第十三章 航空发动机燃烧室
第十三章航空发动机燃烧室课件

燃烧室通过设计合理的流道和喷嘴,使燃油与空气充分混合,形成均匀的油气混合物。
燃油与空气的混合
燃烧室通过高压空气或超声波等手段,将燃油雾化成微小液滴,增加燃油表面积,加速燃油蒸发,提高燃烧效率。
燃油的雾化与蒸发
燃烧室通过设计适当的腔体和火焰筒等结构,使燃气在燃烧室内稳定燃烧,防止火焰失稳或回火。
火焰稳定
燃烧室通过控制燃油喷射量、空气流量等参数,调节燃气热量,以满足发动机不同工况下的需求。
燃气热量调节
空气在燃烧室内沿轴向流动,适用于中小型发动机。
直流燃烧室
回流燃烧室
分流燃烧室
空气在燃烧室内沿周向流动,形成回流,适用于大型发动机。
空气在燃烧室内分流后分别进入多个火焰筒,适用于高性能发动机。
03
05
CHAPTER
燃烧室的应用与发展趋势
燃烧室是航空发动机的关键部件之一,负责燃油与空气的混合、燃烧和能量释放。
现代航空发动机的燃烧室通常采用环形或轴向进气道设计,以提高燃油与空气的混合效率。
燃烧室内部通常采用耐高温、抗腐蚀的材料,以确保在高温、高压和高速气流条件下正常工作。
新型燃烧室设计将采用先进的材料和工艺,如陶瓷基复合材料、激光加工等,以提高燃烧室的耐高温性能和燃油效率。
第十三章航空发动机燃烧室课件
目录
燃烧室概述燃烧室设计燃烧室材料与制造工艺燃烧室性能与试验燃烧室的应用与发展趋势
01
CHAPTER
燃烧室概述
燃烧室是航空发动机的重要组成部件,通常位于压气机出口与涡轮进口之间。
位置
燃烧室的主要作用是完成燃油与空气的混合、燃烧,将化学能转化为热能,为发动机提供高温高压的燃气。
燃烧室还将采用先进的控制系统,实现燃油喷射、点火和火焰稳定等功能的智能化和自主化。
机械工程中航空发动机燃烧室的热流场分析

机械工程中航空发动机燃烧室的热流场分析航空发动机是现代航空运输的基础设备,其中燃烧室是发动机的核心部件。
燃烧室内的热流场分析对于发动机的性能和可靠性具有重要意义。
本文将探讨机械工程中航空发动机燃烧室的热流场分析,重点介绍燃烧室内的热流动现象、热负荷分布以及燃气温度等关键参数的计算方法。
1. 热流动现象的分析燃烧室内的热流动现象主要包括燃烧室内部的热辐射、对流和传导。
燃烧室内部的燃烧过程产生的高温气体通过排气口排出,同时燃烧室内壁面与燃气之间的热传导和对流也会导致热量的传输。
因此,对于热流场分析来说,需要考虑不同机构的热辐射应用、对流传热特性和热传导过程。
2. 热负荷分布燃烧室内的热负荷分布是热流场分析的关键参数之一。
热负荷分布决定了燃烧室内不同部位的热量转移情况,对于热流场的分析与设计具有重要影响。
在燃烧室内,燃气温度、压力、速度等因素会影响热负荷的分布,因此需要对这些因素进行综合考虑,以得到准确的热负荷分布。
3. 燃气温度分析燃气温度是机械工程中燃烧室热流场分析的另一个重要参数。
燃气温度的高低会直接影响到发动机的性能和寿命。
燃气温度的分析涉及到燃烧室内的燃烧过程、燃气的组成和燃料的燃烧效率等因素。
通过数值模拟和实验测试等方法,可以得到燃气温度分布图,并对其进行分析和评估。
4. 计算方法与实验验证对于航空发动机燃烧室的热流场分析,计算方法与实验验证是不可或缺的。
计算方法主要通过建立数学模型来模拟和计算燃烧室内的热流动现象,其中包括雷诺平均湍流模型、湍流燃烧模型等。
通过数值方法计算得到的结果可以提供参考,但是需要通过实验验证来验证其准确性和可靠性。
5. 工程应用与发展趋势热流场分析在航空发动机研发与设计中具有重要应用价值。
通过对燃烧室内热流动现象、热负荷分布和燃气温度等参数的分析,可以改善燃烧室的设计,提高发动机的效率和寿命。
未来,随着计算机技术的不断发展和数值模拟方法的改进,航空发动机燃烧室的热流场分析将更加精确和可靠。
航空发动机燃烧室传热特性研究

航空发动机燃烧室传热特性研究随着航空技术的不断发展,航空发动机的燃烧室传热特性研究日益受到重视。
燃烧室是航空发动机的核心部分,其中的燃烧过程直接影响着发动机的效率和性能。
本文将以航空发动机燃烧室传热特性研究为主题,深入探讨燃烧室内传热的机理、影响因素以及改进方法。
一、传热机理燃烧室内的传热机理是指燃烧室壁面与燃烧产物之间的热量传递过程。
在燃烧室内,燃料和空气混合后发生燃烧反应,产生大量的热能,同时还会产生一系列的燃烧产物。
这些燃烧产物与燃烧室壁面之间进行热量交换,从而导致燃烧室壁面温度的升高。
在燃烧室内,热量传递的主要途径有三种:辐射传热、对流传热和传导传热。
辐射传热是指热能以电磁波的形式传递,主要取决于燃烧室壁面的温度和表面特性。
对流传热则是通过流体的传输而实现,其中流体的速度和壁面的热阻对传热效果有重要影响。
传导传热是指热量通过固体直接传递,取决于燃烧室壁面材料的热导率和壁面的厚度。
二、影响因素航空发动机燃烧室传热特性受到多种因素的影响。
首先是燃料和空气的混合质量,它直接影响了燃烧过程的温度和热量释放率,从而影响了燃烧室壁面的温度。
其次是燃烧室壁面材料的选择,不同材料的热导率和热容量会直接影响燃烧室壁面的温度分布和传热速率。
此外,燃烧室的结构和形状也会对传热特性产生重要影响。
在实际工作中,航空发动机燃烧室内还存在诸多复杂因素。
例如,燃烧过程中生成的氮氧化物会影响燃烧室壁面的传热机制和溢出烟气中的污染物。
此外,燃烧室壁面的冷却设备也会对传热特性产生影响。
由于燃烧室内温度较高,燃烧室壁面需要采取冷却措施以保证发动机的正常运作。
传统的冷却手段包括冷却剂喷射和内部空腔雾化两种方法,但它们都会带来一定的冷却效率降低和增加系统复杂度的问题。
三、改进方法为了提高航空发动机燃烧室的传热特性,研究人员提出了许多改进方法。
其中之一是采用新型燃烧室壁面材料。
航空发动机燃烧室壁面材料需要具有较高的耐腐蚀性和耐高温性能,同时还要具备良好的传热特性。
第十三章 航空发动机中的燃烧

QV =
3600W f H uη c
P3 tVc
式中 W f , H u ,η c , P3t ,Vc 分别为燃料流量,燃料低热值,燃烧效率,燃烧室进口总压 及燃烧室体积。也可以按火焰筒体积 V f 定义容热强度,
QVf =
3600W f H uη c P3 tV f
3
一般,主燃烧室的 QV = (750 − 908)kJ /( m ⋅ h ⋅ Pa ) ; 火焰筒的 QVf = (1234 − 2073) kJ /( m ⋅ h ⋅ Pa ) ;
第十三章 航空发动机中的燃烧
目前飞机的发动机一般均采用航空燃气轮机。 主燃烧室是它的三大核心部件之一。 对于 军用发动机还设有加力燃烧室。 它们工作的优劣直接影响发动机的性能。 本章将介绍航空发 动机主燃烧室和加力燃烧室的结构、工作原理及性能。
§13-1 航空发动机主燃烧室
一、引 言
燃烧室 (图 13.1) 的作用就是将燃油喷嘴供应的大量燃油和压气机供应的大体积空气一 起燃烧,释放热量,让空气膨胀和加速,以便在所有状态下供给涡轮所需的燃气流。这一任 务必须以最小的压力损失来实现,并且在有限的可用空间里释放出最大的热量。
233
图 13.6 多个单管燃烧室图
图 13.7 环管形燃烧室
图 13.8 环形燃烧室
与环管燃烧系统比较,与之相当的环形燃烧室的壁面积少得多,因而,防止火焰筒壁烧 穿所要求的冷却空气量大约也少 15%。冷却空气量的这一减少提高了燃烧效率,因此,实 际上消除了未燃烧的燃油, 并将一氧化碳氧化成无毒的二氧化碳, 从而减少了对空气的污染。 将空气雾化喷嘴引入这种类型的燃烧室大大改善了燃油为燃烧所做的准备, 因空气会进 入靠近喷嘴处的燃油喷雾中,而这些喷雾都是过度富油的。这大大减轻了初始碳粒的形成。 4、折流式环形燃烧室 折流式环形燃烧室的火焰筒由内、外壁组成。对小型燃气涡轮发动机.因其流量小,转 速高, 可以采用离心式压气机和燃油从发动机轴内腔经甩油盘离心甩出的供油方式。 为了充 分利用空间尺寸,缩短转子支点的距离,所以常采用折流式环形燃烧室。美国 J69 发动机采 用了折流式环形燃烧室。 5、回流式环形燃烧室 回流式环形燃烧室的火焰筒由内、 外壁和环形圆顶组成。 这种燃烧室也用在带有离心式 压气机的燃气涡轮发动机中。 从压气机出来的气体, 在组织燃烧和与燃气掺合的过程中要经 过两次折转再流入涡轮部件。燃烧室的燃油是由在环形圆顶部的喷嘴提供。
第十三章 航空发动机燃烧室资料讲解

3、燃烧完全
燃烧完全系数:
燃烧完全程度室发动机重要的经济指标,用燃烧效率来衡量。 燃烧效率(考虑了散热效应):
热循环效率:
4、出口温度场符合要求
燃烧室出口的燃气流向涡轮 叶片,考虑到高速旋转的涡 轮叶片承受应力已经很大, 再加上高温气流的冲击,工 作条件十分恶略。于是要求 燃烧室出口气流温度场符合 涡轮叶片高温强度的要求, 不要有局部过热点,以保证 涡轮的正常工作和寿命。
三、对主燃烧室的性能要求
1、点火可靠 1)能在进口±50℃范围内实现良好的地面起动 2)高空熄火后能够再点火,保证安全 3)能在8-12km的高度实现可靠点火
发动机的点火高度是评定飞机或发动机的一个性能指标,目前达到的高度为89km,采取补氧等措施后可达12-13km。提高点火高度,也是目前研究的主要 课题。 2.燃烧稳定 要求燃烧室在点燃以后,必须: 1)在规定的全部飞行高度、速度范围内都能稳定燃烧,不被吹熄 2)在a=2-50的范围内能稳定燃烧 3)避免不稳定燃烧(振荡燃烧)
可见,燃烧室是动力机械的能量发源地,室发动机中的主要部件之一。 二、燃烧室工作特点 (1) 进口气流速度很大 (2) 燃烧室容积很小(容热强度大) (3) 工作温度高(2500K) (4) 出口气流温度T4受到涡轮叶片的强度的限制,不能过高 (5) 进口参数变化大
因此一个好的燃烧室必须在这些参数变化范围宽广的状态 下保证正常工作,至少不能熄火,以便保证发动机能发出 推力,飞机能安全飞行。而且,这一任务必须以最小的压 力损失、在有限的可用空间里释放出最大的热量、高效低 污染地实现,亦即高效、高强度、低污染的实现。
3. 沿叶高温度分布应符合中间高两端低的要求-等强度原则。
5. 压力损失小
气流流经燃烧室要产生压力损失。它主要包括摩擦损失、扩压损失、 穿过火焰筒的众多大小孔产生的进气损失、掺混损失以及燃烧加热引 起的热阻等等。
航空发动机的燃烧室流动与燃烧特性优化

航空发动机的燃烧室流动与燃烧特性优化航空发动机作为一种重要的动力装置,在航空航天领域起着至关重要的作用。
而燃烧室作为航空发动机的核心部件,其流动和燃烧特性的优化对于提高发动机的性能和效率具有重要意义。
本文将探讨航空发动机的燃烧室流动与燃烧特性的优化方法和技术。
一、航空发动机燃烧室流动特性的研究与分析燃烧室内气体的流动特性对于燃烧效率和发动机性能的影响不可忽视。
燃烧室内流动的不稳定性和不均匀性会导致燃烧的不完全和功率损失。
因此,研究和分析燃烧室的流动特性对于优化燃烧室设计具有重要意义。
在流动特性的研究中,可以采用数值模拟方法,如计算流体力学(CFD)模拟,来模拟和预测燃烧室内的流动情况。
通过建立准确的数学模型,可以分析燃烧室内的湍流和速度分布等参数,以及分析燃烧室内的湍流能量传递和燃料混合情况。
这有助于了解燃烧室内的流动特性,并根据分析结果对燃烧室进行优化设计。
另外,通过实验手段,如高速摄影和颗粒图像测速(PIV)等技术,也可以对燃烧室的流动特性进行直接观测和测量。
通过实验数据的分析和处理,可以获取燃烧室内的流场信息,揭示流动特性的规律,指导优化燃烧室结构。
二、航空发动机燃烧特性的研究与优化航空发动机的燃烧特性对于其性能和效率具有直接影响。
燃烧效率的提高和污染物的减排是航空发动机燃烧特性优化的主要目标。
在燃烧特性的研究中,首先需要研究燃料在燃烧室内的混合过程。
合理的燃料混合可以提高燃烧效率和燃烧稳定性。
通过数值模拟和实验手段,可以研究燃料在燃烧室内的分布和混合情况,以及燃烧室内的温度和压力分布等参数。
这有助于找出燃料混合的不足之处,并提出相应的优化措施。
其次,燃烧室内的燃烧过程也需要研究和优化。
燃料的燃烧速度、燃烧温度和燃烧稳定性等参数对于燃烧效率和污染物排放有重要影响。
通过数值模拟和实验手段,可以研究燃料的燃烧机理和燃烧过程中的各种化学反应,以及燃烧产物的生成和分布情况。
这有助于优化燃烧室的设计和调整燃烧参数,提高燃烧效率和减少污染物排放。
飞机发动机原理与结构—燃烧室

燃烧室的总压恢复系数是:燃烧室出口处的总压与燃烧室进口处的总压之比 ,对于燃气 涡轮喷气发动机,燃烧室的总压恢复系数一般在 0.92~0.96 范围内。
6. 尺寸小,重量轻
温度场要求:
(1)火焰除点火过程的短暂时间外,不得伸出燃烧室; (2)在燃烧室出口环形通道上,温度分布尽可能均匀,在整个出口环腔内最高温度与 平 均温度之差不得超过 100-120℃; (3)沿叶高(径向上)靠近涡轮叶片叶尖和叶根处的温度应低一些,而在距叶尖大约 三分之一处温度最高。
5.总压损失小
2. 燃烧室熄火
预防:
• 在飞机起飞、进近、着陆阶段,为了防止燃烧室熄火,确保飞行安全,需要接通发 动机 点火电门加强发动机点火;
• 飞行中,在复杂的气象条件下(如颠簸气流、严重积冰区、大雨 等),也需接通 发动机点火电门,实施点火,同时还需要维持发动机一定的转速,以提高稳定的燃 烧范围。
• 发动机的维护工作中,应加强对压气机防喘系统的检查和维护,使之处于良好的状 态, 防止因防喘系统有故障而发生喘振,导致燃烧室熄火停车;
f qmf qm
余气系数 α α=燃烧时实际空气量/理论所需空气量 燃料系数 β β=实际供油量/ 将空气中氧气完全燃烧完理论所需供油量
• α>1或β<1 贫油燃烧 • α<1或β>1 富油燃烧 • α=1或β=1 完全燃烧
• 油气比f要在一定的贫油或富油范围内才能燃烧,过于贫油或富油不可以; • 目前航空发动机燃烧室里的余气系数一般为2.53.5,但在中心燃烧区接近于1。
1. 燃烧室的工作过程和基本组件
航空发动机主燃烧室中的燃烧

《航空发动机主燃烧室中的燃烧》 能源2班 2014
燃烧室必须能够允许燃油在范围广泛的 工作状态下有效地燃烧而不致产生巨大的 压力损失。此外,如果火焰熄灭了,它必 须能够重新点燃。在完成这些功能时,火 焰筒和喷嘴雾化器部件必须在机械上是可 靠的。 燃气涡轮发动机按等压循环工作,因而, 燃烧过程的压力损失必须保持在最低水平。 在提供足够的湍流和掺混时,总压损失在 燃烧室进口空气压力的 3~8%之间变化。
25 /
航空发动机主燃烧室示意图
《航空发动机主燃烧室中的燃烧》 能源2班 2014
燃油可以选用二种不同方式之一供入空气 流中。 最普通的是用喷嘴将雾化良好的燃油喷 入回旋的空气流中。第二种方式是让燃油预先 汽化,然后进入燃烧区。 在汽化方式中(图 4) ,燃油从供油管喷入位于火焰筒内部的汽 化管中。这些汽化管将燃油折转 180°,喷入 火焰筒头部,与主燃区空气形成可燃混气,在 主燃区燃烧。高温燃气对汽化管加热,有利于 燃油在汽化管蒸发。主空气流同时流入火焰筒 进口段孔和二股气流孔。冷区和稀释空气经限 流孔进入火焰筒,其方式与进入雾化式火焰筒 相似。
0702102班 2014寝室
朱少飞 沈迪迪 王辉 张春楠 邓瑞渠 周晓伟
演讲: 朱少飞
摘要:
《航空发动机主燃烧室中的燃烧》 能源2班 2014
《航空发动机主燃烧室中的燃烧》 能源2班 2014
个速燃火秒压 工度烧焰,器 作区室不仍扩 范,中能大压 围以创稳于后 内使造定火速 都火出。焰度 能焰一因传大 稳在个此播约 定发低,速为 燃动的必度 烧机轴须, 。整向在使米
燃烧效率随空气/燃油比变化
《航空发动机主燃烧室中的燃烧》 能源2班 2014
燃烧稳定性是指在宽广的工作范围内平稳 燃烧和火焰保持在燃着状态的能力。 就任 一具体燃烧室而言,都有空气/燃油比的 富油极限和贫油极限,超出这些极限火焰 就会熄灭。在发动机慢车状态下下滑或俯 冲期间极有可能出现熄火, 这时的空气流 量大而又只有很小的燃油流量,即很贫的 混合强度。典型的稳定性包线如图6所示。 由稳定包线规定的工作范围显然必须覆盖 燃烧室的空气/燃油比和质量流量变化范 围。 点火过程有贫油和富油极限,类似于 图 9中表示稳定性的极限。然而,点火包 线在稳定包线以内,因为在点火起动冷状 态下建立燃烧比发动机正常工作状态下燃 烧要困难得多。
航空发动机燃烧室机匣的组成及选材分析

航空发动机燃烧室机匣的组成及选材分析3.1航空发动机的基本组成发动机是飞机的“心脏”,是推动飞机和整个航空工业蓬勃发展的源动力,20世纪下半叶世界航空动力呈加速发展态势,21世纪航空动力面临新的机遇,它将以更快的速度向前发展,并促使飞机和航空工业出现新的飞跃。
一般而言发动机由点火装置、燃烧室、装药和喷管四部分组成。
3.1.1点火装置发动机点火装置工作的基本要求是: 能保证主装药准确、可靠地点燃、点火延迟时间要短。
它的基本失效模式有发火失效和对发动机点火失效两种。
以往的型号研制经验表明,一般情况下,众多的结构可靠性评估续计变量中,以在规定时间内达到的点火压强为最佳统计变量。
3.1.2燃烧室燃烧室是燃料与空气混合并进行燃烧的地方,燃烧室工作的好坏直接影响发动机的性能,并关系到发动机的安全可靠性。
3.1.3装药一般选取受内压时的壳体应力为统计变量。
发动机药柱分为自由装填式和壳体粘接式两类。
对于自由装填式药柱,强度是足够的,通常不需要进行结构完整性分析。
对于壳体粘接式药柱,特别是内孔形状复杂的药柱,通常存在较严重的药柱强度问题,因为药柱从制造到使用的过程中,其内部会产生各种机械应力。
药柱失效的基本故障或基本机理,决定最终结果造成气体生成速率过低或过高。
在化学和结构两方面的损坏都表现为造成过高的壳体内压。
经验及分析表明,当壳体粘接式药柱受热载荷和工作压强载荷时,工作内压是应研究的主要载荷,以延伸率作为药柱结构可靠性评估的统计变量较为合理;而受加速度载荷和自重载荷时。
以强度作为药柱结构可靠性评估的统计变量较为合理。
上述观点已为多年来发动机的研制实践所证实。
3.1.4喷管航空发动机离心喷嘴主要有喷嘴壳体、旋流器、旋流室和喷口组成。
根据其自身工作条件及环境影响,其材料主要选用马氏体钢材2Cr13、3Cr13和4Cr13三种类型。
一般离心喷嘴有四种类型:单路、双路单室单喷口、双路双室单喷口及双路双室双喷口,分别具有不同的结构设计、性能和用途。
航空发动机燃烧室的热防护与冷却方法

航空发动机燃烧室的热防护与冷却方法说实话航空发动机燃烧室的热防护与冷却方法这事,我一开始也是瞎摸索。
我最早想到的就是用简单的风冷方法,就像夏天我们用电风扇吹风降温一样。
我想在燃烧室周围设置一些风道,让冷空气不断吹过,带走热量。
可是我错了,航空发动机燃烧室的温度超级高,单纯的风冷根本不管用,那点冷空气进去就被加热得没什么降温效果了。
然后我又尝试用水冷的办法。
我就琢磨啊,水的比热容大,能吸收很多热量呢。
可是这操作起来太难了。
燃烧室那种高温高压的环境,水要进去很复杂。
比如说怎么把水引进到燃烧室周围,又怎么保证水不会因为高温变成蒸汽后破坏整个系统。
我做了个小模型来试验,那个水系统总是出问题,不是漏水就是因为高温变成气泡堵住管道。
后来我发现,有些材料本身就有很好的隔热性能,就像我们冬天穿的厚羽绒服,把羽绒紧紧包裹在里面,外面的冷空气进不来,里面的热气也散不出去。
那我就去找这样的隔热材料来用在燃烧室的防护上。
但要找到一种在航空发动机那种极端恶劣的条件下还能发挥稳定隔热作用的材料真不是件容易的事。
我试过好多种所谓的高温隔热材料,经过测试,好多都达不到理想的效果。
再之后呢,我了解到一种气膜冷却的方法。
这个有点像在火焰周围吹一层保护膜一样。
通过特殊的结构,让冷却气体在燃烧室壁面形成一层气膜,把高热的燃烧气体和壁面隔开,起到热防护和冷却的效果。
这种方法我看到有成功的例子,不过在具体实施的时候,结构的设计需要特别讲究。
比如说气孔的大小、方向和排列方式,我在做模型试验的时候,气孔稍微有点偏差,这层气膜就不均匀了,也就不能很好地起到保护作用。
还试过一种发散冷却的方法。
这就好比是在一个热得发烫的东西上,到处都在慢慢散热。
具体就是在燃烧室壁面上弄上好多细小的孔,冷却剂从这些小孔中缓慢渗出,带走热量。
不过在做这个的时候,怎么保证这些小孔在高温下不会被堵住,以及让冷却剂均匀地渗出,这都是问题。
我用类似的模拟材料做小实验的时候,发现有些地方的孔因为被一些杂质或者微小的颗粒给堵住了,冷却效果就大打折扣。
航空发动机燃烧室瞬态温度场分析与优化设计

航空发动机燃烧室瞬态温度场分析与优化设计航空发动机燃烧室作为航空发动机的核心部件之一,其温度场的分析和优化设计对于发动机的性能和寿命具有重要影响。
本文将针对航空发动机燃烧室瞬态温度场进行分析和优化设计。
首先,我们需要了解航空发动机燃烧室的工作原理。
燃烧室是将燃料和空气混合并进行燃烧的空间,是将化学能转化为热能的关键部分。
同时,燃烧室还负责将燃烧产生的高温气体转化为喷向涡轮的高速气流。
在燃烧室的工作过程中,燃料和空气的混合、点火和燃烧产生了大量热量,导致燃烧室温度升高。
燃烧室壁面则需要承受高温气体的冲击和传导,因此其表面温度也会升高。
这样的高温环境对于燃烧室材料和结构的选择以及冷却系统的设计都提出了严峻挑战。
为了分析和优化设计航空发动机燃烧室的瞬态温度场,我们可以采用数值模拟方法。
数值模拟方法通过建立数学模型和计算算法,模拟燃烧室内的流体运动和能量传输过程。
其中,瞬态温度场分析的主要步骤包括几何建模、边界条件设置、物理模型建立、计算网格划分和数值求解。
几何建模是瞬态温度场分析的第一步,它要求准确地描述燃烧室的形状和结构。
各个零部件的几何参数、通道的位置和大小都需要被精确地建模。
这样的几何模型可以通过计算机辅助设计软件进行创建,并根据实际情况进行调整和优化。
边界条件的设置是瞬态温度场分析的关键步骤。
边界条件包括燃烧室的进口和出口边界条件、壁面的热边界条件以及其他可能影响温度场的边界条件。
这些边界条件需要准确地反映实际工况和工艺参数,以便获得可靠的分析结果。
物理模型建立是瞬态温度场分析的核心步骤。
物理模型包括流场模型和热传导模型。
流场模型描述燃烧室内气体的流动特性,可以采用雷诺平均Navier-Stokes方程和湍流模型进行求解。
热传导模型描述燃烧室壁面和燃气之间的能量传递,可以采用热传导方程进行求解。
同时,还需要考虑燃烧过程中产生的辐射热传递。
计算网格的划分是瞬态温度场分析的关键步骤。
计算网格需要根据物理模型和几何模型进行合理的划分,以确保计算精度和计算效率。
航空发动机燃烧室机匣的组成及选材分析

航空发动机燃烧室机匣的组成及选材分析3.1航空发动机的基本组成发动机是飞机的“心脏”,是推动飞机和整个航空工业蓬勃发展的源动力,20世纪下半叶世界航空动力呈加速发展态势,21世纪航空动力面临新的机遇,它将以更快的速度向前发展,并促使飞机和航空工业出现新的飞跃。
一般而言发动机由点火装置、燃烧室、装药和喷管四部分组成。
3.1.1点火装置发动机点火装置工作的基本要求是: 能保证主装药准确、可靠地点燃、点火延迟时间要短。
它的基本失效模式有发火失效和对发动机点火失效两种。
以往的型号研制经验表明,一般情况下,众多的结构可靠性评估续计变量中,以在规定时间内达到的点火压强为最佳统计变量。
3.1.2燃烧室燃烧室是燃料与空气混合并进行燃烧的地方,燃烧室工作的好坏直接影响发动机的性能,并关系到发动机的安全可靠性。
3.1.3装药一般选取受内压时的壳体应力为统计变量。
发动机药柱分为自由装填式和壳体粘接式两类。
对于自由装填式药柱,强度是足够的,通常不需要进行结构完整性分析。
对于壳体粘接式药柱,特别是内孔形状复杂的药柱,通常存在较严重的药柱强度问题,因为药柱从制造到使用的过程中,其内部会产生各种机械应力。
药柱失效的基本故障或基本机理,决定最终结果造成气体生成速率过低或过高。
在化学和结构两方面的损坏都表现为造成过高的壳体内压。
经验及分析表明,当壳体粘接式药柱受热载荷和工作压强载荷时,工作内压是应研究的主要载荷,以延伸率作为药柱结构可靠性评估的统计变量较为合理;而受加速度载荷和自重载荷时。
以强度作为药柱结构可靠性评估的统计变量较为合理。
上述观点已为多年来发动机的研制实践所证实。
3.1.4喷管航空发动机离心喷嘴主要有喷嘴壳体、旋流器、旋流室和喷口组成。
根据其自身工作条件及环境影响,其材料主要选用马氏体钢材2Cr13、3Cr13和4Cr13三种类型。
一般离心喷嘴有四种类型:单路、双路单室单喷口、双路双室单喷口及双路双室双喷口,分别具有不同的结构设计、性能和用途。
航空发动机燃烧室的热弹性分析

航空发动机燃烧室的热弹性分析一、引言航空发动机是现代飞行器得以顺利运行的核心组件之一,其发动机燃烧室是发动机的重要组成部分。
燃烧室的结构设计和性能影响着整个发动机的效率和安全性。
在燃烧室的工作过程中,燃烧室内部会产生巨大的热量和压力,从而对其材料性能和结构稳定性造成不可忽视的影响。
本文将围绕航空发动机燃烧室的热弹性分析展开探讨。
二、燃烧室的结构与工作原理航空发动机燃烧室是一个复杂的结构,其制造必须考虑到材料的耐高温性能、高温氧化、抗腐蚀和抗疲劳性能等多个因素。
燃烧室的结构通常包括外围结构、燃烧室壁和燃烧室前缘等部分。
燃烧室内的燃料和空气经过混合和点火后,形成高温、高压的火焰在燃烧室内燃烧,产生大量的热能和压力,热气体被喷出并进入涡轮机,驱动涡轮机产生动力,推动飞机飞行。
三、燃烧室的热弹性分析1.热弹性概念热弹性是指在发动机运行过程中,由于高温和热负荷作用下,燃烧室壁和零部件所发生的形变和应变。
热弹性分析是在考虑高温和热负荷作用下的燃烧室变形及零部件变形的情况下,对燃烧室的材料性能和结构稳定性进行分析。
2.热应力分析热应力是指由于燃烧室内部的高温和热负荷的作用下,燃烧室内壁所受到的内部应力。
当燃烧室的温度和热负荷增加时,其内壁的热膨胀率也随之增大,这会对内部壁面产生拉伸应力。
因此,高温环境下燃烧室的材料强度和刚度分析对于保持燃烧室的稳定性和提高其寿命具有重要意义。
3.热疲劳分析热疲劳是指由于温度变化和热负荷的交替作用下,材料内部所发生的变形和极限荷载下的断裂。
燃烧室内部材料的高温、高压、高速度等多重因素综合作用,会导致其内部材料极受到热疲劳的作用,从而降低燃烧室的寿命。
4.热扰动分析热扰动是指由于燃烧过程中的火焰、燃烧产物和高温气流等的作用下,对燃烧室内部的流场产生的扰动。
热扰动会对燃烧室的燃烧效率和稳定性产生影响。
燃烧室的内部结构必须具备压强变化的承受能力,从而保持其结构的稳定性。
四、燃烧室的热弹性分析方法1.数值仿真法数值仿真法是利用计算机技术对燃烧室的热弹性进行模拟与计算。
航空发动机加力燃烧室设计

航空发动机加力燃烧室设计一、引言航空发动机是现代飞行器的核心部件,其性能直接关系到飞行器的安全性和经济性。
燃烧室作为航空发动机的核心部件之一,其设计对于发动机的性能具有重要影响。
本文将从航空发动机加力燃烧室设计方面进行探讨。
二、航空发动机加力燃烧室的概念及作用1. 航空发动机加力燃烧室的概念航空发动机加力燃烧室是指在正常工作状态下,通过增大进气量或提高进气压力等手段,使得在相同时间内喷油量增大,从而提高推力和功率输出的一种设计方案。
2. 航空发动机加力燃烧室的作用航空发动机加力燃烧室可以提高飞行器在特定工况下的推力和功率输出,从而满足特定飞行任务需求。
同时,在实际使用中,由于气象条件、高度等因素的影响,需要通过调整进气量或进气压力等手段来保证飞行器在不同工况下具有稳定的推力和功率输出。
三、航空发动机加力燃烧室设计的要求1. 稳定性要求航空发动机加力燃烧室在工作过程中需要保持稳定的运行状态,避免出现过度喷油、爆震等不稳定现象。
因此,在设计过程中需要考虑燃料喷射方式、火焰传播速度等因素,确保燃烧室具有良好的稳定性。
2. 燃烧效率要求航空发动机加力燃烧室需要在相同时间内喷油量增大,从而提高推力和功率输出。
但是,过度喷油会导致能量损失增大、排放物增多等问题。
因此,在设计过程中需要考虑如何提高燃料利用率,减少能量损失和排放物产生。
3. 耐久性要求航空发动机加力燃烧室需要在高温高压环境下长期运行,因此需要具有良好的耐久性。
在设计过程中需要考虑材料选择、冷却方式等因素,确保燃烧室具有足够的耐久性。
4. 安全性要求航空发动机加力燃烧室需要具有良好的安全性,避免出现爆炸、火灾等安全事故。
在设计过程中需要考虑如何防止燃气泄漏、如何排放废气等问题,确保燃烧室具有足够的安全性。
四、航空发动机加力燃烧室设计的关键技术1. 喷油系统设计喷油系统是航空发动机加力燃烧室中最关键的部件之一,其设计直接影响到喷油量和喷油方式。
在设计过程中需要考虑如何提高喷油精度、如何控制喷油量等问题。
航空发动机燃烧室设计与优化

航空发动机燃烧室设计与优化航空发动机是航空工业中的一个重要组成部分,其性能的好坏可以直接关系到整个飞行过程的安全性和可靠性。
而燃烧室则是航空发动机中非常重要的一个设计部分,它直接关系到燃烧的效率和排放的量,因此必须得到合理的设计和优化才能满足飞行的需要。
本文将对航空发动机燃烧室设计和优化进行探讨。
一、燃烧室的结构和功能航空发动机中的燃烧室是一个非常重要的部分,主要用于实现燃料的燃烧和发电机的产生,同时还能够控制燃烧的速率和温度等参数,以满足飞行的需求。
而燃烧室的主要结构部分则是燃烧室限制器、燃烧室内衬和燃气喷嘴等,其中燃烧室限制器主要用于控制燃气的流量和速率,燃烧室内衬则可以防止燃气在燃烧过程中产生积碳和堵塞燃气喷嘴等。
二、燃烧室设计的基本原则燃烧室设计的基本原则主要是考虑到燃烧室的效率和排放的量,一般来说,要尽可能地提高燃料在燃烧过程中的利用率,同时还要将排放的有害物质控制在合理的范围以内,这样才能够满足飞行过程的需要。
在具体的燃烧室设计过程中,还需要考虑到以下几个方面:1. 燃烧室的结构:燃烧室的结构应该尽可能地简单,以减少对燃烧的影响,同时还需要考虑到压力的分布和气流的流动情况,以确保燃烧室的效率。
2. 燃气喷嘴:燃气喷嘴的设计是燃烧室中最为重要的部分之一,它可以直接影响到燃烧室的性能和效率,因此需要合理的设计和优化,以确保燃气喷嘴能够实现燃气的混合和均匀喷洒。
3. 燃料的选择:燃料的选择是燃烧室设计的另一个重要方面,不同的燃料可以产生不同的燃烧效果和排放效果,需要根据具体情况进行选择和调整。
三、燃烧室优化的主要方法燃烧室的优化是一个比较复杂的过程,需要运用多种方法进行分析和调整,以下是几种常见的燃烧室优化方法:1. 数值模拟:数值模拟是一个较为常用的燃烧室优化方法,其主要原理是利用计算机仿真和模拟的方式分析和预测燃烧室的性能和效果,可以通过对不同参数的调整和变化进行模拟来实现纠正和优化。
第十三章 航空发动机燃烧室

头部的贫油设计与富油设计以此处的a为准,若a<1为富油,a>1则为 贫油。在这个区,大部分燃料将烧完。
旋流器进气加上主燃孔进气一般称第一股气流,即用于燃烧的,其余 则用于掺混的谓之第二股气流。主燃孔的位置和大小至关重要,过前 、过后、过大和过小都将会对主燃区的工作带来影响。
13.2.2燃烧过程中的能量平衡
一、燃烧过程的能量平衡、燃烧效率
二、燃烧温度 近似计算公式: 影响T4*的因素:
精确求解用迭代法:
提纲:
13.3 燃烧室的工作过程
一、燃烧室的气流流型 在燃烧室内建立适当的气流流型是组织燃烧的基础。 燃烧室的气流流型应满足: 能促进燃油与空气混合,形成所需要的浓度场; 产生回流区,确保可靠点火,火焰稳定及燃烧完全; 在壁面形成保护气膜,使壁温在允许的范围内; 通过掺混、降温形成所要求的出口流场和温度场。
这些要求之间往往出现矛盾,例如火焰筒稳定性与气流压力损失之 间的矛盾,容热强度与寿命之间的矛盾。因此根据飞机的不同用途, 要这种考虑。
军机一般400-1000h,民机6000-8000h。
四、燃气涡轮发动机燃烧室的基本设计点
首先考虑一种最简单可行的燃烧室。燃油喷入平行壁的导管中央。 燃烧在空气流中发生,空气流的速度等于压气机出口的气流速度,约 为150-200m/s,这种方式的主要缺点是在这样高的速度下燃油燃烧时 发生很大的基本压力损失(热阻损失)。每当向流动的气体加热时发 生的这种损失由下式给出:
3. 沿叶高温度分布应符合中间高两端低的要求-等强度原则。
5. 压力损失小
气流流经燃烧室要产生压力损失。它主要包括摩擦损失、扩压损失、 穿过火焰筒的众多大小孔产生的进气损失、掺混损失以及燃烧加热引 起的热阻等等。
第十三章 航空发动机中的燃烧

QV =
3600W f H uη c
P3 tVc
式中 W f , H u ,η c , P3t ,Vc 分别为燃料流量,燃料低热值,燃烧效率,燃烧室进口总压 及燃烧室体积。也可以按火焰筒体积 V f 定义容热强度,3 tV f
3
一般,主燃烧室的 QV = (750 − 908)kJ /( m ⋅ h ⋅ Pa ) ; 火焰筒的 QVf = (1234 − 2073) kJ /( m ⋅ h ⋅ Pa ) ;
六、燃烧室性能指标
燃烧室必须能够允许燃油在范围广泛的工作状态下有效地燃烧而不致产生巨大的压力
234
损失。此外,如果火焰熄灭了,它必须能够重新点燃。在完成这些功能时,火焰筒和喷嘴雾 化器部件必须在机械上是可靠的。 燃气涡轮发动机按等压循环工作,因而,燃烧过程的压力损失必须保持在最低水平。在 提供足够的湍流和掺混时,总压损失在燃烧室进口空气压力的 3~8%之间变化。 1、燃烧强度 由燃烧室或任何别的热量发生装置放出的热量取决于燃烧区的容积。 因而, 为了获得要 求的高功率输出,一个相当小而紧凑的燃气涡轮燃烧室必须以极高的放热率放热。例如,在 起飞状态,一台罗尔斯·罗伊斯公司的 RB211-524 发动机每小时消耗 9368kg 燃油。这种燃 油具有大约 43120kJ/kg 的热值。因此,该燃烧室每秒释放将近 112208kJ 的热量。换言之, 这种潜在的热量消耗率相当于大约 150000 马力。 燃烧室容热强度定义为燃烧室在单位压力下、单位容积内燃料燃烧每小时所释放的热 量。
第十三章 航空发动机中的燃烧
目前飞机的发动机一般均采用航空燃气轮机。 主燃烧室是它的三大核心部件之一。 对于 军用发动机还设有加力燃烧室。 它们工作的优劣直接影响发动机的性能。 本章将介绍航空发 动机主燃烧室和加力燃烧室的结构、工作原理及性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、燃气涡轮发动机燃烧室的基本设计点
首先考虑一种最简单可行的燃烧室。燃油喷入平行壁的导管中央。 燃烧在空气流中发生,空气流的速度等于压气机出口的气流速度,约 为150-200m/s,这种方式的主要缺点是在这样高的速度下燃油燃烧时 发生很大的基本压力损失(热阻损失)。每当向流动的气体加热时发 生的这种损失由下式给出:
3.
5. 压力损失小
气流流经燃烧室要产生压力损失。它主要包括摩擦损失、扩压损失、 穿过火焰筒的众多大小孔产生的进气损失、掺混损失以及燃烧加热引 起的热阻等等。 常用总压恢复系数来衡量压力损失。
6.尺寸小重量轻(燃烧室容热强度、火焰筒容热强度)
由燃烧室或任何别的热量发生装置放出的热量取决于燃烧区的容积。 因而,为了获得要求的高功率输出,一个相当小而紧凑的燃气涡轮燃 烧室必须以极高的放热率放热。例如,在起飞状态,一台罗罗公司的 RB211-524发动机每小时消耗9368kg燃油。这种燃油具有大约 43120KJ/kg的热值。因此,该燃烧室每秒释放近112208KJ的热量。 换言之,这种潜在的热量消耗率相当于大约150000马力。 常用容热强度这个参数来衡量燃烧室容积的利用程度。
燃烧室出口温度分布的衡量指标:
1)燃烧室出口温度分布系数OTDF
2)燃烧室出口径向温度分布系数RTDF
出口温度场分布要求:
1.
2.
火焰除点火过程的短暂时间外,不得伸出燃烧室;
沿涡轮进口环形通道的圆周方向,温度尽可能均匀,要求OTDF<0.2 ,RTDF=0.08-0.12。在整个出口环腔内最高温度T4max与平均温度T4 之差不得超过100-120℃. 沿叶高温度分布应符合中间高两端低的要求-等强度原则。
一般,主燃室的
7. 排气污染少(起因,组成,如何减少或消除)
航空发动机的污染表现在
1.
由于燃烧组织的不完善,特别是在富油时,排放大量的CO直接造成 对人类健康的危害。
2.
局部富油时因缺氧,形成大量的微细碳粒,形成可见黑烟雾,造成污 染。
由于燃烧时温度高,特别是在地面起飞状态时,容易形成NOX类物质 ,对人类及其他生物危害也很大。
3.
4.
燃烧室工作时,特别是加力燃烧室在不稳定工作时产生低频高分贝的 强噪声污染。
要求符合污染标准
8. 寿命长
燃烧室内火焰温度很高,火焰筒壁面经常受着高温燃气的侵蚀。由 于气流和火焰的紊流脉动,使火焰筒承受着交变的高温燃气引起的热 应力。火焰筒经常产生裂纹、烧蚀、掉块、变形等故障。现代航空燃 气涡轮发动机的燃烧室内,火焰筒都是用高性能的耐热钢板制成的。 为防止过热、烧蚀和延长寿命,火焰筒壁面都采用了有效的冷却措施 ,以保证在较长的寿命期内安全可靠的工作。 这些要求之间往往出现矛盾,例如火焰筒稳定性与气流压力损失之 间的矛盾,容热强度与寿命之间的矛盾。因此根据飞机的不同用途, 要这种考虑。 军机一般400-1000h,民机6000-8000h。
第十三章航空发 动机中的燃烧
13.1航空发动机燃烧室概述
一、燃烧室的功用
P3=7-32atm T3=500-750K c3=120-180m/s
P4略有下降 T4=1150-1850K c4=160-200m/s
主燃烧室的作用
把压气机增压后的空气,经过喷油燃烧释放热量,提高温度,然后流 向涡轮膨胀作功。(主燃烧室烧完总进气量的大约1/3---1/4)
加力燃烧室作用:
经涡轮膨胀后燃烧室燃烧所剩余的氧气再不吃喷油燃烧,提高气流温 度,增加作。
燃烧室和加力燃烧室的功用:
把燃油的化学能释放出来转变为热能。是气体的总焓增大,以便提高 燃气再涡轮和尾喷管中膨胀做功的能力。(燃油释放能量做功)
3、燃烧完全
燃烧完全系数:
燃烧完全程度室发动机重要的经济指标,用燃烧效率来衡量。
燃烧效率(考虑了散热效应):
热循环效率:
4、出口温度场符合要求
燃烧室出口的燃气流向涡轮 叶片,考虑到高速旋转的涡 轮叶片承受应力已经很大, 再加上高温气流的冲击,工 作条件十分恶略。于是要求 燃烧室出口气流温度场符合 涡轮叶片高温强度的要求, 不要有局部过热点,以保证 涡轮的正常工作和寿命。
可见,燃烧室是动力机械的能量发源地,室发动机中的主要部件之一。
二、燃烧室工作特点 (1) 进口气流速度很大 (2) 燃烧室容积很小(容热强度大) (3) 工作温度高(2500K) (4) 出口气流温度T4受到涡轮叶片的强度的限制,不能过高 (5) 进口参数变化大
因此一个好的燃烧室必须在这些参数变化范围宽广的状态
对于v=150m/s,以及有代表性的T3、T4、p数值的情况来说,⊿P基 约为进口压力的25%,这太大了。
靠增加一进口扩压器可使燃烧区的流速下降到一个数值,此时⊿P基是 可容许的。例如,若流速下降到原来的1/5,则基本压力损失将下降到 原来的1/25,即大约是进口压力的1%,这是可以接受的。
即使增加了扩压器,对于稳定燃烧来说,燃烧区的流速还是太高,他 比大多数燃油的基本火焰速度高出不止一倍。于是在喷油嘴后增加一 折流挡板,以便提供回流和一个使火焰“驻定”的低流速回流区。为 了防止火焰吹熄并使低压条件下容易在点火,这是特别需要的。 故在主燃烧室----旋流器,加力燃烧室----V形槽
下保证正常工作,至少不能熄火,以便保证发动机能发出 推力,飞机能安全飞行。而且,这一任务必须以最小的压 力损失、在有限的可用空间里释放出最大的热量、高效低 污染地实现,亦即高效、高强度、低污染的实现。
三、对主燃烧室的性能要求
1、点火可靠 1)能在进口±50℃范围内实现良好的地面起动 2)高空熄火后能够再点火,保证安全 3)能在8-12km的高度实现可靠点火 发动机的点火高度是评定飞机或发动机的一个性能指标,目前达到的高度为89km,采取补氧等措施后可达12-13km。提高点火高度,也是目前研究的主要 课题。 2.燃烧稳定 要求燃烧室在点燃以后,必须: 1)在规定的全部飞行高度、速度范围内都能稳定燃烧,不被吹熄 2)在a=2-50的范围内能稳定燃烧 3)避免不稳定燃烧(振荡燃烧)