轴向拉伸与压缩习题及解答

合集下载

工程力学材料力学第四版北京科技大学及东北大学习题答案解析

工程力学材料力学第四版北京科技大学及东北大学习题答案解析

工程力学材料力学第四版北京科技大学及东北大学习题答案解

工程力学材料力学 (北京科技大学与东北大学)
第一章轴向拉伸与压缩
1-1:用截面法求下列各杆指定截面的内力
解:
(a):N1=0,N2=N3=P
(b):N1=N2=2kN
(c):N1=P,N2=2P,N3= -P
(d):N1=-2P,N2=P
(e):N1= -50N,N2= -90N
(f):N1=0、896P,N2=-0、732P
注(轴向拉伸为正,压缩为负)
1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解: σ1=
2
1
1
850
4
P kN
S d
π
=
=35、3Mpa
σ2=
2
2
2
850
4
P kN
S d
π
=
=30、4MPa
∴σmax=35、3Mpa
1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:
下端螺孔截面:σ1=1
90
20.065*0.045P S =15、4Mpa 上端单螺孔截面:σ2=2P S =8、72MPa
上端双螺孔截面:σ3=
3P S =9、15Mpa ∴σmax =15、4Mpa。

工程力学轴向拉伸与压缩答案

工程力学轴向拉伸与压缩答案

第5 章轴向拉伸与压缩5-1 试用截面法计算图示杆件各段地轴力,并画轴力图.习题5-1 图解:(a)题F Nx(b)题F NxA(c)题F N(kN)x-3(d)题F N-10x5-2 图示之等截面直杆由钢杆 ABC 与铜杆 CD 在 C 处粘接而成.直杆各部分地直径均为 d =36 mm ,受力如图所示.若不考虑杆地自重,试求 AC 段和 AD 段杆地轴向变形量 Δl AC和 Δl AD习题 5-2 图(F N ) l AB (F N ) l BC解: Δl AC =AB πd 2E s4+BC πd 2 E s 4 150 ×103 × 2000 +100 ×103 ×3000 4 = × = 2.947 mm(F N ) 200 ×103 l π ×362100 ×103 × 2500 × 4 Δl = Δl + CD CD = 2.947 + = 5.286 mm AD AC πd 2 E c4105 ×103 × π ×3625-3 长度 l =1.2 m 、横截面面积为 1.10×l0-3m 2 地铝制圆筒放置在固定地刚性块上;刚性板mC B −6 B 直径 d =15.0mm 地钢杆 BC 悬挂在铝筒顶端地刚性板上;铝制圆筒地轴线与钢杆地轴线重 合.若在钢杆地 C 端施加轴向拉力 F P ,且已知钢和铝地弹性模量分别为 E s =200GPa ,E a =70GPa ;轴向载荷 F P =60kN ,试求钢杆 C 端向下移动地距离.解:u A− u B −F l = P AB E a A a 3(其中 u A = 0)3∴ u =60 ×10 ×1.2 ×10= 0.935 mm B 70 ×10 3 ×1.10 ×10 −3 ×10 6钢杆 C 端地位移为F l60 ×103 × 2.1×103u = u + P BC = 0.935 + = 4.50 m m E s A s200 ×103 × π ×15245-4 螺旋压紧装置如图所示.现已知工件所受地压紧力为 F =4 kN .装置中旋紧螺栓 螺纹地内径 d 1=13.8 mm ;固定螺栓内径 d 2=17.3 mm .两根螺栓材料相同,其许用应力[σ ] =53.0 MPa .试校核各螺栓地强度是否安全.解:∑ M B = 0 ,F A = 2kN ∑ F y = 0 ,F B = 6kN习题 5-4 解图习题 5-4 图 σ = F A = 2000 = A π2000 × 42= 13.37 MPa < [σ ] ,安全. A A d 2 π ×13.8 ×104 σ = F B = 16000= 25.53 MPa <[σ ] ,安全. A B π ×17.32 ×10−645-5 现场施工所用起重机吊环由两根侧臂组成.每一侧臂 AB 和 BC 都由两根矩形截面 杆所组成,A 、B 、C 三处均为铰链连接,如图所示.已知起重载荷 F P =1200 kN ,每根矩形 杆截面尺寸比例 b/h =0.3,材料地许用应力[σ ]=78.5MPa .试设计矩形杆地截面尺寸 b 和 h .4⋅2FF N习题 5-5 图解:由对称性得受力图如习题 5-5 解图所示.∑ F y = 0 ,4F N cos α = F P 习题 5-5 解图F = F P = N 4 cos α 1200 ×103960 = 3.275 ×105 Nσ = F N A= F N 0.3h 2≤ [σ ]9602 + 42025h ≥ F N =0.3[σ ]3.275 ×100.3 × 78.5 ×106= 0.118m b = 0.3h ≥ 0.3 × 0.118 = 0.0354m = 35.4mmh = 118mm ,b = 35.4mm5-6 图示结构中 BC 和 AC 都是圆截面直杆,直径均为 d =20mm ,材料都是 Q235 钢, 其许用应力[σ ]=157MP .试求该结构地许用载荷.B习题 5-6 图习题 5-6 解图∑ F x = 0 , F B = 2F A (1)∑ F y= 0 ,2 F A + 23F B − F P = 0 2(2)1 + 3 F P = F B2(3)F ≤ [σ ] ⋅πd2B43 mdWs由式(1)、(2)得:F ≤ 1 + P2 = 1 + 23 ⋅π d 2 [σ ] 43 ⋅π × 202 ×10−4 ×157 ×106 = 67.4kN 4` (4)F P =2 (1 + 23 ) F A = 2 (1 + 2 3 ) ⋅[σ ]π 24= 90.28kN (5)比较(4)、(5)式,得 [F P ] = 67.4 kN5-7 图示地杆件结构中 1、2 杆为木制,3、4 杆为钢制.已知 1、2 杆地横截面面积A 1=A 2=4000 mm 2,3、4 杆地横截面面积 A 3=A 4=800 mm 2;1、2 杆地许用应力[σ]=20MPa , 3、4 杆地许用应力[σ ]=120 MPa .试求结构地许用载荷[F P ].习题 5-7 图P(a)3(b)解:1. 受力分析:由图(a )有5∑ F y = 0 , F 3 =F P 3 4 4由图(b )由∑ F x = 0 , F 1 = − 5 F 3 = − 3 F P∑ F x = 0 , F 4 = 4 F 3 = 5 43 F P2. 强度计算:5∑ F y = 0 , F 2= − 3F 3 = −F P| F 1 |>| F 2 || F 1 |≤ [σ w ] A 14 F ≤ A [σ ] 3P 1 w F ≤ 3 A [σ ] = 3 × 4000 ×10 −6 × 20 ×10 6 = 60 kN P 4 1 w4F 35F 3 > F 4 , ≤ [σ s ] , A 3F P ≤ [σ ]A 3 3F ≤3 [σ] A 3 ×120 ×10 6 × 800 ×10 −6= 57.6 kN[F P] = 57.6 kNa*5-8 由铝板和钢板组成地复合柱,通过刚性板承受纵向载 荷 F P =38 kN ,其作用线沿着复合柱地轴线方向.试确定:铝板和 钢板横截面上地正应力. 解:此为超静定问题.1. 平衡方程2. 变形协调方程:3. 物性关系方程:F Ns + F Na = F P Δl s = Δl a(1)(2)联立解得⎧F F Ns E s A sE s A s= FNaE a A a(3)习题 5-8 图⎪ Ns = E A E A F P ⎪ ⎨ ⎪F = s s + a E a A a a(压) F NaE A + E A P s s a aσ =F Ns =−E s F P = −E s F P s A E b h + E⋅ 2b h b hE + 2b hE s s 0 a 1 0 s 1 a9 3σ = − 200 ×10 ×385 ×10175MPa (压)= − s 0.03 × 0.05 × 200 ×109 + 2 × 0.02 × 0.05 × 70 ×109σa = F Na A = −b hE E a F P+ 2b hEa 0 s 1 aσ = −175E a E s = −17570 200= −61.25MPa (压)*5-9 铜芯与铝壳组成地复合棒材如图所示,轴向载荷通过两端刚性板加在棒材上. 现已知结构总长减少了 0.24 mm .试求:1.所加轴向载荷地大小; 2. 铜芯横截面上地正应力.习题 5-9 图F NcE A =F NaE A(1)E A E A σ aF = ΔlE c A c , F= ΔlE a A aF Nc + F Na = F P(2)Nc l NalF = F + F = ΔlE c A c + ΔlE a A aP Nc Nal l = Δl E A + E A( c c a a) l= 0.24 ×10−3 ⎧ π 2 =π ⎡ 2 2 ⎤⎫ = ⎨105 ×106 × ×(25 ×10−3 ) + 75 ×106 × × (60 ×10−3 ) − (25 ×10−3 ) ⎬ 30 ×10−3⎩ 4 4 ⎭ = 171 kNF =E c A cNc c c F P + E a A aF =E a A a Na c cF P + E a A a⎧ F Nc E c F P E c F P ⎪σ c = ⎪ A c ⎪ ∴ ⎨= E c A c + E a A a = E c ⋅ πd 2 4 + E a π 2 2 ⋅ (D− d ) 4 ⎪ = F Na ⎪ A a ⎪⎩ = πd 2E c 4E aF Pπ(D 2 − d 2 ) + E a 4 9 32. σ =4 ×105 ×10 ×171×1083.5MPa = c105 ×109 × π × 0.0252 + 70 ×109 × π × (0.062 − 0.025)2σa = σcE a = 83.5 × 70= 55.6MPa E c 105*5-10 图示组合柱由钢和铸铁制成,组合柱横截面为边长为 2b 地正方形,钢和铸铁 各占横截面地一半(b ×2b ).载荷 F P ,通过刚性板沿铅垂方向加在组合柱上.已知钢和铸铁 地弹性模量分别为 E s =196GPa ,E i =98.0GPa .今欲使刚性板保持水平位置,试求加力点地 位置 x =?解:∑ M 0 = 0 , (b ⋅ 2b σ 习题 5-10 图) ⋅( x − b ) = (b ⋅ 2b )σs i( 3 b − x )23∴σ σ s =iE sE i2 x − b = σ i3b − 2 x σ s(1)(2)代入(1)得σ i σ s4 x − 2b = 3b − 2 x5= 98 = 1196 2(2)∴ x = b 65-11 电线杆由钢缆通过旋紧张紧器螺杆稳固.已知钢缆地横截面面积为1×103 mm 2 ,E =200GPa ,[σ ] = 300MPa .欲使电杆有稳固力F R =100kN ,张紧器地螺杆需相对移动多少? 并校核此时钢缆地强度是否安全.F R习题 5-11 图解:(1)设钢缆所受拉力为 F N ,由平衡条件F N cos30°=F RF N =100/ cos30°=115.5kNΔl = F N l = 115.5 ×103 ×10 ×103= 6.67mm EA 200 ×103 ×103× 3 / 2张紧器地螺杆需相对移动 6.67mm .(2)钢缆地应力与强度σ = F N A = 115.5 ×10 103= 115.5MP a < [σ ]所以,强度安全.5-12 图示小车上作用着力 F P =15kN ,它可以在悬架地 AC 梁上移动,设小车对 AC梁地作用可简化为集中力.斜杆 AB 地横截面为圆形(直径 d =20mm),钢质,许用应力 [σ]=160MPa .试校核 AB 杆是否安全.3习题 5-12 图F N ABαF N ACF P习题 5-12 解图解:当小车开到 A 点时,AB 杆地受力最大,此时轴力为 F N A B .(1) 受力分析,确定 AB 杆地轴力 F N A B ,受力图如图 5-12 解图所示, 由平衡方程∑Fy= 0 ,F N AB sin α − F P = 0sin α =解得轴力大小为:0.8 0.82 +1.92F N AB = 38.7kN(2)计算应力σ = F N AB = F N AB = 4 × 38.7 ×10 =123 ×106Pa = 123MPa < [σ ] AB强度安全.A AB πd 2 4π × 202 ×10−65-13 桁架受力及尺寸如图所示.F P =30kN ,材料地抗拉许用应力[σ]+=120MPa , 抗压许用应力[σ]-=60MPa .试设计AC 及AD 杆所需之等边角钢钢号.(提示:利用附录B 型钢表.)F N AC45DAF N ADF PF RA习题 5-13 图习题 5-13 解图解:(1)受力分析,确定 AC 杆和 AD 杆地轴力 F N AC 、 F N AD ,对整体受力分析可得, F R A= F R B = F P 2= 15kN再取节点 A ,受力分析,受力图如图 5-13 解图所示,建立平衡方程D D 3 3 2 4 ∑F y = 0 , − F N AC sin 45 + F R A = 0解得 AC 杆轴力大小为:F N AC = 21.2kN(压)∑ F x = 0 , − F N AC cos 45 + F N AD = 0解得 AD 杆轴力大小为: F N AD = 15kN(拉)(2)强度条件拉杆:A AD = F N AD [σ ]+ = 15 ×10 120 = 125mm 2 压杆:(3)选择钢号A AC = F N AC [σ ]− = 21.2 ×10 60 = 353.3mm 2 拉杆: 20 × 20 × 4压杆: 40 × 40 × 55-14 蒸汽机地气缸如图所示.气缸内径D =560mm ,内压强p =2.5MPa ,活塞杆直径 d =100mm .所有材料地屈服极限σs =300MPa . (1)试求活塞杆地正应力及工作安全系数.(2)若连接气缸和气缸盖地螺栓直径为30mm ,其许用应力[σ]=60MPa ,求连接每个气缸盖 所需地螺栓数.习题 5-14 图解:(1)活塞杆受到地轴力为:⎡π (D 2 F = pA = p − d 2 ) ⎤ = 2.5⎡π (560 −1002 ) ⎤ = 596.12kN N ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ 4 ⎦活塞杆地正应力:σ =F N A 杆596.12 ×103 ) = = 75.9MPa π ×102 / 4 工作安全系数: (2)螺栓数mn = σ s σ= 300 = 3.95 75.93x 3 x y xm = F N = 596.12 ×10 = 14.1 个 A 栓 [σ ]栓 π × 302 / 4 × 60由于圆对称,取m =16个.5-15 图示为硬铝试件,h =200mm ,b =20mm .试验段长度l 0=70mm .在轴向拉力 F P =6kN 作用下,测得试验段伸长Δl 0=0.15mm ,板宽缩短Δb =0.014mm .试计算硬铝地弹 性模量E 和泊松比ν .习题 5-15 图解:(1)计算弹性模量Eε = Δl 0 l 0= 0.15 = 2.143 ×10−3 70σ = F P = 6 ×10 = 150MPa AE = σ = 20 × 2 150 ×106 = 70GPa ε 2.143 ×10−3 (2) 计算泊松比νε = Δb 0 b 0= − 0.014 = −7 ×10−4 20ε ν = y = − 7 ×10−4 = 0.327 ε 2.143 ×10−3上一章返回总目录下一章。

第六章 轴向拉伸与压缩

第六章 轴向拉伸与压缩

第六章轴向拉伸与压缩一、判断题1、若物体产生位移,则必同时产生变形。

(×)解析:刚体变形一定有位移,但有位移不一定有变形。

若物体各点均无位移,则该物体必定无变形(✔)2、轴力是轴向拉、压杆横截面上的唯一的内力。

(√)解析:轴力是轴向拉、压杆横截面上的唯一的内力。

轴力必垂直于杆件的横截面。

轴力作用线一定通过杆件横截面的形心3、轴力一定是垂直于杆件的横截面。

(√)4、轴向拉、压杆件的应力公式只能适应于等截面杆件。

(×)解析:等截面拉压杆横截面上的正应力计算公式:AF N =σ适用于等截面直杆,对于横截面平缓变化的拉、压杆可近似使用,但对横截面骤然变化的拉、压杆不能用。

5、两根等长、等截面的杆件,一根为刚质杆,另一根为铜质杆,在相同的外力作用下,它们的应力和变形都不同。

(×)解析:应力相同,但变形不同。

解析:EA l F l A F N N =∆=胡克定律:应力公式:σ6、若将所加的载荷去掉,试件的变形可以全部消失,这种变形称为弹性变形。

(√)解析:弹性变形:是材料在外力作用下产生变形,当外力去除后变形完全消失的现象。

弹性变形的重要特征是其可逆性,即受力作用后产生变形,卸除载荷后,变形消失。

塑性变形:是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。

7、若拉伸试件处于弹性变形阶段,则试件工作段的应力-应变成正比关系。

(×)低碳钢拉伸解析:弹性变形阶段(ob 段),其中前部分oa 段是直线度,应力-应变成正比关系。

即满足胡克定律,后部分ab 段出现了转折,在a 点对应的应力称为材料的比例极限。

即材料处于正比例关系时,所能承受的最大应力。

8、钢材经过冷作硬化处理后,其延伸率可以得到提高。

(×)解析:延伸率会下降。

因为冷作硬化后,材料硬度提高,变形度下降了。

比例极限提高。

9、对于脆性材料,压缩强度极限比拉伸强度极限高出许多。

工程力学习题册第五章 - 答案

工程力学习题册第五章 - 答案

第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。

其变形特点是杆件沿_轴线方向伸长或缩短__。

其构件特点是_等截面直杆_。

2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。

图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。

剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。

4.构件在外力作用下,_单位面积上_的内力称为应力。

轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。

1MPa=__106_N/m2=_1__N/mm2。

5.杆件受拉、压时的应力,在截面上是__均匀__分布的。

6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。

__压缩_时的应力为__压应力_,符号位负。

7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。

8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。

9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。

E称为材料的_弹性模量__。

它是衡量材料抵抗_弹性变形_能力的一个指标。

10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。

11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。

12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。

13.采用___退火___的热处理方法可以消除冷作硬化现象。

材料力学 拉伸压缩 习题及参考答案

材料力学 拉伸压缩 习题及参考答案

轴向拉伸和压缩 第二次 作业1. 低碳钢轴向拉伸的整个过程可分为 弹性阶段 、 屈服阶段 、 强化阶段 、 局部变形阶段 四个阶段。

2. 工作段长度100 mm l =,直径10 mm d =的Q235钢拉伸试样,在常温静载下的拉伸图如图所示。

当荷载F = 10kN 时,工作段的伸长∆l = 0.0607mm ,直径的缩小∆d = 0.0017mm 。

则材料弹性模量E = 210 GPa ,强度极限σb = 382 MPa ,泊松比μ = 0.28 ,断后伸长率δ = 25% ,该材料为 塑性 材料。

∆l / mmO0.0607253. 一木柱受力如图所示。

柱的横截面为边长20mm 的正方形,材料的弹性模量E =10GPa 。

不计自重,试求 (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱端A 的位移。

100kN260kN解:(1)轴力图如图所示 (2)AC 段 310010250MPa 2020NAC AC AC F A σ-⨯===-⨯ CB 段 326010650MPa 2020NCB CB CB F A σ-⨯===-⨯ (3)AC 段 69250100.0251010NAC AC AC AC F EA E σε-⨯====-⨯ CB 段 69650100.0651010NCB CB CBCB F EA E σε-⨯====-⨯ (4)AC 段 0.025150037.5mm NAC ACAC AC AC ACF l l l EA ε∆===-⨯=- CB 段 0.065150097.5mm NCB CBCB CB CB CBF l l l EA ε∆===-⨯=- 柱端A 的位移 37.597.5135mm A AC CB l l ∆=∆+∆=--=-(向下)4. 简易起重设备的计算简图如图所示。

已知斜杆AB 用两根63×40×4不等边角钢组成,63×40×4不等边角钢的截面面积为A = 4.058cm 2,钢的许用应力[σ] = 170 MPa 。

(完整版)轴向拉伸、压缩与剪切(例题)

(完整版)轴向拉伸、压缩与剪切(例题)

P
FN1 Ptg
P
FN2 cos
(b) 确定许可载荷。由杆1的强度条件得
α
FN2
P
FN1 A1
C
Ptg A1
P 132k N
由杆2的强度条件得
FN 2 A2
P
cos
A2
(c) 确定许可载荷。
P 88 .6k N
杆系的许可载荷必须同时满足1、2杆的强度要求,所以应取上述计算中小的值,
2.62kN.m
1.32kN.m
注释:这里求出的符号为负的轴力只是说明整根活塞杆均受压,而AB段的轴力最大, 为2.62kN。
p.4
例题
例2-2
例题
试计算例2-1中活塞杆在截面1-1和2-2上的应力。设活塞杆的直径d = 10mm。
FN
x
(-)
1.32kN.m
2.62kN.m
解:(a) 截面1-1上的应力。
p.3
例题
例题
例2-1
—双压手铆机如图所示。作用于该手铆机活塞杆上的力分别简化为Pl=2.62kN, P2=1.3kN,P3=1.32kN。试求活塞杆横截面1-1和2-2上的轴力,并画出轴力图。
(d) 轴力图。由于活塞杆受集中力作用,所以在其作用间的截面轴力都为常量, 据此可画出轴力图
FN x
(-)
即许可载荷为[P]=88.6kN p.6
例题
例题
例2-4 图示简易支架,AB和CD杆均为钢杆,弹性模量E = 200 GPa,AB长度为l1 = 2m, 横截面面积分别是A1 = 200 mm2和A2 = 250mm2,P = 10 kN,求节点A的位移。
B
解:(a) 求内力。用截面法求1、2杆的内力

材料力学 历年试卷汇总带答案

材料力学 历年试卷汇总带答案
32
4

AC 外

I pAC 2


199 103 7.95 10

30 2
- 11 -
机械工程学院材料力学习题
图 3.3.2
3、如图所示圆轴,一端固定。圆轴横截面的直径 d=100mm,所受的外力偶矩 M1=7000 N•m M2=5000 N•m。试求圆轴横截面上的最大扭矩和最大切应力。 答:最大扭矩为 最大切应力为 N•m。 Mpa。
图 3.3.3
4、某传动轴为实心圆轴,轴内的最大扭矩 T =1.5kN m ,许用切应力 τ = 50MPa , 试确定该轴的横截面直径。 5、圆轴 AB 传递的功率为 P = 7.5kW,转速 n = 360r/min。轴的 AC 段为实心圆截面, CB 段为空心圆截面, 如图所示。 已知 D= 30mm。 试计算 AC 段横截面边缘处的切应力。
4、如图所示的厂房柱子中,由两等直杆组成的阶梯杆,已知 P1 =100KN,P2 =80KN, 上段(AB 段)的横截面面积为 16×16cm2 的正方形,底段(BC 段)的横截面面积为 35×25cm2 的矩形。试求每段杆横截面上的应力。 答:AB 段杆横截面上的应力为 BC 段杆横截面上的应力为 Mpa; Mpa。
2、构件具有足够的抵抗变形的能力,我们就说构件具有足够的
3、单位面积上的内力称之为
4、与截面垂直的应力称之为
5、轴向拉伸和压缩时,杆件横截面上产生的应力为
6、胡克定律在下述哪个范围内成立?
7、当低碳钢试样横截面上的实验应力 σ =σs 时,试样将 A、完全失去承载能力, C、产生较大变形,
8、脆性材料具有以下哪种力学性质? A、试样拉伸过程中出现屈服现象, B、抗冲击性能比塑性材料好, C、若构件开孔造成应力集中现象,对强度没有影响。 D、抗压强度极限比抗拉强度极限大得多。 9、灰铸铁压缩实验时,出现的裂纹 A、沿着试样的横截面, C、裂纹无规律, B、沿着与试样轴线平行的纵截面, D、沿着与试样轴线成 45。角的斜截面。

轴向拉伸及压缩习题及解答

轴向拉伸及压缩习题及解答

轴向拉伸与压缩习题及解答一、判断改错1、构件力的大小不但与外力大小有关,还与材料的截面形状有关。

答:错。

静定构件力的大小之与外力的大小有关,与材料的截面无关。

2、杆件的某横截面上,假设各点的正应力均为零,那么该截面上的轴力为零。

答:对。

3、两根材料、长度都一样的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。

如下图。

两杆都受自重作用。

那么两杆最大压应力相等,最大压缩量也相等。

答:对。

自重作用时,最大压应力在两杆底端,即max max N All A Aνσν=== 也就是说,最大应力与面积无关,只与杆长有关。

所以两者的最大压应力相等。

最大压缩量为 2max max22N Al l l l A EA Eνν⋅∆===即最大压缩量与面积无关,只与杆长有关。

所以两杆的最大压缩量也相等。

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。

所以宗乡纤维的伸长量都相等,从而在横截面上的力是均匀分布的。

答:错 。

在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。

5、假设受力物体某电测得x 和y 方向都有线应变x ε和y ε,那么x 和y 方向肯定有正应力x σ和y σ。

答:错, 不一定。

由于横向效应作用,轴在x 方向受拉〔压〕,那么有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。

A 1(a) (b)二、填空题1、轴向拉伸的等直杆,杆的任一点处最大剪应力的方向与轴线成〔45〕2、受轴向拉伸的等直杆,在变形后其体积将〔增大〕3、低碳钢经过冷做硬化处理后,它的〔比例〕极限得到了明显的提高。

4、工程上通常把延伸率δ>〔5%〕的材料成为塑性材料。

5、 一空心圆截面直杆,其、外径之比为0.8,两端承受力力作用,如将外径增加一倍,那么其抗拉刚度将是原来的〔4〕倍。

轴向拉伸和压缩习题集及讲解

轴向拉伸和压缩习题集及讲解

第二章 轴向拉伸和压缩 第一节 轴向拉压杆的内力1.1 工程实际中的轴向受拉杆和轴向受压杆在工程实际中,经常有承受轴向拉伸荷载或轴向压缩荷载的等直杆。

例如图2-1a 所示桁架的竖杆、斜杆和上、下弦杆,图2-1b 所示起重机构架的各杆及起吊重物的钢索,图2-1c 所示的钢筋混凝土电杆上支承架空电缆的横担结构,BC 、AB 杆,此外,千斤顶的螺杆,连接气缸的螺栓及活塞连杆等都是轴间拉压杆。

钢木组合桁架d起重机图工程实际中的轴向受拉(压)杆1.2 轴向拉压杆的内力——轴力和轴力图bcx图用截面法求杆的内力为设计轴向拉压杆,需首先研究杆件的内力,为了显示杆中存在的内力和计算其大小,我们采用在上章中介绍过的截面法。

(如图2-2a )所示等直杆,假想地用一截面m -m 将杆分割为I 和II 两部分。

取其中的任一部分(例如I )为脱离体,并将另一部分(例如II )对脱离体部分的作用,用在截开面上的内力的合力N 来代替(图2-2b ),则可由静力学平衡条件:0 0X N P =-=∑求得内力N P =同样,若以部分II 为脱离体(图2-2c ),也可求得代表部分I 对部分II 作用的内力为N =P ,它与代表部分II 对部分I 的作用的内力等值而反向,因内力N 的作用线通过截面形心 即沿杆轴线作用,故称为轴力..。

轴力量纲为[力],在国际单位制中常用的单位是N (牛)或kN (千牛)。

为区别拉伸和压缩,并使同一截面内力符号一致,我们规定:轴力的指向离开截面时为正号轴力;指向朝向截面时为负号轴力。

即拉力符号为正,压力符号为负。

据此规定,图2-2所示m-m 截面的轴力无论取左脱离体还是右脱离体,其符号均为正。

1.3 轴力图当杆受多个轴向外力作用时,杆不同截面上的轴力各不相同。

为了形象表示轴力沿杆轴线的变化情况,以便于对杆进行强度计算,需要作出轴力图,通常用平行于杆轴线的坐标表示截面位置,用垂直杆轴线的坐标表示截面上轴力大小,从而给出表示轴力沿截面位置关系的图例,即为轴力图...。

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩

解:1. 受力分析:由图(a)有
5 FP 3 4 4 ∑ Fx = 0 , F1 = − F3 = − FP 5 3
由图(b)由
2. 强度计算:
3m
F1
F3
F4
C
θ
B
F2
FP
F3
习题 5-7 图
(a)
(b)
∑ F y = 0 , F3 =
4 4 F3 = FP 5 3 5 ∑ F y = 0 , F2 = − F3 = − FP 3
5-4 螺旋压紧装置如图所示。现已知工件所受的压紧力为 F=4 kN。装置中旋紧螺栓 螺纹的内径 d1=13.8 mm;固定螺栓内径 d2=17.3 mm。两根螺栓材料相同,其许用应力 [σ ] =53.0 MPa。试校核各螺栓的强度是否安全。 解: ∑ M B = 0 ,FA = 2kN
∑ F y = 0 ,FB = 6kN
uB = 60 × 10 3 × 1.2 × 10 3 70 × 10 3 × 1.10 × 10 −3 × 10 6 = 0.935 mm
钢杆 C 端的位移为
FPlBC 60 ×103 × 2.1×103 uC = uB + = 0.935 + = 4.50mm π Es As 200 ×103 × ×152 4
解:当小车开到 A 点时,AB 杆的受力最大,此时轴力为 FNAB 。 (1) 受力分析,确定 AB 杆的轴力 FNAB ,受力图如图 5-12 解图所示, 由平衡方程
∑F
解得轴力大小为:
y
= 0,
0.8
FNAB sin α − FP = 0
sin α =
0.82 + 1.9 2
FNAB = 38.7kN

材料力学内部习题集及答案

材料力学内部习题集及答案

第二章 轴向拉伸和压缩2-1一圆截面直杆,其直径d =20mm,长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3,杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。

解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Addσππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。

已知杆横截面面积为A ,长度为L ,材料的容重为γ。

解:距离A 为x 处的轴力为 所以总伸长2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 2-3图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。

在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。

解:由胡克定律得 相应杆上的轴力为取A 节点为研究对象,由力的平衡方程得解上述方程组得2-4图示杆受轴向荷载F 1、F 2作用,且F 1=F 2=F ,已知杆的横截面面积为A ,材料的应力-应变关系为ε=c σn,其中c 、n 为由试验测定的常数。

工程力学习题册第五章 - 答案

工程力学习题册第五章 - 答案

第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。

其变形特点是杆件沿_轴线方向伸长或缩短__。

其构件特点是_等截面直杆_。

2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。

图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。

剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。

4.构件在外力作用下,_单位面积上_的内力称为应力。

轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。

1MPa=__106_N/m2=_1__N/mm2。

5.杆件受拉、压时的应力,在截面上是__均匀__分布的。

6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。

__压缩_时的应力为__压应力_,符号位负。

7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。

8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。

9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。

E称为材料的_弹性模量__。

它是衡量材料抵抗_弹性变形_能力的一个指标。

10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。

11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。

12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。

13.采用___退火___的热处理方法可以消除冷作硬化现象。

材料力学答案- 轴向拉伸与压缩

材料力学答案- 轴向拉伸与压缩

习 题2-1 一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量51010.0⨯=E MPa .如不计柱自重,试求:(1) 作轴力图;(2) 各段柱横截面上的应力;(3) 各段柱的纵向线应变;(4) 柱的总变形.解:(1) 轴力图(2) AC 段应力a a MP P σ5.2105.22.010100623-=⨯-=⨯-=CB 段应力a a MP P σ5.6105.62.010260623-=⨯-=⨯-=(3) AC 段线应变45105.2101.05.2-⨯-=⨯-==E σε CB 段线应变45105.6101.05.6-⨯-=⨯-==E σε(4) 总变形 m 3441035.15.1105.65.1105.2---⨯=⨯⨯-⨯⨯-=AB ∆2-2 图(a)所示铆接件,板件的受力情况如图(b)所示.已知:F =7 kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。

试绘板件的轴力图,并计算板内的最大拉应力。

解:(2)a MP σ4.194101024.015.0767311=⨯⨯⨯⨯⨯=-a MP σ1.311101025.015.0767322=⨯⨯⨯⨯⨯=- a MP σ9.388101026.015.07673=⨯⨯⨯⨯=- 最大拉应力a MP σσ9.3883max ==2-3 直径为1cm 的圆杆,在拉力F =10 kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为α=30o 的斜截面上的正应力与剪应力。

轴力图 (1)轴力图解:(1) 最大剪应力76max 22141210101063.66221F a d στππ-⨯===⨯⨯=MP ⨯ (2) ︒=30α界面上的应力()a MP ασσα49.952366.632cos 12=⨯=+= a MP αστα13.5530sin 66.632sin 2=⨯=⨯=︒2-4 图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力F =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答(总31页)-本页仅作为预览文档封面,使用时请删除本页-轴向拉伸与压缩习题及解答计算题1:利用截面法,求图2. 1所示简支梁m — m 面的内力分量。

解:(1)将外力F 分解为两个分量,垂直于梁轴线的分量F sin θ,沿梁轴线的分量F cos θ.(2)求支座A 的约束反力:xF∑=0,Ax F ∑=cos F θB M ∑=0, Ay F L=sin 3L F θAy F =sin 3Fθ (3)切开m — m ,抛去右半部分,右半部分对左半部分的作用力N F ,S F 合力偶M 代替 (图 )。

图 图(a)以左半段为研究对象,由平衡条件可以得到xF∑=0, N F =—Ax F =—cos F θ(负号表示与假设方向相反)y F ∑=0, s F =Ay F =sin 3Fθ 左半段所有力对截面m-m 德形心C 的合力距为零sin θC M ∑=0, M=AyF 2L =6FLsin θ 讨论 对平面问题,杆件截面上的内力分量只有三个:和截面外法线重合的内力称为轴力,矢量与外法线垂直的力偶距称为弯矩。

这些内力分量根据截面法很容易求得。

在材料力学课程中主要讨论平面问题。

计算题2:试求题2-2图所示的各杆1-1和2-2横截面上的轴力,并作轴力图。

解 (a )如图(a )所示,解除约束,代之以约束反力,作受力图,如题2-2图(1a )所示。

利用静力学平衡条件,确定约束反力的大小和方向,并标示在题2-2图(1a )中。

作杆左端面的外法线n ,将受力图中各力标以正负号,凡与外法线指向一致的力标以正号,反之标以负号,轴力图是平行于杆轴线的直线。

轴力图在有轴力作用处,要发生突变,突变量等与该处轴力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,如题2-2图(2a )所示,截面1和截面2上的轴力分别为1N F =F 和2N F =—F 。

(b)解题步骤与题2-2(a )相同,杆受力图和轴力图如题2-2(1b )、(2b )所示。

轴向拉伸和压缩习题附标准答案

轴向拉伸和压缩习题附标准答案

第四章轴向拉伸和压缩、填空题1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相_________ .2、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面_____________ .4、杆件轴向拉伸或压缩时,其横截面上的正应力是___________ 分布的.7、在轴向拉,压斜截面上,有正应力也有剪应力,在正应力为最大的截面上剪应力为________ .8杆件轴向拉伸或压缩时,其斜截面上剪应力随截面方位不同而不同,而剪应力的最大值发生在与轴线间的夹角为________ 的斜截面上.矚慫润厲钐瘗睞枥庑赖。

9、杆件轴向拉伸或压缩时,在平行于杆件轴线的纵向截面上,其应力值为_______ .10、胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________ 极限.11、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越 ________ 聞創沟燴鐺險爱氇谴净。

12、在国际单位制中,弹性模量E的单位为________ .13、在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越_________ ,则变形就越小.15、低碳钢试样据拉伸时,在初始阶段应力和应变成___________ 关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为__________ 极限的时候.残骛楼諍锩瀨濟溆塹籟。

16、在低碳钢的应力一应变图上,开始的一段直线与横坐标夹角为a,由此可知其正切tg a在数值上相当于低碳钢的值.酽锕极額閉镇桧猪訣锥。

17、金属拉伸试样在屈服时会表现出明显的__________ 变形,如果金属零件有了这种变形就必然会影响机器正常工作.彈贸摄尔霁毙攬砖卤庑。

18、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成_______ 角的系统条纹,此条纹称为__________ .謀养抟箧飆鐸怼类蒋薔。

材料力学第二章轴向拉伸与压缩习题答案

材料力学第二章轴向拉伸与压缩习题答案
3-10图示凸缘联轴节传递的力偶矩为 ,凸缘之间用四个对称分布在 圆周上的螺栓联接,螺栓的内径 ,螺栓材料的许用切应力 。试校核螺栓的剪切强度。
解:
设每个螺栓承受的剪力为 ,则由
可得
螺栓的切应力
MPa MPa
∴螺栓满足剪切强度条件。
3-11图示矩形截面木拉杆的接头。已知轴向拉力 ,截面的宽度 ,木材顺纹的许用挤压应力 ,顺纹的许用切应力 。试求接头处所需的尺寸l和a。
解:
1.求支反力,作剪力图和弯矩图。

2.按正应力强度条件选择工字钢型号
由 ≤ ,得到

查表选 14工字钢,其
, ,
3.切应力强度校核
满足切应力强度条件。
∴选择 14工字钢。
5-17图示木梁受移动载荷 作用。已知木材的许用正应力 ,许用切应力 , ,木梁的横截面为矩形截面,其高宽比 。试选择此梁的横截面尺寸。

可得 ≤ ①
D点受力如图(b)所示,由平衡条件可得:
CD杆受压,压力为 ,由压杆的强度条件

可得 ≤ ②
由①②可得结构的许用载荷为 。
3-8图示横担结构,小车可在梁AC上移动。已知小车上作用的载荷 ,斜杆AB为圆截面钢杆,钢的许用应力 。若载荷F通过小车对梁AC的作用可简化为一集中力,试确定斜杆AB的直径d。
截面上的剪力和弯矩为: ,
2.求1-1横截面上a、b两点的应力
5-10为了改善载荷分布,在主梁AB上安置辅助梁CD。若主梁和辅助梁的抗弯截面系数分别为 和 ,材料相同,试求a的合理长度。
解:
1.作主梁AB和辅助梁CD的弯矩图
2.求主梁和辅助梁中的最大正应力
主梁:
辅助梁:
3.求 的合理长度

第二章轴向拉伸与压缩

第二章轴向拉伸与压缩

第二章轴向拉伸与压缩(王永廉《材料力学》作业参考答案(第1-29题))2012-02-26 00:02:20| 分类:材料力学参答|字号订阅第二章轴向拉伸与压缩(第1-29题)习题2-1试绘制如图2-6所示各杆的轴力图。

图2-6解:由截面法,作出各杆轴力图如图2-7所示图2-7习题2-2 试计算图2-8所示结构中BC杆的轴力。

图2-8 a)解:(a)计算图2-8a中BC杆轴力截取图示研究对象并作受力图,由∑M D=0,即得BC杆轴力=25KN(拉)(b)计算图2-8 b中BC杆轴力图2-8b截取图示研究对象并作受力图,由∑MA=0,即得BC杆轴力=20KN(压)习题2-3在图2-8a中,若杆为直径的圆截面杆,试计算杆横截面上的正应力。

解:杆轴力在习题2-2中已求出,由公式(2-1)即得杆横截面上的正应力(拉)习题2-5图2-10所示钢板受到的轴向拉力,板上有三个对称分布的铆钉圆孔,已知钢板厚度为、宽度为,铆钉孔的直径为,试求钢板危险横截面上的应力(不考虑铆钉孔引起的应力集中)。

解:开孔截面为危险截面,其截面面积由公式(2-1)即得钢板危险横截面上的应力(拉)习题2-6如图2-11a所示,木杆由两段粘结而成。

已知杆的横截面面积A=1000 ,粘结面的方位角θ=45,杆所承受的轴向拉力F=10KN。

试计算粘结面上的正应力和切应力,并作图表示出应力的方向。

解:(1)计算横截面上的应力= = 10MPa(2)计算粘结面上的应力由式(2-2)、式(2-3),得粘结面上的正应力、切应力分别为cos245,=5 MPa45=sin(2*45。

)=5MPa45=其方向如图2-11b所示习题2-8 如图2-8所示,等直杆的横截面积A=40mm2,弹性模量E=200GPa,所受轴向载荷F1=1kN,F2=3kN,试计算杆内的最大正应力与杆的轴向变形。

解:(1)由截面法作出轴力图(2)计算应力由轴力图知,故得杆内的最大正应力(3)计算轴向变形轴力为分段常数,杆的轴向变形应分段计算,得杆的轴向变形习题2-9阶梯杆如图2-13a所示,已知段的横截面面积、段的横截面面积,材料的弹性模量,试计算该阶梯杆的轴向变形。

工程力学材料力学第四版习题答案解析

工程力学材料力学第四版习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

轴向拉伸与压缩习题答案

轴向拉伸与压缩习题答案

轴向拉伸与压缩习题答案轴向拉伸与压缩习题答案在学习力学的过程中,轴向拉伸与压缩是一个重要的概念。

它涉及到材料在受力作用下的变形与应力分布。

为了帮助大家更好地理解和掌握这个概念,下面将给出一些轴向拉伸与压缩的习题答案,希望对大家的学习有所帮助。

1. 一根长度为L的均匀杆,两端受到相等大小的拉力F,求杆的伸长量。

解析:根据胡克定律,杆的伸长量与拉力成正比,与杆的长度成反比。

因此,杆的伸长量可以表示为ΔL = (F/A) * L,其中A为杆的截面积。

2. 一根长度为L的均匀杆,两端受到相等大小的压力P,求杆的压缩量。

解析:与问题1类似,杆的压缩量也可以表示为ΔL = (P/A) * L。

3. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,求杆的伸长量。

解析:根据力的叠加原理,杆的伸长量可以表示为ΔL = [(F - P)/A] * L。

4. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,求杆的应力分布。

解析:根据胡克定律,杆的应力分布可以表示为σ = (F/A) - (P/A)。

5. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,如果杆的截面积不均匀,如何求杆的伸长量?解析:如果杆的截面积不均匀,可以将杆分成若干小段,每一小段的截面积近似看成常数。

然后分别计算每一小段的伸长量,再将其相加得到整个杆的伸长量。

6. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,如果杆的截面积不均匀,如何求杆的应力分布?解析:如果杆的截面积不均匀,可以将杆分成若干小段,每一小段的截面积近似看成常数。

然后分别计算每一小段的应力,再将其绘制成应力分布曲线。

通过以上习题的解析,我们可以看到轴向拉伸与压缩的问题都可以通过胡克定律来求解。

胡克定律是力学中的基本定律之一,它描述了弹性材料在小应变条件下的应力与应变之间的线性关系。

在轴向拉伸与压缩的情况下,胡克定律可以表示为σ = Eε,其中σ为应力,E为杨氏模量,ε为应变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴向拉伸与压缩习题及解答计算题1:利用截面法,求图2. 1所示简支梁m — m 面的内力分量。

解:(1)将外力F 分解为两个分量,垂直于梁轴线的分量F sin θ,沿梁轴线的分量F cos θ. (2)求支座A 的约束反力:xF∑=0,AxF∑=cos F θB M ∑=0, Ay F L=sin 3L F θAy F =sin 3Fθ (3)切开m — m ,抛去右半部分,右半部分对左半部分的作用力N F ,S F 合力偶M 代替 (图1.12 )。

图 2.1 图2.1(a) 以左半段为研究对象,由平衡条件可以得到xF∑=0, N F =—Ax F =—cos F θ(负号表示与假设方向相反)y F ∑=0, s F =Ay F =sin 3Fθ 左半段所有力对截面m-m 德形心C 的合力距为零sin θC M ∑=0, M=AyF 2L =6FL sin θ 讨论 对平面问题,杆件截面上的内力分量只有三个:和截面外法线重合的内力称为轴力,矢量与外法线垂直的力偶距称为弯矩。

这些内力分量根据截面法很容易求得。

在材料力学课程中主要讨论平面问题。

计算题2:试求题2-2图所示的各杆1-1和2-2横截面上的轴力,并作轴力图。

解 (a )如图(a )所示,解除约束,代之以约束反力,作受力图,如题2-2图(1a )所示。

利用静力学平衡条件,确定约束反力的大小和方向,并标示在题2-2图(1a )中。

作杆左端面的外法线n ,将受力图中各力标以正负号,凡与外法线指向一致的力标以正号,反之标以负号,轴力图是平行于杆轴线的直线。

轴力图在有轴力作用处,要发生突变,突变量等与该处轴力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,如题2-2图(2a )所示,截面1和截面2上的轴力分别为1N F =F 和2N F =—F 。

(b)解题步骤与题2-2(a )相同,杆受力图和轴力图如题2-2(1b )、(2b )所示。

截面1和截面2上的轴力分别为1N F =2F ,2N F =0。

(c)解题步骤与题2-2(a )相同,杆的受力图和轴力图如题2-2图(1c )和(2c )所示。

截面1上的轴力为1N F =2F,截面2上的轴力为2N F =F 。

(d )解题步骤与题2-2(a )相同,杆的受力图和轴力图如题2-2图(1d )和(2d )所示。

截面1上的轴力为1N F =F,截面2上的轴力为2N F =—2F 。

计算题3:试求题2-3图(a )所示阶梯状直杆横截面1-1、2-2和3-3上的轴力并作轴力图。

若横截面积1A =2002mm 、2A =3002mm 、3A =4002mm ,求各截面上的应力。

解:如题2-3图(a )所示。

首先解除杆的约束,并代之以约束反力,作受力图,如题2-3(b )所示。

利用静力学平衡条件,确定约束反力的大小和方向,并标示在受力图中。

作杆左端面的外法线n ,将受力图中的各外力标以正负号:凡指向与外法线方向相同者,标以正号,反只标以负号,如题2-3图(b)所示。

作轴力图,轴力图是与杆轴平行的直线,在有轴向外力作用处,轴力图要发生突变,突变量等于对应处外力数值,对应于正的外力,轴力图上跳,对应于负的外力,轴力图下跌,上调和下跌量与对应的外力数值相等,如题2-3图(c)所示。

由周力图可知,截面1-1上的轴力1N F =—20kN,截面2-2上的轴力2N F =—10kN ,截面3-3上的轴力3N F =10kN 。

各截面上的应力分别为11σ-=3161201010020010N F Pa MPa A --⨯==-⨯22σ-=3262101033.3330010N F Pa MPa A --⨯==-⨯ 33σ-=336310102540010N F Pa MPaA -⨯==⨯计算题4:三脚架结构尺寸及受力如图所示。

其中22.2p F kN =,钢杆BD 的直径125.4d mm =,钢梁CD 的横截面积2A =322.3210mm ⨯。

试求:BD 与CD 横截面上的正应力。

解:1、受力分析, 确定各杆的轴力首先对组成三脚架结构的构件作受力分析,因为B 、C 、D 三处均为销钉连接,故BD 与CD 均为二力构件,受力图如图所示。

由平衡方程 0xF=∑和0y F =∑解得二者的轴力分别为322.21031.40NBD p F N kN ==⨯=42202.010,4,4p F kNA m l m l P -==⨯=322.21022.2()NCD p F F N kN ==⨯=- 其中负号表示压力。

2、计算各杆的应力应用拉、压杆件横截面上的正应力公式,BD 杆与CD 杆横截面上的正应力分别为 BD 杆:362261431.410()62.01062.025.4104NBD NBD BDF F BD Pa MPa d A σππ-⨯⨯====⨯=⨯⨯ CD 杆:3636222.210()9.75109.75()2.321010NCD NCD CD F F CD Pa MPa A A σ-⨯====⨯=-⨯⨯4545其中负号表示压应力。

计算题5:直杆在上部两侧面都受有平行于杆轴线的均匀分布载荷,其集度均为p =10kN/m;在自由端D 处作用有集中力20p F kN =。

一直杆的横截面面积422.010,4,A m l m -=⨯=试求:(1)A 、B 、E 三个横截面上的正应力;(2)杆内横截面上的最大正应力,并指明其作用位置。

解:1 、以竖直向下方向为正方向,以整个杆件为研究对象,假设A 处受力为拉力,竖直方向受 力平衡: 0yF=∑444420220010100.12104020100.2210p NA NB p BN B EN E lF P F F F F kPa A F kPa MPa A σσ--+-=-====⨯=⨯===⨯=⨯⇒NA F = 60kN446030100.3210NA A F kPa MPa A σ-===⨯=⨯ 以BD 段为研究对象,假设B 处受力为拉力0yF=∑ 0p BN F F -=⇒BN F =p F =20kN 442010100.1210NB B F kPa MPa A σ-===⨯=⨯ 以AE 段为研究对象,假设E 处受力为拉力0y F =∑ 20404ENNA EN lF P F F kN +-=⇒= 444020100.2210EN E F kPa MPa A σ-===⨯=⨯ 2、当02ly ≤≤时,20N NA F py F +-=⇒6020N F y =- ⇒max 60N F kN =当 2l y l ≤≤时,202N NA lF p F +-=20N F kN ⇒=-(负号表示压力)综上,当2l y =时,max 60N F kN =,max 460300.32.010N F kPa MPa A σ-====⨯计算题6:如图所示结构2-6(a )中,1,2两杆的横截面直径分别为1210,20d mm d mm ==,10P kN =。

横梁ABC 、CD 视为刚体。

求两杆内的应力。

解:CD 杆的D 支座不受力,CD 也不受力,所以P 可视为作用于ABC 杆的C 端。

取ABC 为受力体,受力图如图2-6(b )所示。

1210,20N N F kN F kN ==31126110104127.31010N F MPa MPa A σπ-⨯⨯===⨯⨯析 此题属静定问题,在分析杆CD 平衡时可知点D 的支反力00R =010R N =,即CD 杆完全不受力,仅在P 作用于ABC 杆时被其带动绕点D 作刚体转动。

所以只需对杆ABC 作静立分析即可求解。

计算题7:图市矩形截面杆,横截面上的正英里延截面高度线性分布,截面定点各点处的正应力均为max 100MPa σ=,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并3222622010463.72010N F MPa MPa A σπ-⨯⨯===⨯⨯确定其大小。

图中之C电位截面形心。

解:横截面上只存在正的正应力,因此横截面上的内力为拉力F 。

在xoy 平面内,正应力沿高度线性分布关系为:10050y σ=-+(MPa )0.50.50.50.50.50.50.4(10050)0.4F dA dy y dy σσ---===-+⎰⎰⎰=0.50.5(4020)y dy --+=⎰20MN计算题8:题2-8图(a )所示是一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间的竖向撑杆用角钢构成。

已知屋面承受集度为20/q kN m =的竖直均布荷载。

求拉杆AE 和EG 横截面上的应力。

(b )NGF解:(1)作受力图。

解除题2-8图(a )所示屋架结构的约束,代之以支座反力,作受力图,如题2-8图(b )所示。

(2)求支座反力。

利用静力学平衡方程0,0Ax xFF ==∑0,(4.3729)0yAy By FF F q =+-⨯+=∑210,(4.3729)(4.3729)02A ByM F q =⨯+-⨯+=∑及q=20kN/m ,可得 0Ax F =,177.4Ay By F F kN ==(3)计算拉杆EG 的轴力取半个屋架为分离体,作受力图,如题2-8图)(d )所示。

由静力学平衡方程0C M =∑ 212.2(4.37 4.5)(4.37 4.5)02NG AyF F q -+++=及177.4,20/Ay F kN q kN m ==得21(4.37 4.5)(4.37 4.5)2357.62.2Ay NGF q F kN +-+== (4)计算拉杆AE 的轴力取铰节E 为研究对象,作受力图,如题2-8图(d )所示。

由静力学平衡方程0,cos 0xNG NA FF F α=-=∑及357.6NG F kN =,得367NA F kN ==(5)计算拉杆AE 和EG 横截面上的应力查表得75mm ⨯8mm 等边角钢的横截面积为211.503A cm =,所以拉杆AE 和EG 横截面上的应力3436710159.5211.50310NA AEF Pa MPa A σ-⨯===⨯⨯ 34357.310155.3211.50310NG BGF Pa MPa A σ-⨯===⨯⨯计算题9:题2-9图(a )所示拉杆承受轴向拉力F=10kN ,干得横截面积A=1002mm 。

如以α表示斜截面与横截面的夹角,试求当0,30,45,60,90α=时各斜截面上的正应力和切应力,并用图表示其方向。

(e )F(c )F30°FF F(a )F F题2-9图解:拉杆横截面上的正应力36101010010010NF FPa MPaA Aσ-⨯====⨯应用斜截面上的正应力和切应力公式20cos,sin22αασσσατα==可得3075,MPaσ=4550,MPaσ=6025,MPaσ=90σ=0,τ=3043.3,MPaτ=4550,MPaτ=6043.3,MPaτ=90τ=它们的方向分别表示在题2-9图(b)、(c)、(d)、(e)、(f)中。

相关文档
最新文档