阶导数在B点达到极值。
本课题就是从这一起点出发,分别采用边界分割和分水岭变换两种方法进行图形分割,并用MATLAB实现整个分割过程。
二、课题关键问题及难点问题
1、基于边缘分割的图像分割算法的应用。
2、Hough变换的线检测方法与仿真实现。
3、利用各种算子进行图像分割并仿真实现
4、图像分割的仿真与实现。
5、基于分水岭变换进行图像分割
多年来,对图像分割的研究一直是图像技术研究中的热点和焦点,人们对其的关注和投入不断提高。它是一种重要的图像分析技术,是从图像处理到图像分析的关键步骤,也是计算机视觉领域低层次视觉中的主要问题,图像分割结果是图像特征提取和识别等图像理解的基础,对图像的加工主要处于图像处理的层次,图像分割后,对图像的分析才成为可能。另外,图像分割在实际中也得到了广泛的应用,在计算机视觉和图像识别的各种应用系统中占有相当重要的地位,也是研制和研发计算机视觉系统、字符识别和目标自动获取等图像识别和理解系统首先要解决的问题。只要需对图像目标进行提取,测量等都离不开图像分割。

图像分割算法的实现与研究 开题报告

图像分割算法的实现与研究  开题报告

电子工程学院本科毕业设计开题报告学号姓名导师题目图像分割算法的实现研究课题的意义(背景需求等,即为什么研究该课题):图像分割是图像处理中的一项关键技术,也还是一经典难题,发展至今人没有找到一个通用的方法,也没有制定出判断分割算法好坏的标准,任何一单独的图像分割算法都难以对一般图像取得令人满意的分割结果,这给图像分割技术的应用带来许多实际问题。

因此,对近几年来出现的图像分割方法作较全面的综述,探讨了图像分割技术的发展方向,对从事图像处理研究的科研有一定的启发作用。

阈值图像分割,K-means算法和分水岭算法都还有很多的缺陷和很大的发展空间,此课题有助于我们更好地了解,并对三种算法加以改进。

课题之前的研究基础(前人所做的工作):图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出上千种分割算法.但因尚无通用的分割理论,现提出的分割算法大都是针对具体问题的,并没有一种适合所有图像的通用分割算法.另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题.最近几年又出现了许多新思路、新方法或改进算法.现有大部分算法都是集中在阈值确定的研究上,阈值分割方法根据图像本身的特点可分为全局阈值,局部阈值和自适应阈值三种分割算法,但是单阈值不能很好地处理包含多个前景的图像, 多阈值方法也有对于某些像素不能准确判断的缺点,因此,在克服以上理论缺点和承其优点的基础上,我将研究自适应阈值。

现有的K-means算法存在很多缺点,如K值要事先给定;要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化;而且还要不断地进行样本分类调整。

基于形态学分水岭的图像分割算法是目前图像分割中探讨较多的算法之一. 传统形态学分水岭算法主要存在过度分割和计算耗时两方面的问题。

课题现在要解决的问题(即研究什么):用Matlab实现基于自适应阈值、K-means和分水岭算法的图像分割算法,同时,了解各个算法的运算原理及各自功能。

基于MATLAB的图像分割方法及应用

基于MATLAB的图像分割方法及应用

本科毕业设计(论文)课题名称基于MATLAB的图像分割方法及应用电子信息工程学院电子科学与技术专业学号学生姓名指导教师起讫日期工作地点摘要图像处理是一种新兴学科,在短短几十年中得以迅速发展并广泛应用于航天、军事、医学等领域。

它是如今信息社会引人注目的多媒体技术中重要组成部分只一。

图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。

图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。

图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。

本文根据图像分割原理及人眼视觉的基本理论,研究图像的彩色模型及图像分割的常用方法,比较各方法的特点,并选择合适的方法对图像进行分割。

本文采用MATLAB软件对图像进行彩色坐标变换及阈值分割,计算简单,具有较高的运行效率,分割的结果是使图像更符合人眼的视觉特性,获得比较好的效果。

关键字:图像处理;图像分割;人类视觉;MATLABABSTRACTImage processing of the emerging disciplines, in a short span of decades to the rapid development and is widely used in military, aerospace, medical and other fields. Today's information society it is eye-catching multi-media technology an important part. This paper reviews the image processing in the human visual segmentation and the basic theory and commonly used method, combined with the cells to deal with image color space conversion and split. And through the MATLAB platform to realize color image segmentation.This article first discusses the basic principles of vision, including the structure of the human eye, the human eye's visual system, color vision, color, etc. In this paper, The basic principle of color image processing is also carried out preliminary study was mainly aimed at the visual characteristics of the human eye to choose the appropriate color model to color images converted from RGB space to reflect the characteristics of human visual processing of the HSI space and then. Color images of cells after conversion model for the operation of division.In this paper, the threshold segmentation of cell image segmentation is using methods. Threshold segmentation method applied to objects and background have a stronger contrast to the situation, it is important that the gray background or objects in a single comparison, the calculation is simple, with high operating efficiency. The results of segmentation are to make the image more in line with the visual characteristics of the human eye and to obtain relatively good results.Keywords: image processing; image segmentation; MATLAB; human visual目录第一章绪论 (1)1.1 前言 (1)1.2 MATLAB简介 (2)1.3 视觉研究现状 (3)1.4 视觉研究与彩色图像坐标转换 (3)1.4.1 视觉研究与图像处理 (3)1.4.2 视觉研究在彩色图像坐标转换的应用 (4)1.5 研究目的与内容 (4)1.5.1 研究目的 (4)1.5.2 本文主要内容 (5)第二章视觉基本理论 (6)2.1 视光学 (6)2.1.1 人眼的结构 (6)2.1.2 视觉系统 (7)2.1.3 颜色视觉 (8)2.1.4 肉眼色度视觉原理 ............................................................ 错误!未定义书签。

基于MATLAB的图形图像处理系统的实现的开题报告

基于MATLAB的图形图像处理系统的实现的开题报告

基于MATLAB的图形图像处理系统的实现的开题报告一、选题背景和意义图形图像处理是一项重要的计算机技术,在现代社会得到了广泛应用。

图形图像处理技术主要是指利用计算机对图像进行处理、分析、压缩、存储等操作。

MATLAB是一种非常流行的科学计算软件,具有强大的计算和图形处理功能,被广泛应用于科学计算、工程分析、数据探索等领域。

本项目旨在基于MATLAB实现一个图形图像处理系统,该系统可以对图像进行各种处理,并能将处理结果直观地展示。

二、研究内容和目标1. 系统需求分析首先对图形图像处理系统的需求进行分析,确定该系统需要实现的功能和具体的运行环境。

目标是基于MATLAB实现一个简单易用的图形图像处理系统,具有一定的实用性。

2. 图像处理算法研究选择常用的几种图像处理算法进行研究,包括图像滤波、边缘检测、二值化处理、形态学处理等。

研究各种算法的原理和实现方式,为后续系统的实现提供基础。

3. 系统设计和实现根据系统需求和图像处理算法的研究结果,对系统进行设计和实现。

设计包括系统结构、界面设计和算法实现等。

实现方面需要考虑MATLAB 编程语言特有的特点和使用需要注意的事项。

4. 系统测试和性能分析对系统进行全面的测试和性能分析,检验系统是否达到预期的目标。

分析系统的性能,包括运行速度、处理效果等指标。

三、研究方法和步骤1. 文献综述:针对图像处理技术和MATLAB编程语言相关文献进行综述和分析。

深入研究图像处理算法的原理和实现方式,熟悉MATLAB编程语言的基本语法和运用方式。

2. 需求分析:通过调研和访谈等方式,明确图形图像处理系统的需求,包括功能、性能和运行环境等方面。

3. 系统设计:根据需求分析结果,设计系统的结构和界面,并确定具体的算法实现方式。

4. 系统实现:依据系统设计方案,利用MATLAB编程语言实现图形图像处理系统。

5. 系统测试:对系统进行全面的测试和调试,评估系统的运行速度、处理效果等性能指标。

Matlab图像处理开题

Matlab图像处理开题

毕业设计(论文)开题报告题目:基于matlab的图像编辑软件开发专业计算机科学与技术班级091041B1学号0910411116姓名牛向华指导教师姜寒2013年03 月1 日1 本课题的目的和意义、国内外研究现状、水平和发展趋势1.1课题的目的和意义随着图像处理的研究逐渐深入,许多问题有待于解决,故对图像处理得需求也进一步增加。

图像处理已经逐渐成为一门比较成熟的学科,数字图像处理在整个图像处理领域中占有重要的地位。

图像处理中有很多数学公式,目前以数学为工具讲解图像处理的专著也有很多,Matlab主要就是通过程序实现图像处理,而且Matlab不像其他语言实现图像程序设计比较繁琐,它却相对比较简单易懂,很好实现。

从本质上说,图像就是函数、矩阵或程序设计中的数组。

而Matlab具有强大而方便的数组操作功能,同时又提供了丰富的图像处理函数。

图像信息是人类获得外界信息的主要来源,因为大约有70%的信息是通过人眼获得的,而人眼获得的都是图像信息。

在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题。

例如:由于空间技术的发展,人造卫星拍摄了大量的地面和空间的照片,人们可以利用照片获得地球资源、全球气象和污染情况等;在医学上,医生可以通过x射线分析照像,观察到人体各部位的断层图像;在工厂,技术人员可以利用电视图像管理生产,由此可见图像信息的重要性。

获得图像信息非常重要,但目的不仅仅是为了获得图像,而更重要的是将图像信息进行处理,在大量复杂的图像中找出我们所需要的信息。

因此图像信息处理在某种意义上讲,比获得图像更为重要,尤其是在当今科学技术迅速发展的时代,对图像信息处理提出了更高的要求,以便更加快速、准确,可靠地获得有用信息。

MATLAB软件自从20世纪80年代中期推出以来,不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,现已成为国际公认的、最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件.它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。

(完整版)matlab图像分割毕业设计

(完整版)matlab图像分割毕业设计

数字图像的多分辨率分析处理方法研究—基于小波变换的医学图像分割的研究电信学院电子信息工程专业摘要图像分割是一种重要的图像分析技术.对图像分割的研究一直是图像技术研究中的热点和焦点。

医学图像分割是图像分割的一个重要应用领域,也是一个经典难题,至今已有上千种分割方法,既有经典的方法也有结合新兴理论的方法.本论文首先介绍了双峰法以及最大类方差自动阈值法,然后重点介绍一种基于小波变换的图像分割方法,该方法先对图像的灰度直方图进行小波多尺度变换,然后从较大的尺度系数到较小的尺度系数逐步定位出灰度阈值.最后,对这几种算法的分割效果进行了比较。

实验结果表明,本设计能够实时稳定的对目标分割提取,分割效果良好。

医学图像分割是医学图像处理中的一个经典难题.图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。

关键词:小波变换;图像分割;阈值The image segmentation is an important technology of image processing. It is still a hot point and focus of image processing。

Medical image segmentation is an important application in the field of image segmentation, and it is also a classical difficult problem for researchers。

Thousands of methods have been put forward to medical image segmentation. Some use classical methods and others use new methods.In this paper , first introduced the petronas method and maximum between class variance 。

matlab图像处理开题报告

matlab图像处理开题报告
数字图像处理是一个跨科学的前沿科技领域,在工程学,计算机科学,信息学,统计学,物理,化学,生物医学,地址,海洋,气象,农业,冶金等许多科学中的应用取得了巨大的成功和显著地经济效益。
MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。而它的GUI是一个人机交互界面,在现实中有广泛的应用。
二、本课题的主要研究内容(提纲)
matlab具有完备的图形处理功能、友好的用户界面以及功能强大的图形处理工具箱,能够实现对数字图像的编辑和处理工作,实现功能包括数字图像的读取、存储、显示、去色、图像翻转、局部放大、透明度调整、去噪、平滑、锐化、压缩、边缘检测等操作。
本文的主要内容如下:
1.研究图像处理技术,包括图像处理技术的分类、数字图像处理的特点,主要内容以及应用。
畸变是成像系统的一种像差,理想成像系统不仅成像清晰,而且满足物像相似关系。当系统能够清晰成像,但物像不相似时,其不相似程度就是用畸变来衡量。几何畸变有桶形畸变、枕形畸变、几何倾斜等。一般选择桶形畸变的校正作为研究的对象。桶形校正的一般步骤如下:
1找出畸变图对称中心,将畸变图像代表的地址空间关系转换为以对称中心为原点的空间关系
所在系(所)意见
负责人(签章):年月日来自(4)第十一、十二、十三周,开始写论文正文

毕业设计(论文)开题报告-基于区域合并的纹理图像分割--MSRM算法的MATLAB实现模板

毕业设计(论文)开题报告-基于区域合并的纹理图像分割--MSRM算法的MATLAB实现模板

2007级本科学士学位开题报告学院:信息科学与工程学院年级专业:电子信息工程0706班学生姓名:学号:指导老师姓名:2011年4月2日一、简表设计名称基于区域合并的纹理图像分割——MSRM算法的MATLAB实现课题来源A.科研课题(√) B. 自选课题()课题类型 A. 理论研究(√) B. 应用研究() C. 开发研究()开题时间2011 年 4 月 2 日二、设计立论依据(包括研究意义、研究现状分析、参考文献综述)研究意义及现状:对图像分割的研究可分为三个层次:1、图像分割算法,即对图像分割技术的研究;2、对分割结果或分割方法的评价,对图像各种分割性能比较,分析不同分割方法的特点;3、对分割方法的评价和评价准则进行系统研究。

图像分割算法的研究已经有几十年的历史,至今基于各种理论已经提出上千种分割算法,现在这方面的研究仍然是研究的重点。

由于图像分割目前还没有通用的分割理论,故大多数分割算法都是针对具体问题的;另外一方面,对一个给定的图像分析问题要选择适当的分割算法还没有标准的分割方法,故对分割方法的评价近来也受到重视,也是今后发展的一个趋势。

纹理有三个主要标志:1、某种局部的序列性在比该系列更大的区域内不断重复;2、序列有基本部分非随机排列组成的;3、各部分大致的均匀统一体,在纹理区域内的任何地方都有大致相同的结构尺寸,即纹理基元。

纹理图像的这些特性决定了基于统计理论是描述纹理图像较好的方法。

高效和有效的图像分割是计算机视觉和识别物体的重要任务。

由于通常对自然的图像进行全自动图像分割是十分困难的,而包含有几个简单的用户输入的互动方案是比较好的解决办法。

提出基于区域合并机制的一种新型的极大相似性规则,在标记的帮助下指导合并过程。

如果R的一个邻域Q在所有邻域中与R 有最高的相似性,那么区域R与邻域Q合并。

该方法自动合并由均值漂移分割得到的初始分割区域,然后通过给所有未标记区域贴标签作为背景或目标来有效地提取物体轮廓。

基于matlab的图像增强方法研究开题报告

基于matlab的图像增强方法研究开题报告

基于matlab的图像增强方法研究开题报告1开题报告含“文献综述”作为毕业设计论文答辩委员会对学生答辩资格审查的依据材料之一。

此报告应在指导教师指导下由学生在毕业设计论文工作前期内完成经指导教师签署意见及所在系审查后生效2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印禁止打印在其它纸上后剪贴完成后应及时交给指导教师签署意见3“文献综述”应按论文的格式成文并直接书写或打印在本开题报告第一栏目内学生写文献综述的参考文献应不少于10篇不包括辞典、手册4有关年月日等日期的填写应当按照国标GB/T7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求一律用阿拉伯数字书写。

如“2002年4月26日”或“2002-04-26”。

毕业设计论文开题报告1结合毕业设计论文课题情况根据所查阅的文献资料每人撰写2000字左右的文献综述文献综述1.1课题研究的目的和意义图像作为自然界景物的客观反映是人类感知世界的视觉基础也是人类获取信息、表达信息和传递信息的重要手段。

据统计人类获得的信息大约75是以图像的形式通过视觉系统获得的。

图像时人类重要的信息源“百闻不如一见”、“眼见为实”即时图像对于人类重要性的简明概括。

1图像是物体透射或反射的光信息通过人的视觉系统接受后在大脑中形成的印象或认识是自然景物的客观反映。

一般来说凡是能为人类视觉系统所感知的有形信息或人们心目中的有形想象都统称为图像。

图像作为一种有效的信息载体是人类获取和交换信息的主要来源。

实践表明人类感知的外界信息80以上是通过视觉得到的。

然而在一般情况下经过图像的传送和转换如成像、复制、扫描、传输和显示等经常会造成图像质量的下降即图像失真。

在摄影时由于光照条件不足或过度会使图像过暗或过亮光学系统的失真、相对运动、大气流动等都会使图像模糊传输过程中会引入各种类型的噪声。

总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题这类问题不妨统称为质量问题。

基于matlab的图像分割及其应用毕业设计论文[管理资料]

基于matlab的图像分割及其应用毕业设计论文[管理资料]

基于MATLAB的图像分割及其应用摘要: 近年来,由于科技的迅猛发展,计算机性能越来越好,图像处理系统的价格的日益下降,图像处理在众多科学领域与工程领域得到广泛的利用。

从图像处理过渡到图像分析的关键步骤就是图像分割,所以说图像分割在图像工程中占据着重要的位置。

在图像分析中,图像分割的任务就是把分成互不重叠的有意义的区域,以便进一步的对图像进行处理、分析和应用。

图像分割是图像特征提取和识别等图像理解的基础,对图像分割的研究一直是数字图像处理技术研究中的热点和焦点。

本文主要对图像分割算法进行了分析、分类、归纳和总结。

并应用Matlab进行了仿真实验,在基于L*a*b 的空间彩色分割主要用到的函数是色彩空间转换函数makecform和applyccform,通过计算图像中像素点与样本像素点的距离来判断这个像素点的颜色进行分割。

基于纹理滤波器的图像分割主要使用entropyfilt函数创建纹理图像,使用bwareaopen函数显示图像的纹理底部纹理。

由于纹理特征的复杂性,每一种算法在对纹理特征处理分析的时候都会有它的缺陷和局限性。

利用边缘检测方法对细胞图像进行了分割实验,结果与传统方法相比,轮廓提取更为精确,且最大程度的保留了内部细胞核的轮廓。

同时指出了基于阀值的分割方法、基于边缘的分割方法、基于区域的分割方法等各类方法的特点,为不同的应用场合及不同的图像数据条件下选择不同的分割算法提供了一些依据。

关键词:Matlab 图像分割分割算法Image Segmentation Based on MATLAB and Its Application Abstract: In recent years, the rapid development of science and technology, computer performance is getting better, declining prices image processing system, image processing is widely utilized in many fields of science and engineering fields. The transition from image processing to image analysis, image segmentation is the key step,so that the image segmentation occupies an important position in the image project. In the image analysis, image segmentation task is to put into meaningful nonoverlapping region, in order to further the image processing, analysis and application. Image segmentation is the basis of the image feature extraction and recognition, image understanding, image segmentation research has been the digital image processing technology research hot spots and focus. This paper focuses on image segmentation algorithms are analyzed, classified and summarized. Application of Matlab simulation and experiments, based on L * a * b color space is divided main functions used color space conversion functions makecform and applyccform, by calculating the distance between the image pixels and pixel sample to determine the pixel color segmentation. Image segmentation based on texture filter mainly use entropyfilt function to create a texture image using bwareaopen function displays an image texture bottom texture. Because of the complexity of the texture features of each algorithm when processing analysis of texture features will have its flaws and limitations. Using edge detection method for cell image segmentation experimental results compared with the traditional method, contour extraction more accurate, and the greatest degree of retention of the internal contours of the nucleus. Also pointed out that the threshold-based segmentation method, based on the edge of the segmentation method, based on the characteristics of various types of region segmentation method method, choose different segmentation algorithms for the different applications and different conditions of image data provides some basis.Keywords: Matlab Image segmentation Segmentation algorithm目录目录1 前言 (1)图像分割概述 (1)研究背景及目的 (1)论文内容及结构 (2)2 MATLAB简介 (3)MATLAB软件介绍 (3)MATLAB概况 (3)MATLAB技术特点 (3)3 图像分割技术概述 (6)图像分割的定义 (6)图像分割的几种方法 (6)阈值分割 (6)区域分割 (7)边缘分割 (8)直方图法 (9)图像分割算法的分析比较 (9)本章小结 (13)4 图像分割仿真实验 (14)L*a*b空间的彩色分割 (14)Lab颜色空间 (14)颜色空间转换 (15)图像的空间彩色分割 (15)基于图像纹理的图像分割 (19)图像纹理的定义 (19)图像纹理的分类 (19)图像纹理提取方法 (19)使用MATLAB中的纹理滤波器分割图像 (19)其他图像分割算法的简单实例 (23)阈值分割 (25)最大信息熵算法 (27)门限分割 (28)图像分割检测细胞图像 (30)本章小结 (35)5 总结与展望 (36)参考文献 (37)致谢 (38)附录 (39)1前言图像分割概述图像的研究和应用中,人们往往对图像中的某些部分感兴趣,这些感兴趣的部分一般对应图像中特定的、具有特殊性质的区域(可以对应单一区域,也可以对应多个区域),称之为目标或前景;而其他部分称为图像的背景。

图像分割算法的研究的开题报告

图像分割算法的研究的开题报告

图像分割算法的研究的开题报告一、选题背景图像分割是计算机视觉领域中的一个重要分支,它的目标是将图像分成若干个部分或区域,每个部分或区域可以代表图像中的不同对象或区域。

目前,图像分割已经被广泛应用于机器视觉、自然语言处理、医学图像分析、智能交通等领域。

然而,由于图像的复杂性和多样性,有效的图像分割算法一直是计算机视觉领域的一个重要研究课题。

因此,本文将探讨图像分割算法的研究,并对其进行深入分析和研究。

二、选题目的和意义图像分割算法是计算机视觉领域的一个核心问题,它不仅可以用于目标检测和识别,还可以用于图像处理、图像识别等相关领域。

因此,本文的目的是探索图像分割算法的研究,深入分析算法的优缺点,并提出一种改进的算法。

本文研究的结果可以为计算机视觉领域的相关研究和开发提供参考,同时也可以为未来的医疗、智能交通等领域带来越来越多的创新和应用。

因此,本文具有重要的理论和实践意义。

三、研究内容和方法本文将从以下几个方面对图像分割算法进行研究:1. 了解和分析目前常用的图像分割算法,并比较它们的优缺点;2. 探讨图像分割算法的基本原理和数学模型;3. 提出一种改进的图像分割算法,并对其进行测试和评估;4. 分析和总结算法改进的效果和局限性。

在研究方法方面,本文将采用文献调查、实验和数学建模等方法。

通过对已有研究成果的分析和总结,我们可以提出一种改进的算法,并通过实验验证其可行性和优越性。

四、论文预期成果本文预期的成果包括:1. 对目前常用的图像分割算法进行分析和比较,并总结其优缺点;2. 对图像分割算法的基本原理和数学模型进行探讨和分析;3. 提出一种改进的图像分割算法,并对其进行测试和评估;4. 分析和总结算法改进的效果和局限性,并提出未来的研究方向。

五、研究进度安排1. 第一周:对图像分割算法的历史和现状进行调研,并撰写相关调研报告。

2. 第二周:研究和分析常用的图像分割算法,并撰写比较和总结报告。

3. 第三周:探讨图像分割算法的基本原理和数学模型,并撰写研究报告。

毕业设计- 基于MATLAB图像分割算法研究与实现

毕业设计- 基于MATLAB图像分割算法研究与实现

基于MATLAB图像分割算法研究与实现摘要图像分割是指把图像分解成各具特性的区域并提取出感兴趣目标的技术和过程,它是计算机视觉领域的一个重要而且基本的问题,分割结果的好坏将直接影响到视觉系统的性能。

因此从原理、应用和应用效果的评估上深入研究图像分割技术具有十分重要的意义。

本课题主要介绍了图像分割的基本知识,研究了图像分割的两大类算法,即基于边缘检测的方法和基于区域生成的方法。

采用MATLAB仿真了所有分割过程,得到了比较理想的分割结果,并分析了各个算法的优点和不足之处,以及适用于何种图像。

基于边缘检测方法种类繁多,主要介绍基于EDGE函数、检测微小结构、四叉树分解和阈值分割的方法实现对图像的边缘检测及提取。

而基于区域的图像分割方法主要包括区域生长法和分裂-合并分割方法。

通过多次的实验过后,总结出一般的图像分割处理可以用EDGE函数。

而特定的图像应用阈值分割、检测微小结构和四叉树分解比较简单。

虽然近年来人们在图像分割方面做了大量的研究工作,但由于尚无通用的分割理论,因此现已提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用的分割算法,有待于进一步解决。

关键字:图像分割;边缘检测;区域生成;阈值分割Research of image segmentation algorithmAbstractImage Segmentation is the technique and the process to segment an image into different sub-mages with different characters and to extract the interested objects from the image. It is an important and basic procedure in the field of computer vision, the quality of image segmentation directly affects the performance of vision system. Therefore, from the theory, application and evaluation of application effect of depth of image segmentation is of great significance. This issue introduces the basics of image segmentation, image segmentation of the two major algorithms have been done, that is based on edge detection method and the method based on regional produce. Segmentation process is simulated and the results have shown perfect. Advantages and disadvantages of each algorithm are discussed at the end of the paper, and to apply to each image.Edge detection method based on a wide range of EDGE-based functions are introduced, the detection of minimal structure, quadtree decomposition and threshold segmentation method to realize the edge detection and extraction. The region-based image segmentation methods include region growing and division - combined segmentation. Through many experiments later, summed up the general image segmentation can be EDGE function. The specific application of image segmentation, the detection of minimal structure and quadtree decomposition is simple.Although a lot of image segmentation research has been done in recent years, but there is not general theory of segmentation, the proposed segmentation algorithm has been mostly issue-specific, and there is not a suitable segmentation algorithm for all common image, remains to be resolved.Keywords: Image segmentation; Edge detection; Region segmentation; Threshold引言图像分割是数字图像处理中的一项关键技术,它使得其后的图像分析,识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的信息。

基于matlab的图像预处理技术研究【开题报告】

基于matlab的图像预处理技术研究【开题报告】

毕业设计(论文)开题报告题目:基于matlab的图像预处理技术研究专业:电子信息工程1选题的背景、意义众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件,如果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。

图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。

视觉是人类从大自然中获取信息的最主要手段。

拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。

由此可见,视觉信息对人类非常重要。

同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。

通常,客观事物在空间上都是三维的(3D),但是从客观景物获得的图像却是属于二维(2D)平面的。

图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。

图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

图像处理作为一门学科大约形成于20世纪60年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

首次获得实际成功应用的是美国喷气推进实验室(JPL)。

他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

图像分割 开题报告

图像分割 开题报告

图像分割开题报告图像分割开题报告一、研究背景图像分割是计算机视觉领域的重要研究方向之一,其目的是将一幅图像分割成若干个具有独立语义的区域。

图像分割在许多应用中都起着关键作用,如目标检测、图像识别、医学影像分析等。

当前,随着深度学习的快速发展,图像分割技术也取得了巨大的进展,但仍存在一些挑战和问题,例如复杂场景下的边界模糊、小目标的分割等。

二、研究目标本研究的目标是提出一种高效准确的图像分割方法,以应对复杂场景下的挑战。

通过深入研究图像分割的基本原理和现有方法,结合深度学习和传统计算机视觉技术,探索一种新的图像分割算法,以提高分割结果的准确性和鲁棒性。

三、研究内容1. 图像分割基础理论研究通过对图像分割的基本原理和方法进行深入研究,包括传统的阈值分割、边缘检测、区域生长等方法,了解它们的优势和不足之处,并结合深度学习的思想,探索一种新的图像分割算法。

2. 深度学习在图像分割中的应用深度学习在图像分割领域取得了显著的成果,例如全卷积网络(FCN)、U-Net等。

通过研究这些方法的原理和实现方式,分析它们在不同场景下的适用性和效果,为本研究提供借鉴和参考。

3. 复杂场景下的图像分割算法研究针对复杂场景下的图像分割问题,如边界模糊、小目标分割等,提出相应的算法改进措施。

可能的研究方向包括引入上下文信息、多尺度分割、注意力机制等,以提高分割结果的准确性和鲁棒性。

四、研究方法1. 数据集准备选择适当的图像数据集,包括不同场景、不同尺度、不同复杂度的图像,以评估所提出的图像分割算法的性能。

2. 算法设计与实现基于前期研究和理论分析,设计一种新的图像分割算法,并使用深度学习框架进行实现。

通过调整算法参数、网络结构等方式,不断优化算法的性能。

3. 实验评估与结果分析使用准备好的数据集对所提出的算法进行实验评估,并对实验结果进行详细分析。

通过与现有算法进行比较,评估所提出算法的优劣,并找出改进的空间。

五、研究意义本研究的成果将对图像分割领域的发展具有重要意义。

图像分割算法的研究开题报告

图像分割算法的研究开题报告

毕业论文开题报告1.结合毕业论文情况,根据所查阅的文献资料,撰写2000字左右的文献综述:文献综述一、课题背景和研究意义在计算机视觉、模式识别中,常常需要将图像分割成一些有意义的区域,或者是将图像中有意义的特征提取出来,以便机器视觉识别和检验。

因此,图像分割是图象处理中最基本的和最重要的技术之一,它是任何理解系统和自动识别系统必不可少的一个重要环节[1]。

所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同[2]。

简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理[1]。

图像分割就是将图像分成各具特性的区域,并提取感兴趣目标的技术和过程,是图像分析的关键步骤。

它在图像增强,模式识别,目标跟踪等领域中有广泛的应用。

至今已提出了多种分割方法,可粗略地分为基于直方图的分割方法(阈值化分割,如OTSU,最大熵等),基于边缘的分割方法,基于区域的分割方法三类[5][7]。

阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。

已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目标的分割;在遥感应用中,合成孔径雷达图像中目标的分割等;在医学应用中,血液细胞图像的分割,磁共振图像的分割;在农业工程应用中,水果品质无损检测过程中水果图像与背景的分割[14]。

在工业生产中,机器视觉运用于产品质量检测等等。

在这些应用中,分割是对图像进一步分析、识别的前提,分割的准确性将直接影响后续任务的有效性,其中阈值的选取是图像阈值分割方法中的关键技术[8]。

有以下几种常用方法:1.基于点的全局阈值选取方法,包括有p-分位数法,迭代方法选取阈值,直方图凹面分析法,熵方法等方法。

2.基于区域的全局阈值选取方法,包括有二维熵阈值分割方法,简单统计法,直方图变化法和其它基于区域的全局阈值法。

工作报告之图像处理开题报告

工作报告之图像处理开题报告

图像处理开题报告【篇一:图像处理开题报告 -】洛阳理工学院毕业设计(论文)开题报告【篇二:matlab图像处理开题报告】本科毕业设计(论文)开题报告题目基于matlab图像处理学院名称专业班级学生姓名学号指导教师填表时间:二〇一四年三月二十五日【篇三:嵌入式图像处理开题报告】填写说明一.本表为研究生进入课题研究和学位论文工作时在导师指导下所做的课题研究报告,为保证硕士研究生有一年以上的时间用于课题研究,博士研究生有二年以上的时间用于课题研究,硕博连读研究生有不少于二年半的时间用于课题研究,研究生应按时开题,并填写开题报告。

二.指导教师和所在系所要认真审查研究生选题是否准确、适当(即课题有无理论意义和经济意义,作为攻读学位的研究生研究课题是否适宜,在课题的难度和份量上是否恰当,能否在规定的时间内完成等),实验方案是否合理、可行,并对所选题给予恰当评价。

指导教师意见中还可以对研究生的开题报告作某些补充和说明。

三.填写本表前系所应组织研究生就选题情况进行公开答辩,提出修改意见。

研究生修改定稿后填写本表。

经导师、系、学院签署审核意见后复印二份,在第三学期结束前(硕士研究生、博士生)、第四学期结束前(硕博连读生)送学院研究生秘书汇总,二份留学院,原稿由学院研究生秘书送研究生培养科存档。

四.博士生、硕博连读研究生需要填写《研究生学位论文开题报告简表》,开题报告的公开答辩的成绩由学院登录。

五.本表经批准后必须严格执行。

如因特殊原因必须修改计划时,须书面申请,并经导师、系、学院同意后方可修改计划。

六.如果论文选题有重大变动,必须另行开题。

研究生学位论文开题报告简表本简表为博士生(含硕博)研究生学位授予时审核的依据。

硕士研究生不填写该页简表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海工程技术大学毕业设计(毕业论文)开题报告
学院电子电气学院
专业自动化
班级学号0212082 021206231
学生於恺律
指导教师陈剑雪
题目基于支持向量机的数字图像分割
任务规定
进行日期自 2011年 9 月 12 日起,至 2012年 1 月 13 日止
一、课题背景及研究意义:
图像分割是进行图像理解的基础,是图像工程技术中的一个重要问题。

近年来,人们越来越重视图像的分割算法,并期望寻求一种实时性、鲁棒性较好的算法。

图像分割技术在当今信息社会中具有极其广泛的用途,特别是在医学图像诊断、卫星遥感图像识别、交通车牌信息识别等等方面尤其有现实意义。

目前机器学习技术正越来越多地引领图像分割领域的研究发展,支持向量机正是其中一种较为先进的研究方法。

二、课题研究内容:
1、图像处理
图像处理用计算机对图像进行分析,以达到所需结果的技术。

又称影像处理。

图像处理一般指数字图像处理。

数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。

图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。

常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。

当前,图像处理技术几乎渗透到人类所有的活动领域中,特别在自动控制、信息通讯、无损检测、资源勘测、医学诊断、生物工程等领域更是得到的极为广泛的应用和发展。

在当前的图像处理系统中,常常以图像分割为基础。

对于一个图像处理系统而言,图像分割性能的好坏往往直接决定该系统的图像处理性能。

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。

它是由图像处理到图像分析的关键步骤。

现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。

近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。

2.图像分割的方法
阈值分割方法
阈值分割是常见的直接对图像进行分割的算法,根据图像像素的灰度值的不同而定。

对应单一目标图像,只需选取一个阈值,即可将图像分为目标和背景两大类,这个称为单阈值分割;如果目标图像复杂,选取多个阈值,才能将图像中的目标区域和背景被分割成多个,这个称为多阈值分割,此时还需要区分检测结果中的图像目标,对各个图像目标区域进行唯一的标识进行区分。

阈值分割的显著优点,成本低廉,实现简单。

当目标和背景区域的像素灰度值或其它特征存在明显差异的情况下,该算法能非常有效地实现对图像的分割。

阈值分割方法的关键是如何取得一个合适的阈值,近年来的方法有:用最大相关性原则选择阈值的方法、基于图像拓扑稳定状态的方法、灰度共生矩阵方法、最大熵法和峰谷值分析法等,更多的情况下,阈值的选择会综合运用两种或两种以上的方法,这也是图像分割发展的一个趋势。

基于遗传算法的图像分割
遗传算法是模拟自然界生物进化过程与机制求解问题的一类自组织与自适应的人工智能技术。

对此,科学家们进行了大量的研究工作,并成功地运用于各种类型的优化问题,在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将能解决很多问题。

遗传算法的出现为解决这类问题提供了新而有效的方法,不仅可以得到全局最优解,而且大量缩短了计算时间。

王月兰等人提出的基于信息融合技术的彩色图像分割方法,该方法应用剥壳技术将问题的复杂度降低,然后将信息融合技术应用到彩色图像分割中,为彩色分割在不同领域中的应用提供了一种新的思路与解决办法。

基于人工神经网络技术的图像分割
基于神经网络的分割方法的基本思想是先通过训练多层感知器来得到线性
决策函数,然后用决策函数对像素进行分类来达到分割的目的。

近年来,随着神经学的研究和进展,第三代脉冲耦合神经网络(PCNN)作为一种新型人工神经网络模型,其独特处理方式为图像分割提供了新的思路。

脉冲耦合神经网络具有捕获特性,会产生点火脉冲传播,对输入图像具有时空整合作用,相邻的具有相似输入的神经元倾向于同时点火。

因此对于灰度图像,PCNN具有天然的分割能力,与输入图像中不同目标区域对应的神经元在不同的时刻点火,从而将不同区域分割开来。

如果目标区域灰度分布有重叠,由于PCNN的时空整合作用,如果灰度分布符合某种规律,PCNN也能克服灰度分布重叠所带来的不利影响,从而实现较完美的分割。

这是其一个突出的优点,而这恰恰是其他的分割方法所欠缺的,其在未来的图像分割中将起主导作用。

基于小波分析和变换的图像分割
近年来,小波理论得到了迅速的发展,而且由于其具有良好的时频局部化特性和多分辨率分析能力,在图像处理等领域得到了广泛的应用。

小波变换是一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测。

从图像处理角度看,小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率,在高频段可用低频率分辨率和高时间分辨率,小波交换在实现上有快速算法具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号等优点。

近年来多进制小波也开始用于边缘检测。

另外,把小波变换和其它方法结合起来的图像分割技术也是现在研究的热点。

3、支持向量机
支持向量机是由贝尔实验室的Vladimir N.Vapnik 博士等人在1995 年基于统计学习理论基础上提出的一种专门研究小样本情况下的新型的机器学习方法。

与传统统计学相比,SVM 算法不是以经验风险最小化原则为基础的,而是建立在结构风险最小化原则基础之上的,是一种新型的结构化学习方法。

支持向量机以结构风险最小化准则为理论基础, 通过适当地选择函数子集及该子集中的判别函数, 使学习机器的实际风险达到最小, 保证了通过有限训练样本得到的小误差分类器, 它在解决小样本、非线性及高维分类等方面具有很大。

相关文档
最新文档