哈工大算法设计与分析-ch1ch2答案
《算法设计与分析》考试题目及答案(DOC)
《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。
F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。
B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。
C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
算法设计与分析第二版课后习题解答
算法设计与分析第二版课后习题解答算法设计与分析基础课后练习答案习题 4.设计一个计算的算法,n是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求//输入:一个正整数n2//输出:。
step1:a=1;step2:若a*a 5. a.用欧几里德算法求gcd。
b. 用欧几里德算法求gcd,比检查min{m,n}和gcd间连续整数的算法快多少倍?请估算一下。
a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513,105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1.b.有a可知计算gcd欧几里德算法做了11次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。
6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? Hint:对于任何形如0 gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次) b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次) gcd(5,8) 习题 1.(农夫过河)P—农夫 W—狼G—山羊C—白菜 2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数) 算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法 //输入:实系数a,b,c//输出:实根或者无解信息 If a≠0D←b*b-4*a*c If D>0temp←2*ax1←(-b+sqrt(D))/temp x2←(-b-sqrt(D))/temp return x1,x2else if D=0 return –b/(2*a) else return “no real roots” else //a=0if b≠0 return –c/b else //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出 b.伪代码算法 DectoBin(n)//将十进制整数n转换为二进制整数的算法 //输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中 i=1while n!=0 do { Bin[i]=n%2; n=(int)n/2; i++; } while i!=0 do{ print Bin[i]; i--; }9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进. 算法 MinDistance(A[0..n-1]) //输入:数组A[0..n-1] //输出:the smallest distance d between two of its elements习题1. 考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗? 解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count 4.(古老的七桥问题) 第2章习题7.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法分析与设计作业参考答案
算法分析与设计作业参考答案《算法分析与设计》作业参考答案作业⼀⼀、名词解释:1.递归算法:直接或间接地调⽤⾃⾝的算法称为递归算法。
2.程序:程序是算法⽤某种程序设计语⾔的具体实现。
⼆、简答题:1.算法需要满⾜哪些性质?简述之。
答:算法是若⼲指令的有穷序列,满⾜性质:(1)输⼊:有零个或多个外部量作为算法的输⼊。
(2)输出:算法产⽣⾄少⼀个量作为输出。
(3)确定性:组成算法的每条指令清晰、⽆歧义。
(4)有限性:算法中每条指令的执⾏次数有限,执⾏每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
答:分析分治法能解决的问题主要具有如下特征:(1)该问题的规模缩⼩到⼀定的程度就可以容易地解决;(2)该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质;(3)利⽤该问题分解出的⼦问题的解可以合并为该问题的解;(4)该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦问题。
3.简要分析在递归算法中消除递归调⽤,将递归算法转化为⾮递归算法的⽅法。
答:将递归算法转化为⾮递归算法的⽅法主要有:(1)采⽤⼀个⽤户定义的栈来模拟系统的递归调⽤⼯作栈。
该⽅法通⽤性强,但本质上还是递归,只不过⼈⼯做了本来由编译器做的事情,优化效果不明显。
(2)⽤递推来实现递归函数。
(3)通过Cooper 变换、反演变换能将⼀些递归转化为尾递归,从⽽迭代求出结果。
后两种⽅法在时空复杂度上均有较⼤改善,但其适⽤范围有限。
三、算法编写及算法应⽤分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 dofor j ←1 to n-i do if a[j]交换a[j]、a[j+1];分析该算法的时间复杂性。
答:排序算法的基本运算步为元素⽐较,冒泡排序算法的时间复杂性就是求⽐较次数与n 的关系。
(1)设⽐较⼀次花时间1;(2)内循环次数为:n-i 次,(i=1,…n ),花时间为:∑-=-=in j i n 1)(1(3)外循环次数为:n-1,花时间为:2.设计⼀个分治算法计算⼀棵⼆叉树的⾼度。
5.《算法设计与分析》试题库
《算法分析与设计》试题库(一)一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) {if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A){if (n > 0){hanoi(n-1, A, C, B);move(n,a,b);hanoi(n-1, C, B, A);}D. void hanoi(int n, int C, int A, int B){if (n > 0){hanoi(n-1, A, C, B);move(n,a,b);hanoi(n-1, C, B, A);}3.动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
哈工大算法设计与分析-ch1ch2答案
5 证明:设 k 是任意常数正整数,则 logk n = o(n)
证明:要证明原命题,只需证对任意的常数 c > 0,存在 n0 > 0 使得当 n > n0 时恒有,
0 ≤ logk n < cn
比较 logk n 和 cn,显然两式均大于 0,对其同时取对数则有 k log log n 和 log cn,又由于
10
10
令
(
9 10
)k
n
=
1,则有
k
=
log9/10
1 ,则有
n
T (n) = T (1) + 10(n − 1)
即方程的解为
T (n) = Θ(n)
7 解方程 T (n) = 6T (n/3) + log n
解:用 Master 定理求解,a = 6, b = 3, ϵ = 0.03,因为有 log n = O(nlog3 6−0.03)
f (n) ≤ g(n) + f (n) < c0f (n) + f (n) 则当 c1 = 1, c2 = (1 + c0), n > n0 时,有
c1f (n) ≤ g(n) + f (n) ≤ c2f (n) 因此,f (n) + g(n) 确实是 f (n) 的同阶函数,原命题得证。
3 试证明:O(f (x)) + O(g(x)) = O(max(f (x), g(x)))
解: …
9
T (n) = T ( n) + n
( 10 )
9 T ( n) = T
( 9 )2n)
9 +n
10
10
10
算法设计与分析第二版课后习题及解答(可编辑)
算法设计与分析第二版课后习题及解答算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求 //输入:一个正整数n2//输出:。
step1:a1; step2:若a*an 转step 3,否则输出a; step3:aa+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。
b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。
a. gcd31415, 14142 gcd14142, 3131 gcd3131, 1618 gcd1618, 1513 gcd1513, 105 gcd1513, 105 gcd105, 43 gcd43, 19 gcd19, 5 gcd5, 4 gcd4, 1 gcd1, 0 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1?14142 和 2?14142之间,所以欧几里德算法比此算法快1?14142/11 ≈1300 与2?14142/11 ≈ 2600 倍之间。
6.证明等式gcdm,ngcdn,m mod n对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和rm mod nm-qn;显然,若d能整除n和r,也一定能整除mr+qn和n。
数对m,n和n,r具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcdm,ngcdn,r7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0mn的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcdm,ngcdn,m并且这种交换处理只发生一次.8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?1次b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?5次gcd5,8习题1.21.农夫过河P?农夫W?狼 G?山羊 C?白菜2.过桥问题1,2,5,10---分别代表4个人, f?手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c0的实根,写出上述算法的伪代码可以假设sqrtx是求平方根的函数算法Quadratica,b,c//求方程ax^2+bx+c0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D0temp←2*ax1←-b+sqrtD/tempx2←-b-sqrtD/tempreturn x1,x2else if D0 return ?b/2*ael se return “no real roots”else //a0if b≠0 return ?c/belse //ab0if c0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Kii0,1,2,商赋给n第二步:如果n0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBinn//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1n]中i1while n!0 doBin[i]n%2;nintn/2;i++;while i!0 doprint Bin[i];i--;9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.算法略对这个算法做尽可能多的改进.算法 MinDistanceA[0..n-1]//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements 习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.古老的七桥问题第2章习题2.17.对下列断言进行证明:如果是错误的,请举例a. 如果tn∈Ogn,则gn∈Ωtnb.α0时,Θαgn Θgn解:a这个断言是正确的。
算法设计与分析试卷试题(A)(附答案)
chengcheng算法分析考试试卷(A卷)课程名称算法分析编号题号一二三四总分得分评阅人一、填空题(每小题3分,共30分)1、一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
2、这种不断回头寻找目标的方法称为回溯法。
3、直接或间接地调用自身的算法称为递归算法。
4、 记号在算法复杂性的表示法中表示紧致界。
5、由分治法产生的子问题往往是原问题较小模式,这就为使用递归技术提供了方便。
6、建立计算模型的目的是为了使问题的计算复杂性分析有一个共同的客观尺度。
7、下列各步骤的先后顺序是②③④①。
①调试程序②分析问题③设计算法④编写程序。
8、最优子结构性质的含义是问题最优解包含其子问题最优解。
9、贪心算法从初始阶段开始,每一个阶段总是作一个使局部最优的贪心选择。
10、拉斯维加斯算法找到的解一定是正确的。
二、选择题(每小题2分,共20分)1、哈夫曼编码可利用( C )算法实现。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是基本计算模型的是( B )。
A、RAMB、ROMC、RASPD、TM3、下列算法中通常以自顶向下的方式求解最优解的是( C)。
A、分治法B、动态规划法C、贪心法D、回溯法chengcheng 4、在对问题的解空间树进行搜索的方法中,一个活结点有多次机会成为活结点的是( A )A、回溯法B、分支限界法C、回溯法和分支限界法D、动态规划5、秦始皇吞并六国使用的远交近攻,逐个击破的连横策略采用了以下哪种算法思想? BA、递归;B、分治;C、迭代;D、模拟。
6、FIFO是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法7、投点法是( B )的一种。
A、分支界限算法B、概率算法C、贪心算法D、回溯算法8、若线性规划问题存在最优解,它一定不在( C )A.可行域的某个顶点上 B.可行域的某条边上 C.可行域内部 D.以上都不对9、在一般输入数据的程序里,输入多多少少会影响到算法的计算复杂度,为了消除这种影响可用( B )对输入进行预处理。
(完整word版)哈工大深圳算法设计与分析试卷-师兄只能帮你到这啦(额外再加8道保命题)-何震宇
1、Using figure to illustrate the operation of RADIX-SORT on the following list of English words: COW, DOG , SEA, RUG , ROW, MOB, BOX, TAB.2、Please write inorder, preorder and postorder tree walks of the following binary search tree.3、Please write down the elements of dynamic programming.4、Using a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n/3)+T(2n/3)+cn.5、Please give an optimal Huffman code for the following set of frequencies. a b c d e f Frequency 5 9 16 12 13 456、Converting the following linear program into standard form:Minimize 2172x x +Subject to 71=x24321≥+x x02≥x03≤x7、Solve the following linear program using SIMPLEX:maximize 215.1218x x +Subject to 2021≤+x x121≤x162≤x0,21≥x x8、Suppose A1 a 105⨯ matrix, A2 a 310⨯ matrix, A3 a 123⨯ matrix, A4 a 512⨯ matrix, A5 a 505⨯ matrix, A6 a 650⨯ matrix. Please give an optimal parenthesization of a matrix-chain A1A2A3A4A5A6.9、Using a recursion tree to give an asymptotically tight solution to the recurrence T (n ) = T(n/4)+T(n/2)+ n 2.10、Using figure to illustrate the operation of COUNTING-SORT on the array A=<6,0,2,0,1,3,4,6,1,3,2>11、Using figure to illustrate the operation of RADIX-SORT on the following list of English words: COW, DOG , SEA, RUG , ROW, MOB, BOX, TAB.12、Please write inorder, preorder and postorder tree walks of the following binary search tree.13、X=<A, E, B, D, B, C, A, E>, Y=<E, F, B, A, C, A, F, E>. Please illustrate the whole procedure for finding the longest common sequence of X and Y using dynamic programming.14、Please give an optimal Huffman code for the following set of frequencies.15、Please draw the result after the operation Left-Rotate(9).16、X=<A, E, B, D, B, C, A, E>, Y=<E, F, B, A, C, A, F, E>. Please illustrate the whole procedure for finding the longest common sequence of X and Y using dynamic programming. 17、Please give an optimal Huffman code for the following set of frequencies. a b c d e f Frequency 15 19 6 12 13 3518、A red-black tree (RB tree) is a binary search tree with one extra bit of storage per node: its color, which can be either RED or BLACK, and the red-black is a nearly balanced tree. Please prove n-node RB tree has height )(lg n O h =19、Solve the following linear program using SIMPLEX:maximize 215.1218x x +Subject to 2021≤+x x121≤x162≤x0,21≥x x20、In the activity-selection problem,}:{j k k i k ij s f s f S a S ≤≤≤∈= represents the activities that start after an activityi a finishes and finish before one activity j a starts. Here, an activity i a occurs during period ),[i i f s , and activities are sorted bymonotonically increasing finish time. LetΦ≠ij S , and let m a be the activity in ij S with the earliest finish time: }:min{ij k k m S a f f ∈=. Then prove m a is used in some maximum-size subset of mutually compatible activities of ij S。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
算法分析与设计智慧树知到答案章节测试2023年黑龙江工程学院
第一章测试1.算法就是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算。
()A:对B:错答案:A2.计算机的资源最重要的是内存和运算资源。
因而,算法的复杂性有时间和空间之分。
()A:对B:错答案:A3.时间复杂度是指算法最坏情况下的运行时间。
()A:对B:错答案:B4.下面关于算法的说法中正确的是。
(1)求解某一问题的算法是唯一的。
(2)算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
(3)算法的每一条指令是清晰无歧义的。
(4)算法可以用某种程序设计语言具体实现,所以算法和程序是等价的。
()A:(2)(3)B:(1)(3)C:(1)(2)D:(2)(4)答案:A5.描述算法的基本方法有。
(1)自然语言(2)流程图(3)伪代码(4)程序设计语言()A:(1)(2)(3)B:(1)(3)(4)C:(1)(2)(3)(4)D:(2)(3)(4)答案:C6.算法分析是()A:将算法用某种程序设计语言恰当地表示出来B:证明算法对所有可能的合法出入都能算出正确的答案C:对算法需要多少计算时间和存储空间作定量分析D:在抽象数据数据集合上执行程序,以确定是否产生错误结果答案:C7.算法是由若干条指令组成的有穷序列,而且满足以下叙述中的性质。
(1)输入:有0个或多个输入(2)输出:至少有一个输出(3)确定性:指令清晰、无歧义(4)有限性:指令执行次数有限,而且执行时间有限()A:(1)(2)(3)B:(1)(2)(4)C:(1)(2)(3)(4)D:(1)(3)(4)答案:C8.下面函数中增长率最低的是()A:n2B:log2nC:nD:2n答案:B9.下面属于算法的特性有( )。
A:有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
B:输入:有0个或多个外部量作为算法的输入。
C:确定性:组成算法的每条指令是清晰,无歧义的。
D:输出:算法产生至少一个量作为输出。
答案:ABCD10.当m为24,n为60时,使用欧几里得算法求m和n的最大公约数,需要进行()次除法运算。
智慧树知到《算法分析与设计》章节测试答案
智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。
A:对B:错答案: 错2、一个问题的同一实例可以有不同的表示形式A:对B:错答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。
A:对B:错答案: 对4、问题的两个要素是输入和实例。
A:对B:错答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。
(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。
A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。
B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。
C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。
D:证明算法不正确,需要证明对任意实例算法都不能正确处理。
答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。
8、下面关于程序和算法的说法正确的是()。
A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
B:程序是算法用某种程序设计语言的具体实现。
C:程序总是在有穷步的运算后终止。
D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。
答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
,程序是算法用某种程序设计语言的具体实现。
,算法是一个过程,计算机每次求解是针对问题的一个实例求解。
9、最大独立集问题和()问题等价。
A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案:最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是()。
算法设计与分析书后参考答案
参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。
2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。
这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。
(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。
(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。
(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。
《算法分析与设计》期末试题及参考答案
《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1. 确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2. 分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。
3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。
4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。
6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。
上述过程被反复递归调用。
7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。
目标函数:获得最大利润。
最优量度:最大利润/重量比。
8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。
《算法设计与分析》试卷及答案
《算法设计与分析》试卷1一、多项选择题(每空2分, 共20分):1.以下关于算法设计问题的叙述中正确的是__________。
A.计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B.利用计算机无法解决非数值问题C.计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中, 主要进行的是判断、比较, 而不是算术运算D、算法设计与分析主要研究对象是非数值问题, 当然也包含某些数值问题2.算法的特征包括_________。
A.有穷性B、确定性C.输入和输出D.能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制, 应与其它环节交织在一起其中正确的顺序是__________。
A.①②③④⑤⑥B.①③⑤②④⑥C.②④①③⑤⑥D.⑥①③⑤②④4.以下说法正确的是__________。
A.数学归纳法可以证明算法终止性B.良序原则是证明算法的正确性的有力工具C. x = 小于或等于x的最大整数(x的低限)D. x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C上所用的次数, 则递归方程为__________, 其初始条件为__________, 将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数, 则有递归方程为__________, 其中F1=F2=__________。
A.Fn=Fn-1+Fn-2 B、h(n)= 2h(n-1)+1C.1 D、h(1)= 1E、h(n)=2n-1F、06.在一个有向连通图中(如下图所示), 找出点A到点B的一条最短路为____ ______。
A.最短路: 1→3→5→8→10, 耗费: 20B、最短路:1→4→6→9→10, 耗费:16C.最短路: 1→4→6→9, 耗费: 12D.最短路: 4→6→9→10, 耗费: 13二、填空(每空2分, 共20分):1.快速排序法的基本思想是重新排列关键字, 把一个文件分成两个文件, 使得第一个文件中所有元素均小于第二个文件中的元素;然后再对两个子文件进行同样的处理。
算法设计与分析复习题目及答案
算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。
例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。
2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。
时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。
例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。
空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。
比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。
二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。
然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。
2、请举例说明分治法的应用。
例如归并排序算法。
将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。
其时间复杂度为 O(nlogn),空间复杂度为 O(n)。
三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。
(2)找出状态转移方程。
(3)确定初始状态。
(4)计算最终的解。
2、解释最长公共子序列问题,并给出其动态规划解法。
最长公共子序列问题是指找出两个序列的最长公共子序列的长度。
假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。
状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。
算法设计与分析(第2版)习题答案
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图 1.7是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C ++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故原方程的解为 T (n) = Θ(n3)
12
解方程
T
(n)
=
2T
√ ( 4 n)
+
(log2
n)2
解:设 2t = n,则原方程可以写为
T (2t) = 2T (2t/4) + t2
4
令 S(t) = T (2t),则有 S(t/4) = T (2t/4),从而有 S(t) = 2S(t/4) + t2
f (n) ≤ g(n) + f (n) < c0f (n) + f (n) 则当 c1 = 1, c2 = (1 + c0), n > n0 时,有
c1f (n) ≤ g(n) + f (n) ≤ c2f (n) 因此,f (n) + g(n) 确实是 f (n) 的同阶函数,原命题得证。
3 试证明:O(f (x)) + O(g(x)) = O(max(f (x), g(x)))
10
10
令
(
9 10
)k
n
=
1,则有
k
=
log9/10
1 ,则有
n
T (n) = T (1) + 10(n − 1)
即方程的解为
T (n) = Θ(n)
7 解方程 T (n) = 6T (n/3) + log n
解:用 Master 定理求解,a = 6, b = 3, ϵ = 0.03,因为有 log n = O(nlog3 6−0.03)
0 ≤ O(f (x)) + O(g(x))
1
≤ c1f (x) + c2g(x) ≤ c3f (x) + c3g(x) ≤ 2c3max{f (x), g(x)} = c4max{f (x), g(x)} 因此,原命题成立。
4 证明或给出反例:Θ(f (n)) ∩ o(f (n)) = ∅
该命题是正确的。 证明:对于 f (n) 的同阶函数集合,存在 c0, c1, n0 > 0,使得在 n > n0 时恒有
k log log n
lim
(1)
n→∞ log cn
k
= lim
(2)
n→∞ ln n ln 2在 n0 使得当 n > n0 的时候, 有 logk n < cn,即 logk n = o(n)。
6 用迭代法解方程 T (n) = T (9n/10) + n
证明:根据定义知,存在 c1 > 0, n1 > 0,使得当 n > n1 的时 候,恒有
0 ≤ O(f (x)) ≤ c1f (x) 存在 c2 > 0, n2 > 0,使得当 n > n2 的时候,恒有
0 ≤ 0(g(x)) ≤ c2g(x) 设 c3 = max{c1, c2}, n3 = max{n1, n2}, c4 = 2c3,则当 n > n3 时恒 有
由 Master 定理知,T (n) = Θ(nlog3 6)
3
8 解方程 T (n) = 3T (n/3 + 5) + n/2
解:为当 n 足够大的时候,5 就相对很小,可以将其忽略。因 此本方程可以用 Master 定理求解,a = 3, b = 3,从而有
n/2 = Θ(nlog3 3)
故原方程的解为 T (n) = Θ(n log n)
9 解方程 T (n) = T (⌈n/2⌉) + 1
解:根据《算法导论》中的定理,⌈ ⌉ 不影响 Master 定理的使 用,因此可以用 Master 定理解该方程。a = 1, b = 2,从而有
1 = Θ(1) 故原方程的解为 T (n) = Θ(log n)
10 解方程 T (n) = 9T (n/3) + n
解:用 Master 定理求解,a = 9, b = 3, ϵ = 0.1,因为有 n = O(nlog3 9−0.1)
由 Master 定理知,T (n) = Θ(n2)
11 解方程 T (n) = T (⌊n/2⌋) + n3
解:根据《算法导论》中的定理,⌊ ⌋ 不影响 Master 定理的使 用,因此可以用 Master 定理解该方程。a = 1, b = 2, ϵ = 0.1,从而 有
该命题是正确的。 证明:有符号的定义可知,对任意的 g(n) ∈ o(f (n)),总有办 法选取 h(n) ∈ Θ(f (n)) 使得等式成立。也可以看做,对任意的 g(n) ∈ o(f (n)) 都有,f (n) + g(n) 是 f (n) 的同阶函数。根据定义左 侧的函数集合应满足对任意 c0 > 0,总存在 n0 > 0,使得 n > n0 的时候,有如下关系
又由于 n = O(4log5 n),从而有
T (n) ≤ Θ(n)
5
由 Master 定理得,S(t) = Θ(t2),即原方程的解为 T (n) = S(log n) = Θ(log2 n)
13 解方程
{ T (n) ≤ C1
C2n + 4T (n/5)
解:可以用迭代法求解
n < 20 n ≥ 20
T (n) ≤ C2n + 4T (n/5)
T (n/5)
≤
C2 5
c0f (n) ≤ g(n) ≤ c1f (n)
又由于 f (n) 的严格低阶函数需满足,对任意的 c2 > 0,存在 n1 > 0 使得当 n > n1 的时候有如下式子恒成立
0 ≤ g(n) < c2f (n)
对任何一个可行的
c0
可以取
c2
=
1 2
c0,从而有
1 g(n) < 2 c0
显然与 f (n) 的同阶函数集合的交集为空,因此原命题成立。
5 证明:设 k 是任意常数正整数,则 logk n = o(n)
证明:要证明原命题,只需证对任意的常数 c > 0,存在 n0 > 0 使得当 n > n0 时恒有,
0 ≤ logk n < cn
比较 logk n 和 cn,显然两式均大于 0,对其同时取对数则有 k log log n 和 log cn,又由于
解: …
9
T (n) = T ( n) + n
( 10 )
9 T ( n) = T
( 9 )2n)
9 +n
10
10
10
(
)(
)
T ( 9 )k−1n = T ( 9 )kn + ( 9 )k−1n
10
10
10
从而有,
T (n)
=
T
( (
9
) )kn
+
∑ k−1 (
9
)i
10
10
(
)
i=0
T (n) = T ( 9 )kn + 10n(1 − ( 9 )k)
C2
+
n 4T ( )
52
…
T (n/5k−1)
≤
n 5k−1 C2
+
n 4T ( )
5k
从而有
T
(n)
≤
∑ k−1 (
(
4 5
)i)nC2
+
4T
n ( 5k
)
i=0
T
(n)
≤
5(1
−
(
4 5
)k)C2
n
+
4T
(1)
令
n 5k
= 1,则有
T (n) ≤ 5(n − 4log5 n)C2 + Θ(1)
算法设计与分析:习题一 姓名:周雄 学号:13S003079
1 写出求整数最大公因子的欧几里得算法
Euclid(a, b) 1 if b = 0 2 then return a 3 else return Euclid(b, a mod b)
2 证明或否证:f (n) + o(f (n)) = Θ(f (n))