图论算法及其MATLAB程序代码
图论常用算法matlab程序
运筹学算法matlab程序西北工业大学数学系2009级1.顺向Dijkstra 算法M=[ 0 5 9 Inf Inf Inf InfInf 0 Inf Inf 12 Inf InfInf 3 0 15 Inf 23 InfInf 6 Inf 0 Inf 8 7Inf 12 Inf 5 0 Inf 14Inf Inf Inf Inf Inf 0 10Inf Inf Inf Inf Inf Inf 0];first=1;last=7;[m,n]=size(M);L=zeros(1,m);symbol=zeros(1,m);direction=zeros(1,m);for i=1:mif(i~=first)L(i)=inf;enddirection(i)=first;endjudge=1;while judgefor i=1:mif(symbol(i)==0)min=L(i);temporary=i;breakendendfor i=1:mif(symbol(i)==0)if(L(i)<min)min=L(i);temporary=i;endendendk=temporary;for j=1:mif(symbol(1,j)==0)if(M(k,j)==inf)continue;elseif(L(k)+M(k,j)<L(j))L(j)=L(k)+M(k,j);direction(j)=k;endendendendsymbol(k)=1;num=0;for i=1:mif(symbol(i)==1)num=num+1;endendif(num==m)judge=0;endendp=last;arrow=zeros(1,m);arrow(1)=last;i=2;while p~=firstarrow(1,i)=direction(p);i=i+1;p=direction(p);enddistance=L(last);M=[ 0 5 9 Inf Inf Inf Inf Inf 0 Inf Inf 12 Inf InfInf 3 0 15 Inf 23 Inf Inf 6 Inf 0 Inf 8 7 Inf 12 Inf 5 0 Inf 14 Inf Inf Inf Inf Inf 0 10Inf Inf Inf Inf Inf Inf 0]; [m,n]=size(M);first=1;last=7;L=zeros(1,m);direction=zeros(1,m);symbol=zeros(1,m);for i=1:mdirection(i)=last;if(i~=last)L(i)=inf;endendjudge=1;while judgefor i=1:mif(symbol(i)==0)min=L(i);temporary=i;breakendendfor i=1:mif(symbol(i)==0)if(L(i)<min)min=L(i);temporary=i;endendendk=temporary;for i=1:mif(M(i,k)==inf)continueelseif(M(i,k)+L(k)<L(i))L(i)=L(k)+M(i,k);direction(i)=k;endendendsymbol(k)=1;sum=0;for i=1:mif(symbol(i)==1)sum=sum+1;endendif(sum==m)judge=0;endendp=first;i=2;arrow=zeros(1,m);arrow(1)=first;while p~=lastarrow(i)=direction(p);i=i+1;p=direction(p);endd=[0 7 5 12 inf infinf 0 inf 3 inf infinf inf 0 6 inf 1512 inf 6 0 inf 86 inf 13 inf 0 infinf 4 15 inf 9 0];[m,n]=size(d);p=zeros(m,n);for i=1:np(:,i)=i;endfor k=1:nfor i=1:mfor j=1:nif(d(i,k)+d(k,j)<d(i,j))d(i,j)=d(i,k)+d(k,j);p(i,j)=p(i,k);endendendend4.仿floyd 算法d=[inf 6 0 4 0 0 00 inf 0 0 5 0 04 7 inf 0 05 00 0 4 inf 0 3 00 0 2 0 inf 0 00 0 0 0 4 inf 50 0 0 0 6 0 inf];[m,n]=size(d);first=1;last=7;direction=zeros(m,m);for i=1:mdirection(:,i)=i;endfor i=1:mfor j=1:mfor k=1:msmall=min(d(i,k),d(k,j));if d(i,j)<smalld(i,j)=small;direction(i,j)=direction(i,k);endendendendarrow=zeros(1,m);arrow(1)=first;i=2;p=first;while p~=lastp=direction(p,last);arrow(i)=p;i=i+1;end—dijkstra算法d=[0 inf 3 5 inf10 0 14 inf 8inf inf 0 7 -6inf inf inf 0 infinf inf inf -1 0];[m,n]=size(d);first=2;last=4;L=zeros(1,n);z=zeros(m,n);symbol=zeros(1,n);direction=zeros(1,n);for i=1:nfor j=1:mif d(i,j)~=0if d(i,j)~=infz(i,j)=1;endendenddirection(i)=first;if i~=firstL(i)=inf;endendjudge=1;while judgemini=10;for j=1:nif symbol(j)==0sum=0;for i=1:mp=z(i,j)*(1-symbol(i));sum=sum+p;endif(sum==0)mini=j;breakendendendfor j=1:nif symbol(j)==0&&z(mini,j)==1if L(mini)+d(mini,j)<L(j)L(j)=L(mini)+d(mini,j);direction(j)=mini;endendendsymbol(mini)=1;num=0;for i=1:nif symbol(i)==1num=num+1;endendif num==m;judge=0;endendarrow=zeros(1,m);p=last;arrow(1)=last;i=2;while p~=firstp=direction(p);arrow(i)=p;i=i+1;end—dijkstra算法d=[0 inf 3 5 inf10 0 14 inf 8inf inf 0 7 -6inf inf inf 0 infinf inf inf -1 0];[m,n]=size(d);first=2;last=4;L=zeros(1,n);z=zeros(m,n);symbol=zeros(1,n);direction=zeros(1,n);for i=1:nfor j=1:mif d(i,j)~=0if d(i,j)~=infz(i,j)=1;endendenddirection(i)=last;if i~=lastL(i)=inf;endendjudge=1;while judgemini=10;for i=1:nif symbol(i)==0sum=0;for j=1:mp=z(i,j)*(1-symbol(j));sum=sum+p;endif(sum==0)mini=i;breakendendendfor i=1:nif symbol(i)==0&&z(i,mini)==1if L(mini)+d(i,mini)<L(i)L(i)=L(mini)+d(i,mini);direction(i)=mini;endendendsymbol(mini)=1;num=0;for i=1:nif symbol(i)==1num=num+1;endendif num==m;judge=0;endendarrow=zeros(1,m);p=first;arrow(1)=first;i=2;while p~=lastp=direction(p);arrow(i)=p;i=i+1;endM=[ 0 17 11 inf inf inf17 0 13 12 28 1511 13 0 inf 19 infinf 12 inf 0 inf 16inf 28 19 inf 0 10inf 15 inf 16 10 0];[m,n]=size(M);X=zeros(m,n);Y=zeros(m);Z=zeros(m);Y(1)=1;for i=2:mZ(i)=i;endjudge=1;while judgefor i=1:mif(Y(i)~=0)for j=1:mif(Z(j)~=0)min=M(i,j);a=i;b=j;endendendendfor i=1:mif(Y(i)~=0)for j=1:mif(Z(j)~=0)if(M(i,j)<min)min=M(i,j);a=i;b=j;endendendendendY(b)=b;Z(b)=0;X(a,b)=1;X(b,a)=1;c=0;for i=1:mif(Y(i)~=0)c=c+1;endendif(c==m)judge=0;endend网络最大流Ford—Fulkersen算法d=[inf 12 17 0 0 00 inf 0 8 0 00 6 inf 0 12 00 0 5 inf 0 150 0 0 4 inf 90 0 0 0 0 inf];[m,n]=size(d);X=zeros(m,n);first=1;last=6;recognize=1;while recognizeL=zeros(1,m);L(first)=inf;direction=ones(1,m);symbol=zeros(1,m);judge=1;while judgefor i=1:mif symbol(i)==0big=L(i);k=i;break;endendfor i=1:mif symbol(i)==0if L(i)>bigbig=L(i);k=i;endendendif k==nif L(n)==0breakendelsefor j=1:mif d(k,j)>0u=min(L(k),d(k,j)-X(k,j));if u>L(j)L(j)=u;direction(j)=k;endelseif d(j,k)>0u=min(L(k),X(j,k));if u>L(j)L(j)=u;direction(j)=k;endendendendendsymbol(k)=1;num=0;for i=1:mif symbol(i)==1num=num+1;endendif num==mjudge=0;endendafter=last;before=after;while before~=firstbefore=direction(after);if d(before,after)>0X(before,after)=X(before,after)+L(n); elseX(before,after)=X(before,after)-L(n); endafter=before;endif L(m)==0recognize=0;end end。
MATLAB中常见的图论算法介绍
MATLAB中常见的图论算法介绍一、引言图是计算机科学中非常重要的一种数据结构,广泛应用于各个领域。
图论算法能够解决多种问题,如网络分析、社交网络分析、路径规划等。
在本篇文章中,我们将介绍一些在MATLAB中常见的图论算法,帮助读者了解和应用这些算法。
二、图的表示方法在MATLAB中,图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维矩阵,其中行和列分别代表图的节点,矩阵中的元素表示节点之间的关系。
邻接表是一个包含图中所有节点的列表,每个节点链接到其相邻节点的列表。
三、最短路径算法1. Dijkstra算法Dijkstra算法用于解决单源最短路径问题,即寻找一个节点到图中其他所有节点的最短路径。
算法的基本思想是通过不断选择最短路径的节点来逐步扩展最短路径树。
在MATLAB中,可以使用graph对象和shortestpath函数来实现Dijkstra算法。
首先,使用graph对象创建图,然后使用shortestpath函数计算从源节点到目标节点的最短路径。
2. Bellman-Ford算法Bellman-Ford算法也用于解决单源最短路径问题,但相比Dijkstra算法,Bellman-Ford算法可以处理带有负权边的图。
算法的基本思想是通过松弛操作来逐步减小节点的估计距离,直到找到最短路径。
在MATLAB中,可以使用graph对象和shortestpath函数来实现Bellman-Ford算法。
与Dijkstra算法类似,首先使用graph对象创建图,然后使用shortestpath函数计算最短路径。
四、最小生成树算法1. Prim算法Prim算法用于寻找一个无向图的最小生成树。
算法的基本思想是从一个初始节点开始,逐步添加边,直到所有节点都被连接成一棵生成树。
在MATLAB中,可以使用graph对象和minspantree函数来实现Prim算法。
首先,使用graph对象创建图,然后使用minspantree函数计算最小生成树。
超全图论matlab程序-可解决图论方面的绝大多数问题
程序三:有向图关联矩阵和邻接矩阵互换算法
function W=mattransf(F,f) if f==0 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=-1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); if F(a(1),i)==1 W(a(1),a(2))=1; else W(a(2),a(1))=1; end end else fprint('Please imput the right value of f'); end W;
第二讲:最短路问题
程序一:Dijkstra算法(计算两点间的最短路)
图论算法及matlab程序的三个案例
图论实验三个案例单源最短路径问题 1.1 Dijkstra 算法Dijkstra 算法是解单源最短路径问题的一个贪心算法。
其基本思想是,设置 一个顶点集合S 并不断地作贪心选择来扩充这个集合。
一个顶点属于集合S 当且 仅当从源到该顶点的最短路径长度已知。
设 v 是图中的一个顶点,记l(v)为顶点 v 到源点V 1的最短距离,V i,V jV ,若(V i,V j)E ,记“到百的权w 。
Dijkstra 算法:① S {V J I(V J 0 ; V V {可 1(V ) i i S V {V J ;J7JJJ7②S,停止,否则转③;l(v) min{ l(v) , d(V j ,v)}V j S④ 存在Vi 1,使l (V i l) min{l(V)},V S ;⑤SSU{v i 1}S S {v i 1}i i 1实际上,Dijkstra 算法也是最优化原理的应用:如果V 1V 2LV n1Vn是从V1到Vn的最短路径,贝UV 1V 2L Vn1也必然是从V1到Vn 1的最优路径。
在下面的MATLA 实现代码中,我们用到了距离矩阵,矩阵第 i 行第j 行元 素表示顶点Vi到Vj的权Wj,若v 到V j无边,则W ijrealmax,其中realmax 是 MATLA 常量,表示最大的实数(1.7977e+308)function re=Dijkstra(ma)%用Dijkstra 算法求单源最短路径%俞入参量ma是距离矩阵%输出参量是一个三行n 列矩阵,每列表示顶点号及顶点到源的最短距离和前顶点n=size(ma,1);% 得到距离矩阵的维数s=ones(1,n);s(1)=0;% 标记集合S和S 的补r=zeros(3,n);r(1,:)=1:n;r(2,2:end)=realmax;% 初始化for i=2:n;% 控制循环次数mm=realmax;for j=find(s==0);% 集合S中的顶点for k=find(s==1);% 集合S补中的顶点if(r(2,j)+ma(j,k)<r(2,k))r(2,k)=r(2,j)+ma(j,k);r(3,k)=j;endif(mm>r(2,k))mm=r(2,k);t=k;endendends(1,t)=0;%找到最小的顶点加入集合Send re=r;1.2动态规划求解最短路径动态规划是美国数学家 Richard Bellman 在1951年提出来的分析一类多阶 段决策过程的最优化方法,在工程技术、工业生产、经济管理、军事及现代化控 制工程等方面均有着广泛的应用。
图论代码——精选推荐
图论代码图论报告学⽣:郑茹学号: 1606043 学院:电⽓与信息⼯程学院专业:软件⼯程2017年6⽉1⽇⽬录实验⼀Dijkstra算法 (1)实验⼆匈⽛利算法 (3)实验三⼆部图判定 (6)实验四邻接矩阵和关联矩阵转换 (8)实验五求欧拉环游 (11)实验六求哈密尔顿圈 (14)实验七⽣成树 (17)实验⼀Dijkstra算法⼀、实验⽬的1了解单源最短路径问题,掌握Dijkstra算法的思想;2编写程序,利⽤Dijkstra算法实现,求任意两点间的单源最短路径。
⼆、使⽤环境个⼈计算机,MATLAB软件三、实验内容求指定的⼀副图中任意两点间的单源最短路径。
四、算法描述1算法思想:设G=(V,E)是⼀个带权有向图,把图中顶点集合V分成两组,第⼀组为已求出最短路径的顶点集合(⽤S表⽰,初始时S中只有⼀个源点,以后每求得⼀条最短路径 , 就将加⼊到集合S中,直到全部顶点都加⼊到S中,算法就结束了),第⼆组为其余未确定最短路径的顶点集合(⽤U表⽰),按最短路径长度的递增次序依次把第⼆组的顶点加⼊S中。
在加⼊的过程中,总保持从源点v到S中各顶点的最短路径长度不⼤于从源点v到U中任何顶点的最短路径长度。
此外,每个顶点对应⼀个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2算法步骤:Step1:初始时,S只包含源点,即S={v},v的距离为0。
U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则正常有权值,若u不是v的出边邻接点,则权值为∞。
Step2:从U中选取⼀个距离v最⼩的顶点k,把k,加⼊S中(该选定的距离就是v到k的最短路径长度)。
Step3:以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)⽐原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
图论算法
Dijkstra 算法:用矩阵n n a ⨯(n 为顶点个数)存放各边权的邻接矩阵,行向量pb 、1index 、2index、d 分别用来存放P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。
其中分量⎩⎨⎧=顶点未标号当第顶点已标号当第i i i pb 01)(;)(2i index存放始点到第i 点最短通路中第i 顶点前一顶点的序号;)(i d 存放由始点到第i 点最短通路的值。
求第一个城市到其它城市的最短路径的Matlab 程序如下: clear; clc; M=10000;a(1,:)=[0,50,M,40,25,10]; a(2,:)=[zeros(1,2),15,20,M,25]; a(3,:)=[zeros(1,3),10,20,M]; a(4,:)=[zeros(1,4),10,25]; a(5,:)=[zeros(1,5),55]; a(6,:)=zeros(1,6); a=a+a';pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a)); d(1:length(a))=M;d(1)=0;temp=1; while sum(pb)<length(a) tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb)); tmpb=find(d(tb)==min(d(tb))); temp=tb(tmpb(1)); pb(temp)=1;index1=[index1,temp];index=index1(find(d(index1)==d(temp)-a(temp,index1))); if length(index)>=2 index=index(1); endindex2(temp)=index; endd, index1, index2%dijkstra 最短路算法通用程序,用于求从起始点s 到其它各点的最短路%D 为赋权邻接矩阵,d 为s 到其它各点最短路径的长度,DD 记载了最短路径生成树 function [d,DD]=dijkstra_aiwa(D,s) [m,n]=size(D); d=inf.*ones(1,m); d(1,s)=0;dd=zeros(1,m);dd(1,s)=1;y=s;DD=zeros(m,m);DD(y,y)=1;counter=1;while length(find(dd==1))<mfor i=1:mif dd(i)==0d(i)=min(d(i),d(y)+D(y,i)); endendddd=inf;for i=1:mif dd(i)==0&&d(i)<dddddd=d(i);endendyy=find(d==ddd);counter=counter+1;DD(y,yy(1,1))=counter;DD(yy(1,1),y)=counter;y=yy(1,1);dd(1,y)=1;endFloyd算法:Matlab程序如下:clear;clc;M=10000;a(1,:)=[0,50,M,40,25,10];a(2,:)=[zeros(1,2),15,20,M,25];a(3,:)=[zeros(1,3),10,20,M];a(4,:)=[zeros(1,4),10,25];a(5,:)=[zeros(1,5),55];a(6,:)=zeros(1,6);b=a+a';path=zeros(length(b));for k=1:6for i=1:6for j=1:6if b(i,j)>b(i,k)+b(k,j)b(i,j)=b(i,k)+b(k,j);path(i,j)=k;end end end end b, pathprim 算法构造最小生成树:prim 算法如下:(i )}{1v P =,Φ=Q ; (ii )while V P =~},,min(P V v P p w pv pv -∈∈= }{v P P += }{pv Q Q += end用prim 算法求右图的最小生成树。
图论算法及Matlab程序代码
图论算法及其MATLAB 程序代码求赋权图G = (V , E , F )中任意两点间的最短路的Warshall-Floyd 算法:设A = (a ij )n ×n 为赋权图G = (V , E , F )的矩阵, 当v i v j ∈E 时a ij = F (v i v j ), 否则取a ii =0, a ij = +∞(i ≠j ), d ij 表示从v i 到v j 点的距离, r ij 表示从v i 到v j 点的最短路中一个点的编号.① 赋初值. 对所有i , j , d ij = a ij , r ij = j . k = 1. 转向②② 更新d ij , r ij . 对所有i , j , 若d ik + d k j <d ij , 则令d ij = d ik + d k j , r ij = k , 转向③.③ 终止判断. 若d ii <0, 则存在一条含有顶点v i 的负回路, 终止; 或者k = n 终止; 否则令k = k + 1, 转向②.最短路线可由r ij 得到.例1 求图6-4中任意两点间的最短路.解:用Warshall-Floyd 算法, MATLAB 程序代码如下:n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=k;end ;end ;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if (D(i,i)<0)pd=1;break ;end ;end %存在一条含有顶点vi 的负回路if (pd)break ;end %存在一条负回路, 终止程序end %程序结束图6-4Kruskal避圈法:将图G中的边按权数从小到大逐条考察, 按不构成圈的原则加入到T 中(若有选择时, 不同的选择可能会导致最后生成树的权数不同), 直到q (T ) = p (G ) − 1为止, 即T的边数= G的顶点数− 1为止.Kruskal避圈法的MATLAB程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end%排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T中所有的元素赋值为0q=0; %记录加入到树T中的边数for(s=1:k)if(q==n)break;end%获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T中TT=T; %临时记录Twhile(1)pd=1;%砍掉TT中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end%寻找TT中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end%砍掉TT中的树枝if(pd)break;end;end%已砍掉了TT中所有的树枝pd=0;%判断TT中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0;%假如TT中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束求二部图G的最大匹配的算法(匈牙利算法), 其基本思想是:从G的任意匹配M开始, 对X中所有M的非饱和点, 寻找M−增广路. 若不存在M−增广路, 则M为最大匹配; 若存在M−增广路P, 则将P中M与非M的边互换得到比M多一边的匹配M1 , 再对M1重复上述过程.设G = ( X, Y, E )为二部图, 其中X = {x1, x2, … , x n }, Y = { y1, y2, … , y n}. 任取G的一初始匹配M (如任取e∈E, 则M = {e}是一个匹配).①令S = φ , T = φ , 转向②.②若M饱和X \S的所有点, 则M是二部图G的最大匹配. 否则, 任取M的非饱和点u∈X \ S , 令S = S ∪{ u }, 转向③.③记N (S ) = {v | u∈S, uv∈E}. 若N (S ) = T, 转向②. 否则取y∈N (S ) \T. 若y是M 的饱和点, 转向④, 否则转向⑤.④设x y∈M, 则令S = S ∪{ x }, T = T ∪{ y }, 转向③.⑤u −y路是M−增广路, 设为P, 并令M = M⊕P, 转向①. 这里M⊕P = M∪P \M∩P, 是对称差.由于计算M−增广路P比较麻烦, 因此将迭代步骤改为:①将X中M的所有非饱和点(不是M中某条边的端点)都给以标号0和标记*, 转向②.②若X中所有有标号的点都已去掉了标记*, 则M是G的最大匹配. 否则任取X中一个既有标号又有标记*的点x i , 去掉x i的标记*, 转向③.③找出在G中所有与x i邻接的点y j (即x i y j∈E ), 若所有这样的y j都已有标号, 则转向②, 否则转向④.④对与x i邻接且尚未给标号的y j都给定标号i. 若所有的y j都是M的饱和点, 则转向⑤, 否则逆向返回. 即由其中M的任一个非饱和点y j的标号i找到x i, 再由x i的标号k找到y k , … , 最后由y t的标号s找到标号为0的x s时结束, 获得M−增广路x s y t…x i y j, 记P = {x s y t, …, x i y j }, 重新记M为M⊕P, 转向①.⑤将y j在M中与之邻接的点x k (即x k y j∈M), 给以标号j和标记*, 转向②.例1求图6-9中所示的二部图G的最大匹配.图6-9匈牙利算法的MATLAB程序代码如下:m=5;n=5;A=[0 1 1 0 01 1 0 1 10 1 1 0 00 1 1 0 00 0 0 1 1];M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;end;end%求初始匹配Mif(M(i,j))break;end;end%获得仅含一条边的初始匹配Mwhile(1)for(i=1:m)x(i)=0;end%将记录X中点的标号和标记*for(i=1:n)y(i)=0;end%将记录Y中点的标号和标记*for(i=1:m)pd=1;%寻找X中M的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;end;end%将X中M的所有非饱和点都给以标号0和标记*, 程序中用n+1表示0标号, 标号为负数时表示标记*pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;end;end%假如X中存在一个既有标号又有标记*的点, 则任取X中一个既有标号又有标记*的点xiif(xi==0)pd=1;break;end%假如X中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi的标记*k=1;for(j=1:n)if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;end;end%对与xi邻接且尚未给标号的yj都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;end;end%将yj在M中与之邻接的点xk (即xkyj∈M), 给以标号j和标记*if(pdd)break;end;endif(pdd)k=1;j=yy(j); %yj不是M的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取M的一个非饱和点yj, 逆向返回if(j==n+1)break;end%找到X中标号为0的点时结束, 获得M-增广路Pk=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配M在增广路P中出现的边去掉else M(P(i,1),P(i,2))=1;end;end%将增广路P中没有在匹配M中出现的边加入到匹配M中break;end;end;endif(pd)break;end;end%假如X中所有有标号的点都已去掉了标记*, 算法终止M %显示最大匹配M, 程序结束利用可行点标记求最佳匹配的算法步骤如下:设G = ( X , Y , E , F )为完备的二部赋权图, L 是其一个初始可行点标记, 通常取.,,0)(},|)(max{)(Y y X x y L Y y xy F x L ∈∈ =∈= M 是G L 的一个匹配. ① 若X 的每个点都是M 的饱和点, 则M 是最佳匹配. 否则取M 的非饱和点u ∈X , 令S = {u }, T = φ , 转向②.② 记N L (S ) = {v | u ∈S , uv ∈E L }. 若N L ( S ) = T , 则G L 没有完美匹配, 转向③. 否则转向④.③ 调整可行点标记, 计算a L = min { L ( x ) + L ( y ) − F (x y ) | x ∈S , y ∈Y \T }.由此得新的可行顶点标记H (v ) =,,),(,)(,)(T v S v v L a v L a v L L L ∈∈+−令L = H , G L = G H , 重新给出G L 的一个匹配M , 转向①.④ 取y ∈N L ( S ) \T , 若y 是M 的饱和点, 转向⑤. 否则, 转向⑥.⑤ 设x y ∈M , 则令S = S ∪{ x }, T = T ∪{ y }, 转向②.⑥ 在G L 中的u − y 路是M −增广路, 记为P , 并令 M = M ⊕P , 转向①.利用可行点标记求最佳匹配算法的MATLAB 程序代码如下:n=4;A=[4 5 5 12 2 4 64 2 3 35 0 2 1];for (i=1:n)L(i,1)=0;L(i,2)=0;endfor (i=1:n)for (j=1:n)if (L(i,1)<A(i,j))L(i,1)=A(i,j);end ; %初始可行点标记LM(i,j)=0;end ;endfor (i=1:n)for (j=1:n) %生成子图Glif (L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;end ;end ;endii=0;jj=0;for (i=1:n)for (j=1:n)if (Gl(i,j))ii=i;jj=j;break ;end ;endif (ii)break ;end ;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;for (i=1:n)S(i)=0;T(i)=0;NlS(i)=0;endwhile (1)for (i=1:n)k=1;否则.for(j=1:n)if(M(i,j))k=0;break;end;endif(k)break;end;endif(k==0)break;end%获得最佳匹配M, 算法终止S(1)=i;jss=1;jst=0;%S={xi}, T=φwhile(1)jsn=0;for(i=1:jss)for(j=1:n)if(Gl(S(i),j))jsn=jsn+1;NlS(jsn)=j;%NL(S)={v|u∈S,uv∈EL}for(k=1:jsn-1)if(NlS(k)==j)jsn=jsn-1;end;end;end;end;endif(jsn==jst)pd=1; %判断NL(S)=T?for(j=1:jsn)if(NlS(j)~=T(j))pd=0;break;end;end;endif(jsn==jst&pd)al=Inf; %如果NL(S)=T, 计算al, Inf为∞for(i=1:jss)for(j=1:n)pd=1;for(k=1:jst)if(T(k)==j)pd=0;break;end;endif(pd&al>L(S(i),1)+L(j,2)-A(S(i),j))al=L(S(i),1)+L(j,2)-A(S(i),j);end;end;end for(i=1:jss)L(S(i),1)=L(S(i),1)-al;end%调整可行点标记for(j=1:jst)L(T(j),2)=L(T(j),2)+al;end%调整可行点标记for(i=1:n)for(j=1:n) %生成子图GLif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;endM(i,j)=0;k=0;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end%获得仅含Gl的一条边的初始匹配MM(ii,jj)=1;breakelse%NL(S)≠Tfor(j=1:jsn)pd=1;%取y∈NL(S)\Tfor(k=1:jst)if(T(k)==NlS(j))pd=0;break;end;endif(pd)jj=j;break;end;endpd=0;%判断y是否为M的饱和点for(i=1:n)if(M(i,NlS(jj)))pd=1;ii=i;break;end;endif(pd)jss=jss+1;S(jss)=ii;jst=jst+1;T(jst)=NlS(jj); %S=S∪{x}, T=T∪{y}else%获得Gl的一条M-增广路, 调整匹配Mfor(k=1:jst)M(S(k),T(k))=1;M(S(k+1),T(k))=0;endif(jst==0)k=0;endM(S(k+1),NlS(jj))=1;break;end;end;end;endMaxZjpp=0;for(i=1:n)for(j=1:n)if(M(i,j))MaxZjpp=MaxZjpp+A(i,j);end;end;endM %显示最佳匹配MMaxZjpp %显示最佳匹配M的权, 程序结束从一个可行流f 开始, 求最大流的Ford--Fulkerson 标号算法的基本步骤:⑴ 标号过程① 给发点v s 以标号(+, +∞) , δ s = +∞.② 选择一个已标号的点x , 对于x 的所有未给标号的邻接点y , 按下列规则处理:当yx ∈E , 且f yx >0时, 令δ y = min { f yx , δ x }, 并给y 以标号 ( x − , δ y ).当xy ∈E , 且f xy <C xy 时, 令δ y = min {C xy − f xy , δ x }, 并给y 以标号 ( x + , δ y ). ③ 重复②直到收点v t 被标号或不再有点可标号时为止. 若v t 得到标号, 说明存在一条可增广链, 转⑵调整过程; 若v t 未得到标号, 标号过程已无法进行时, 说明f 已经是最大流.⑵ 调整过程④ 决定调整量δ =δ vt , 令u = v t .⑤ 若u 点标号为( v +, δ u ), 则以f vu + δ 代替f vu ; 若u 点标号为( v −, δ u ), 则以 f vu − δ 代替f vu .⑥ 若v = v s , 则去掉所有标号转⑴重新标号; 否则令u = v , 转⑤.算法终止后, 令已有标号的点集为S , 则割集(S , S c )为最小割, 从而W f = C (S , S c ). 例1 求图6-19所示网络的最大流.利用Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for (i=1:n)for (j=1:n)f(i,j)=0;end ;end %取初始可行流f 为零流for (i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs标号while(1)pd=1;%标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt得到标号或者无法标号, 终止标号过程if(pd)break;end%vt未得到标号, f已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end%后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end%当t的标号为vs时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end%计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束设网络G = ( V , E , C ), 取初始可行流 f 为零流, 求解最小费用流问题的迭代步骤: ① 构造有向赋权图 G f = ( V , E f , F ), 对于任意的v i v j ∈E , E f , F 的定义如下:当f ij = 0时, v i v j ∈E f , F ( v i v j ) = b ij ;当f ij = C ij 时, v j v i ∈E f , F ( v j v i ) = −b ij ;当0< f ij <C ij 时, v i v j ∈E f , F ( v i v j ) = b ij , v j v i ∈E f , F ( v j v i ) = −b ij .转向②.② 求出有向赋权图G f = (V , E f , F )中发点v s 到收点v t 的最短路µ , 若最短路µ存在转向③; 否则f 是所求的最小费用最大流, 停止.③ 增流. 同求最大流的方法一样, 重述如下:令.,,,−+∈∈ −=µµδj i j i ij ij ij ij v v v v f f C δ = min {δ ij | v i v j ∈µ}, 重新定义流f = { f ij }为 f ij =,,,,−+∈∈ −+µµδδj i j i ijij ij v v v v f f f如果W f 大于或等于预定的流量值, 则适当减少δ 值, 使W f 等于预定的流量值, 那么 f 是所求的最小费用流, 停止; 否则转向①.求解含有负权的有向赋权图G = ( V , E , F )中某一点到其它各点最短路的Ford 算法. 当v i v j ∈E 时记w ij = F (v i v j ), 否则取w ii =0, w ij = +∞(i ≠j ). v 1到v i 的最短路长记为π ( i ), v 1到v i 的最短路中v i 的前一个点记为θ ( i ). Ford 算法的迭代步骤:① 赋初值π (1) = 0, π ( i ) = +∞, θ ( i ) = i , i = 2, 3, … , n .② 更新π ( i ), θ ( i ). 对于i = 2, 3, … , n 和j = 1, 2, … , n , 如果π ( i )<π ( j ) + w ji , 则令π ( i ) = π ( j ) , θ ( i ) = j . ③ 终止判断:若所有的π ( i )都无变化, 停止; 否则转向②. 在算法的每一步中, π ( i )都是从v 1到v i 的最短路长度的上界. 若不存在负长回路, 则从v 1到v i 的最短路长度是π ( i )的下界, 经过n −1次迭代后π ( i )将保持不变. 若在第n 次迭代后π ( i )仍在变化时, 说明存在负长回路.其它.例2 在图6-22所示运输网络上, 求s 到t 的最小费用最大流, 括号内为(C ij , b ij ).求最小费用最大流算法的MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0表示预定的流量值for (i=1:n)for (j=1:n)f(i,j)=0;end ;end %取初始可行流f 为零流while (1)for (i=1:n)for (j=1:n)if (j~=i)a(i,j)=Inf;end ;end ;end %构造有向赋权图for (i=1:n)for (j=1:n)if (C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif (C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif (C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end ;end ;endfor (i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for (k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for (i=2:n)for (j=1:n)if (p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end ;endif (pd)break ;end ;end %求最短路的Ford 算法结束if (p(n)==Inf)break ;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while (1) %计算调整量if (a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif (a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if (dvt>dvtt)dvt=dvtt;endif (s(t)==1)break ;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if (wf+dvt>=wf0)dvt=wf0-wf;pd=1;end %如果最大流量大于或等于预定的流量值t=n;while (1) %调整过程if (a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif (a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if (s(t)==1)break ;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif (pd)break ;end %如果最大流量达到预定的流量值wf=0; for (j=1:n)wf=wf+f(1,j);end ;end %计算最大流量zwf=0;for (i=1:n)for (j=1:n)zwf=zwf+b(i,j)*f(i,j);end ;end %计算最小费用f %显示最小费用最大流图6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束。
超全图论matlab程序
超全的图论程序关注微信公众号“超级数学建模”,教你做有料、有趣的数模人程序一:可达矩阵算法function P=dgraf(A)n=size(A,1);P=A;for i=2:nP=P+A^i;endP(P~=0)=1;P;程序二:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f)if f==0m=sum(sum(F))/2;n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);W(a(1),a(2))=1;W(a(2),a(1))=1;endelsefprint('Please imput the right value of f');endW;程序三:有向图关联矩阵和邻接矩阵互换算法function W=mattransf(F,f)if f==0m=sum(sum(F));n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=-1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);if F(a(1),i)==1W(a(1),a(2))=1;elseW(a(2),a(1))=1;endendelsefprint('Please imput the right value of f'); endW;第二讲:最短路问题程序一:Dijkstra算法(计算两点间的最短路)function [l,z]=Dijkstra(W)n = size (W,1);for i = 1 :nl(i)=W(1,i);z(i)=0;endi=1;while i<=nfor j =1 :nif l(i)>l(j)+W(j,i)l(i)=l(j)+W(j,i);z(i)=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法(计算任意两点间的最短距离)function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendr;for k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j)d(i,j)=d(i,k)+d(k,j); r(i,j)=r(i,k);endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short(W,k1,k2)n=length(W);U=W;m=1;while m<=nfor i=1:nfor j=1:nif U(i,j)>U(i,m)+U(m,j)U(i,j)=U(i,m)+U(m,j);endendendm=m+1;endu=U(k1,k2);P1=zeros(1,n);k=1;P1(k)=k2;V=ones(1,n)*inf;kk=k2;while kk~=k1for i=1:nV(1,i)=U(k1,kk)-W(i,kk);if V(1,i)==U(k1,i)P1(k+1)=i;kk=i;k=k+1;endendendk=1;wrow=find(P1~=0);for j=length(wrow):-1:1P(k)=P1(wrow(j));k=k+1;endP;程序四、n1short.m(计算某点到其它所有点的最短距离)function[Pm D]=n1short(W,k)n=size(W,1);D=zeros(1,n);for i=1:n[P d]=n2short(W,k,i);Pm{i}=P;D(i)=d;end程序五:pass2short.m(计算经过某两点的最短距离) function [P d]=pass2short(W,k1,k2,t1,t2)[p1 d1]=n2short(W,k1,t1);[p2 d2]=n2short(W,t1,t2);[p3 d3]=n2short(W,t2,k2);dt1=d1+d2+d3;[p4 d4]=n2short(W,k1,t2);[p5 d5]=n2short(W,t2,t1);[p6 d6]=n2short(W,t1,k2);dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2(2:length(p2)) p3(2:length(p3))]; elsed=dt1;p=[p4 p5(2:length(p5)) p6(2:length(p6))]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf(d,flag)if nargin==1n=size(d,2);m=sum(sum(d~=0))/2;b=zeros(3,m);k=1;for i=1:nfor j=(i+1):nif d(i,j)~=0b(1,k)=i;b(2,k)=j;b(3,k)=d(i,j);k=k+1;endendendelseb=d;endn=max(max(b(1:2,:)));m=size(b,2);[B,i]=sortrows(b',3);B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t(B(1,i))~=t(B(2,i))T(1:2,k)=B(1:2,i);c=c+B(3,i);k=k+1;tmin=min(t(B(1,i)),t(B(2,i)));tmax=max(t(B(1,i)),t(B(2,i)));for j=1:nif t(j)==tmaxt(j)=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf(a)l=length(a);a(a==0)=inf;k=1:l;listV(k)=0;listV(1)=1;e=1;while (e<l)min=inf;for i=1:lif listV(i)==1for j=1:lif listV(j)==0 & min>a(i,j)min=a(i,j);b=a(i,j);s=i;d=j;endendendendlistV(d)=1;distance(e)=b;source(e)=s;destination(e)=d;e=e+1;endT=[source;destination];for g=1:e-1c(g)=a(T(1,g),T(2,g));endc;另外两种程序最小生成树程序1(prim 算法构造最小生成树)a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;...inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;...inf inf 45 42 inf inf inf];result=[];p=1;tb=2:length(a);while length(result)~=length(a)-1temp=a(p,tb);temp=temp(:);d=min(temp);[jb,kb]=find(a(p,tb)==d);j=p(jb(1));k=tb(kb(1));result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];endresult最小生成树程序2(Kruskal 算法构造最小生成树)clc;clear;a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40;a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70;[i,j,b]=find(a);data=[i';j';b'];index=data(1:2,:);loop=max(size(a))-1;result=[];while length(result)<looptemp=min(data(3,:));flag=find(data(3,:)==temp);flag=flag(1);v1=data(1,flag);v2=data(2,flag);if index(1,flag)~=index(2,flag)result=[result,data(:,flag)];endindex(find(index==v2))=v1;data(:,flag)=[];index(:,flag)=[];endresult第四讲:Euler图和Hamilton图程序一:Fleury算法(在一个Euler图中找出Euler环游)注:包括三个文件;fleuf1.m, edf.m, flecvexf.m function [T c]=fleuf1(d)%注:必须保证是Euler环游,否则输出T=0,c=0n=length(d);b=d;b(b==inf)=0;b(b~=0)=1;m=0;a=sum(b);eds=sum(a)/2;ed=zeros(2,eds);vexs=zeros(1,eds+1);matr=b;for i=1:nif mod(a(i),2)==1m=m+1;endendif m~=0fprintf('there is not exit Euler path.\n') T=0;c=0;endif m==0vet=1;flag=0;t1=find(matr(vet,:)==1);for ii=1:length(t1)ed(:,1)=[vet,t1(ii)];vexs(1,1)=vet;vexs(1,2)=t1(ii);matr(vexs(1,2),vexs(1,1))=0;flagg=1;tem=1;while flagg[flagg ed]=edf(matr,eds,vexs,ed,tem); tem=tem+1;if ed(1,eds)~=0 & ed(2,eds)~=0T=ed;T(2,eds)=1;c=0;for g=1:edsc=c+d(T(1,g),T(2,g));endflagg=0;break;endendendendfunction[flag ed]=edf(matr,eds,vexs,ed,tem)flag=1;for i=2:eds[dvex f]=flecvexf(matr,i,vexs,eds,ed,tem);if f==1flag=0;break;endif dvex~=0ed(:,i)=[vexs(1,i) dvex];vexs(1,i+1)=dvex;matr(vexs(1,i+1),vexs(1,i))=0;elsebreak;endendfunction [dvex f]=flecvexf(matr,i,vexs,eds,ed,temp) f=0;edd=find(matr(vexs(1,i),:)==1);dvex=0;dvex1=[];ded=[];if length(edd)==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length(edd)m1=find(vexs==edd(kk));if sum(m1)==0dvex1(dd)=edd(kk);dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length(edd)tem=vexs(1,i)*ones(1,kkk);edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1(1:2,l1)==ed(1:2,l2)lt=lt+1;endendif lt==0ded(ddd)=edd(l1);ddd=ddd+1;endendendif temp<=length(dvex1)dvex=dvex1(temp);elseif temp>length(dvex1) & temp<=length(ded)dvex=ded(temp);elsef=1;endend程序二:Hamilton改良圈算法(找出比较好的Hamilton路)function [C d1]= hamiltonglf(v)%d表示权值矩阵%C表示算法最终找到的Hamilton圈。
应用篇-第14章-图论算法及其MATLAB实现
对每个图G=(V,E),均有
d(v)=2|E|
vV
证明:根据顶点度的定义,在计算点度时每条边对于它所关联的顶点被计 算了两次。因此,图G 中点度的总和恰为边数|V|的2倍。证毕。 推论14.1 在任何图G=(V,E)中,奇点的个数为偶数。
定理14.4对任意有向图D=(V,A)均有
14.8 Dijkstra 算法及其MATLAB实现
14.8.1 问题描述与算法思想
Dijkstra算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置 一个顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当 且仅当从源到该顶点的最短路径长度已知。设v是图中的一个顶点,记L(v) 为顶点v到源点v1的最短距离, vi , v j V 若 (vi , v j ) E ,记vi到vj的权。
① A(G)为对称矩阵;
② 若G 为无环图,则A(G)中第i行(列)的元素之和等于顶点vi的度; ③ 两图G 和H 同构的充分必要条件是存在置换矩阵P 使得A(G)=PTA(H)P。
类似地,有向图D 的邻接矩阵A(D)=(aij)n×n的元素aij定义为:元素aij表示从始点vi到 终点vj的有向边的条,,其中vi和vj为D 的顶点。
14.3.2 关联矩=(V,E),其中顶点集V={v1,v2,…,vn},边集E={e1,e2,…,eε}。 用 mij表示顶点vi与边ej关联的次数,可能取值为0,1,2,称所得矩阵M(G)=(mij)n×ε为 图G 的关联矩阵。 类似地,有向图D 的关联矩阵M(D)=(mij)n×ε的元素mij定义为:
14.2.4 路
在图论理论中,路具有特殊的重要性,古往今来,许多学者均对它进行过深入研究。本 节主要介绍简单图G=(V,E)中有关路和连通性的简单性质。 定理14.1 若图G 中有一条(u,v)途径,则G 中也存在一条(u,v)路。
图论和网络分析算法及Matlab实现(Graph_and_Network_Analysis)
2017/11/5
问题的两个共同特点
(1)目的都是从若干可能的安排或方案中寻求 某种意义下的最优安排或方案,数学问题称 为最优化或优化问题。 (2)它们都可用图形形式直观描述,数学上把这 种与图相关的结构称为网络。图和网络相关 的最优化问题就是网络最优化。 网络优化问题是以网络流为研究的对象,常 常被称为网络流或网络流规划等。
v2
2
v1 3 5 1
v3
2
7 5 3 5 v5
v6 1 7
5
v7
v4
• 2. 方法:Dijkstra算法(Dijkstra,1959)
Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271.
2017/11/5
5 、旅行商问题 Traveling salesman problem
一名推销员准备前往若干城市推销产 品。如何为他设计一条最短的旅行 路线? (从驻地出发,经过每个城 市恰好一次,最后返回驻地)
2017/11/5
6、运输问题 Transportation problem
某种原材料有 M个产地,现在需要将原材料从产 地运往 N个使用这些原材料的工厂。假定 M个产 地的产量和 N家工厂的需要量已知,单位产品从 任一产地到任一工厂的运费已知,那么如何安排 运输方案可以使总运输成本最低?
wij,i能一步到达j d ij j ,i不能一步到达
2017/11/5
Dijkstra 算法
由图G建立一步可达距离阵D=(dij)n×n
给V1(Vs)括号(l1,Vk)=(0,s)给出已标号集合 I和未标号集合J的元素
(图论)matlab模板程序
第一讲:图论模型程序一:可达矩阵算法%根据邻接矩阵A〔有向图〕求可达矩阵P〔有向图〕function P=dgraf<A>n=size<A,1>;P=A;for i=2:nP=P+A^i;endP<P~=0>=1; %将不为0的元素变为1P;程序二:无向图关联矩阵和邻接矩阵互换算法F表示所给出的图的相应矩阵W表示程序运行结束后的结果f=0表示把邻接矩阵转换为关联矩阵f=1表示把关联矩阵转换为邻接矩阵%无向图的关联矩阵和邻接矩阵的相互转换function W=incandadf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>/2; %计算图的边数n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0W<i,k>=1; %给边的始点赋值为1W<j,k>=1; %给边的终点赋值为1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>;W<a<1>,a<2>>=1; %存在边,则邻接矩阵的对应值为1 W<a<2>,a<1>>=1;endelsefprint<'Please imput the right value of f'>;W;程序三:有向图关联矩阵和邻接矩阵互换算法%有向图的关联矩阵和邻接矩阵的转换function W=mattransf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>;n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0 %由i发出的边,有向边的始点W<i,k>=1; %关联矩阵始点值为1W<j,k>=-1; %关联矩阵终点值为-1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>; %有向边的两个顶点if F<a<1>,i>==1W<a<1>,a<2>>=1; %有向边由a<1>指向a<2>elseW<a<2>,a<1>>=1; %有向边由a<2>指向a<1>endendelsefprint<'Please imput the right value of f'>;endW;第二讲:最短路问题程序0:最短距离矩阵W表示图的权值矩阵D表示图的最短距离矩阵%连通图中各项顶点间最短距离的计算function D=shortdf<W>%对于W<i,j>,若两顶点间存在弧,则为弧的权值,否则为inf;当i=j时W<i,j>=0 n=length<W>;m=1;while m<=nfor i=1:nfor j=1:nif D<i,j>>D<i,m>+D<m,j>D<i,j>+D<i,m>+D<m,j>; %距离进行更新 endendendm=m+1;endD;程序一:Dijkstra算法〔计算两点间的最短路〕function [l,z]=Dijkstra<W>n = size <W,1>;for i = 1 :nl<i>=W<1,i>;z<i>=0;endi=1;while i<=nfor j =1 :nif l<i>>l<j>+W<j,i>l<i>=l<j>+W<j,i>;z<i>=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法〔计算任意两点间的最短距离〕function [d,r]=floyd<a>n=size<a,1>;d=a;for i=1:nfor j=1:nr<i,j>=j;endendr;for k=1:nfor i=1:nfor j=1:nif d<i,k>+d<k,j><d<i,j>d<i,j>=d<i,k>+d<k,j>; r<i,j>=r<i,k>;endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short<W,k1,k2>n=length<W>;U=W;m=1;while m<=nfor i=1:nfor j=1:nif U<i,j>>U<i,m>+U<m,j>U<i,j>=U<i,m>+U<m,j>;endendendm=m+1;endu=U<k1,k2>;P1=zeros<1,n>;k=1;P1<k>=k2;V=ones<1,n>*inf;kk=k2;while kk~=k1for i=1:nV<1,i>=U<k1,kk>-W<i,kk>;if V<1,i>==U<k1,i>P1<k+1>=i;kk=i;k=k+1;endendendk=1;wrow=find<P1~=0>;for j=length<wrow>:-1:1P<k>=P1<wrow<j>>;k=k+1;endP;程序四、n1short.m<计算某点到其它所有点的最短距离> function[Pm D]=n1short<W,k>n=size<W,1>;D=zeros<1,n>;for i=1:n[P d]=n2short<W,k,i>;Pm{i}=P;D<i>=d;end程序五:pass2short.m<计算经过某两点的最短距离> function [P d]=pass2short<W,k1,k2,t1,t2>[p1 d1]=n2short<W,k1,t1>;[p2 d2]=n2short<W,t1,t2>;[p3 d3]=n2short<W,t2,k2>;dt1=d1+d2+d3;[p4 d4]=n2short<W,k1,t2>;[p5 d5]=n2short<W,t2,t1>;[p6 d6]=n2short<W,t1,k2>;dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2<2:length<p2>> p3<2:length<p3>>]; elsed=dt1;p=[p4 p5<2:length<p5>> p6<2:length<p6>>]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf<d,flag>if nargin==1n=size<d,2>;m=sum<sum<d~=0>>/2;b=zeros<3,m>;k=1;for i=1:nfor j=<i+1>:nif d<i,j>~=0b<1,k>=i;b<2,k>=j;b<3,k>=d<i,j>;k=k+1;endendendelseb=d;endn=max<max<b<1:2,:>>>;m=size<b,2>;[B,i]=sortrows<b',3>;B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t<B<1,i>>~=t<B<2,i>>T<1:2,k>=B<1:2,i>;c=c+B<3,i>;k=k+1;tmin=min<t<B<1,i>>,t<B<2,i>>>; tmax=max<t<B<1,i>>,t<B<2,i>>>; for j=1:nif t<j>==tmaxt<j>=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf<a>l=length<a>;a<a==0>=inf;k=1:l;listV<k>=0;listV<1>=1;e=1;while <e<l>min=inf;for i=1:lif listV<i>==1for j=1:lif listV<j>==0 & min>a<i,j>min=a<i,j>;b=a<i,j>;s=i;d=j;endendendendlistV<d>=1;distance<e>=b;source<e>=s;destination<e>=d;e=e+1;endT=[source;destination];for g=1:e-1c<g>=a<T<1,g>,T<2,g>>;endc;第四讲:Euler图和Hamilton图程序一:Fleury算法〔在一个Euler图中找出Euler环游〕注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1<d>%注:必须保证是Euler环游,否则输出T=0,c=0n=length<d>;b=d;b<b==inf>=0;b<b~=0>=1;m=0;a=sum<b>;eds=sum<a>/2;ed=zeros<2,eds>;vexs=zeros<1,eds+1>;matr=b;for i=1:nif mod<a<i>,2>==1m=m+1;endendif m~=0fprintf<'there is not exit Euler path.\n'>T=0;c=0;endif m==0vet=1;flag=0;t1=find<matr<vet,:>==1>;for ii=1:length<t1>ed<:,1>=[vet,t1<ii>];vexs<1,1>=vet;vexs<1,2>=t1<ii>;matr<vexs<1,2>,vexs<1,1>>=0;flagg=1;tem=1;while flagg[flagg ed]=edf<matr,eds,vexs,ed,tem>;tem=tem+1;if ed<1,eds>~=0 & ed<2,eds>~=0T=ed;T<2,eds>=1;c=0;for g=1:edsc=c+d<T<1,g>,T<2,g>>;endflagg=0;break;endendendendfunction[flag ed]=edf<matr,eds,vexs,ed,tem>flag=1;for i=2:eds[dvex f]=flecvexf<matr,i,vexs,eds,ed,tem>;if f==1flag=0;break;endif dvex~=0ed<:,i>=[vexs<1,i> dvex];vexs<1,i+1>=dvex;matr<vexs<1,i+1>,vexs<1,i>>=0;elsebreak;endendfunction [dvex f]=flecvexf<matr,i,vexs,eds,ed,temp> f=0;edd=find<matr<vexs<1,i>,:>==1>;dvex=0;dvex1=[];ded=[];if length<edd>==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length<edd>m1=find<vexs==edd<kk>>;if sum<m1>==0dvex1<dd>=edd<kk>;dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length<edd>tem=vexs<1,i>*ones<1,kkk>;edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1<1:2,l1>==ed<1:2,l2>lt=lt+1;endendif lt==0ded<ddd>=edd<l1>;ddd=ddd+1;endendendif temp<=length<dvex1>dvex=dvex1<temp>;elseif temp>length<dvex1> & temp<=length<ded>dvex=ded<temp>;elsef=1;endend程序二:Hamilton改良圈算法〔找出比较好的Hamilton路〕function [C d1]= hamiltonglf<v>%d表示权值矩阵%C表示算法最终找到的Hamilton圈.%v =[ 51 67;37 84;41 94;2 99;18 54;4 50;24 42;25 38;13 40;7 64;22 60;25 62;18 40;41 26];n=size<v,1>;subplot<1,2,1>hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endplot <v<:,1>,v<:,2>>;%连线plot<[v<n,1>,v<1,1>],[v<n,2>,v<1,2>]>;for i =1:nfor j=1:nd<i,j>=sqrt<<v<i,1>-v<j,1>>^2+<v<i,2>-v<j,2>>^2>;endendd2=0;for i=1:nif i<nd2=d2+d<i,i+1>;elsed2=d2+d<n,1>;endendtext<10,30,num2str<d2>>;n=size<d,2>;C=[linspace<1,n,n> 1];for nnn=1:20C1=C;if n>3for m=4:n+1for i=1:<m-3>for j=<i+2>:<m-1>if<d<C<i>,C<j>>+d<C<i+1>,C<j+1>><d<C<i>,C<i+1>>+d<C<j>,C<j+1>>>C1<1:i>=C<1:i>;for k=<i+1>:jC1<k>=C<j+i+1-k>;endC1<<j+1>:m>=C<<j+1>:m>;endendendendelseif n<=3if n<=2fprint<'It does not exist Hamilton circle.'>; elsefprint<'Any cirlce is the right answer.'>;endendC=C1;d1=0;for i=1:nd1=d1+d<C<i>,C<i+1>>;endd1;endsubplot<1,2,2>;hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endv2=[v;v<1,1>,v<1,2>];plot<v<C<:>,1>,v<C<:>,2>,'r'>;text<10,30,num2str<d1>>;第五讲:匹配问题与算法程序一:较大基础匹配算法function J=matgraf<W>n=size<W,1>;J=zeros<n,n>;while sum<sum<W>>~=0a=find<W~=0>;t1=mod<a<1>,n>;if t1==0t1=n;endif a<1>/n>floor<a<1>/n>t2=floor<a<1>/n>+1;elset2=floor<a<1>/n>;endJ<t1,t2>=1,J<t2,t1>=1;W<t1,:>=0;W<t2,:>=0;W<:,t1>=0;W<:,t2>=0;endJ;程序二:匈牙利算法〔完美匹配算法,包括三个文件fc01,fc02,fc03〕function [e,s]=fc01<a,flag>if nargin==1flag=0;endb=a;if flag==0cmax=max<max<b>'>;b=cmax-b;endm=size<b>;for i =1:m<1>b<i,:>=b<i,:>-min<b<i,:>>;endfor j=1:m<2>b<:,j>=b<:,j>-min<b<:,j>>;endd=<b==0>;[e,total]=fc02<d>;while total~=m<1>b=fc03<b,e>;d=<b==0>;[e,total]=fc02<d>;endinx=sub2ind<size<a>,e<:,1>,e<:,2>>;e=[e,a<inx>];s=sum<a<inx>>;function [e,total]=fc02<d>total=0;m=size<d>;e=zeros<m<1>,2>;t=sum<sum<d>'>;nump=sum<d'>;while t~=0[s,inp]=sort<nump>;inq=find<s>;ep=inp<inq<1>>;inp=find<d<ep,:>>;numq=sum<d<:,inp>>;[s,inq]=sort<numq>;eq=inp<inq<1>>;total=total+1;e<total,:>=[ep,eq];inp=find<d<:,eq>>;nump<inp>=nump<inp>-1;nump<ep>=0;t=t-sum<d<ep,:>>-sum<d<:,eq>>+1;d<ep,:>=0*d<ep,:>;d<:,eq>=0*d<:,eq>;endfunction b=fc03<b,e>m=size<b>;t=1;p=ones<m<1>,1>;q=zeros<m<1>,1>;inp=find<e<:,1>~=0>;p<e<inp,1>>=0;while t~=0tp=sum<p+q>;inp=find<p==1>;n=size<inp>;for i=1:n<1>inq=find<b<inp<i>,:>==0>;q<inq>=1;endinp=find<q==1>;n=size<inp>;for i=1:n<1>if all<e<:,2>-inp<i>>==0inq=find<<e<:,2>-inp<i>>==0>;p<e<inq>>=1;endendtq=sum<p+q>;t=tq-tp;endinp=find<p==1>;inq=find<q==0>;cmin=min<min<b<inp,inq>>'>;inq=find<q==1>;b<inp,:>=b<inp,:>-cmin;b<:,inq>=b<:,inq>+cmin;第六讲:最大流最小费用问题程序一:2F算法<Ford-Fulkerson算法>,求最大流%C=[0 5 4 3 0 0 0 0;0 0 0 0 5 3 0 0;0 0 0 0 0 3 2 0;0 0 0 0 0 0 2 0; %0 0 0 0 0 0 0 4;0 0 0 0 0 0 0 3;0 0 0 0 0 0 0 5;0 0 0 0 0 0 0 0 ] function [f wf]=fulkersonf<C,f1>%C表示容量%f1表示当前流量,默认为0%f表示最大流±íʾ×î´óÁ÷%wf表示最大流的流量n=length<C>;if nargin==1;f=zeros<n,n>;elsef=f1;endNo=zeros<1,n>;d=zeros<1,n>;while <1>No<1>=n+1;d<1>=Inf;while <1>pd=1;for <i=1:n>if <No<i>>for <j=1:n>if <No<j>==0 & f<i,j><C<i,j>>No<j>=i;d<j>=C<i,j>-f<i,j>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endelseif <No<j>==0 & f<j,i>>0>No<j>=-i;d<j>=f<j,i>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endendendendendif <No<n>|pd>break;endendif <pd>break;enddvt=d<n>;t=n;while <1>if<No<t>>0>f<No<t>,t>=f<No<t>,t>+dvt;elseif <No<t><0>f<No<t>,t>=f<No<t>,t>-dvt;endif <No<t>==1>for <i=1:n>No<i>=0;d<i>=0;endbreakendt=No<t>;endendwf=0;for <j=1:n>wf=wf+f<1,j>;endf;wf;程序二:Busacker-Gowan算法<求最大流最小费用>%C=[0 15 16 0 0;0 0 0 13 14;0 11 0 17 0;0 0 0 0 8;0 0 0 0 0] %b=[0 4 1 0 0;0 0 0 6 1;0 2 0 3 0;0 0 0 0 2;0 0 0 0 0]%function [f wf zwf]=BGf<C,b>%C表示弧容量矩阵%b表示弧上单位流量的费用%f表示最大流最小费用矩阵%wf最大流量%zwf表示最小费用n=size<C,2>;wf=0;wf0=inf;f=zeros<n,n>;while <1>a=ones<n,n>*inf;for <i=1:n>a<i,i>=0;endfor <i=1:n>for <j=1:n>if<C<i,j>>0 & f<i,j>==0>a<i,j>=b<i,j>;elseif <C<i,j>>0 & f<i,j>==C<i,j>>a<j,i>=-b<i,j>;elseif <C<i,j>>0>a<i,j>=b<i,j>;a<j,i>=-b<i,j>;endendendfor <i=2:n>p<i>=inf;s<i>=i;endfor <k=1:n>pd=1;for <i=2:n>for <j=1:n>if <p<i>>p<j>+a<j,i>>p<i>=p<j>+a<j,i>;s<i>=j;pd=0; endendendif <pd>break;endendif <p<n>==inf>break;enddvt=inf;t=n;while <1>if <a<s<t>,t>>0>dvtt=C<s<t>,t>-f<s<t>,t>;elseif <a<s<t>,t><0>dvtt=f<t,s<t>>;endif <dvt>dvtt>dvt=dvtt;endif <s<t>==1>break;endt=s<t>;endpd=0;if <wf+dvt>=wf0>dvt=wf0-wf;pd=1;endt=n;while <1>if <a<s<t>,t>>0>f<s<t>,t>=f<s<t>,t>+dvt; elseif <a<s<t>,t><0>f<<t>,s<t>>=f<t,s<t>>-dvt; endif <s<t>==1>break;endt=s<t>;endif <pd>break;endwf=0;for <j=1:n>wf=wf+f<1,j>;endendzwf=0;for <i=1:n>for <j=1:n>zwf=zwf+b<i,j>*f<i,j>;endendf;。
图论编程实现连通图实验报告MATLAB
连通图的判断
一、实验目的
了解连通图的判定方法。
二、实验内容
1、设计一个算法判断图是否连通;
2、在matlab中编程来实现此算法。
用下面的实例来调试程序:
三、使用环境
个人计算机,MATLAB软件
四、编程思路
从邻接矩阵中得到顶点数N,对邻接矩阵求N次方,并求其秩,可以通过邻接矩阵N次幂的秩来判断是否为连通,连通图的秩+1=顶点数,则连通。
五、调试过程
1.程序代码:
function liantong(F)
n=size(F,1);%计算矩阵行数
P=zeros(n,n);%生成同维0矩阵
k=1;
for k=1:n
F1=F^k;
P=P+F1;%将原矩阵的n次方传给P
end
S=n-rank(P);%求矩阵的秩
if S==1
disp('连通');
else
disp('不连通');
end
2.运行窗口:
在运行窗口输入:。
图算法的应用以及在Matlab中的实现
图算法的应用以及在Matlab中的实现图算法是图论的基础,广泛应用于各个领域。
图算法可以用来解决很多实际问题,例如社交网络分析、路网优化、数据挖掘等。
在Matlab中,图算法的实现主要依赖于图对象和图函数库。
一、图算法的应用1.社交网络分析:通过图算法可以进行社交网络的分析和挖掘,例如寻找网络中的关键节点、查找社区结构、计算网络的中心性指标等。
2.路网优化:图算法可以用来解决路网中的最短路径问题、最小生成树问题、最大流问题等,以优化交通运输和资源分配。
3.数据挖掘:图算法可以用于发现模式和关联规则,例如通过挖掘网页链接关系发现重要网页、通过分析推荐系统中用户的行为图谱进行个性化推荐等。
二、Matlab中图算法的实现在Matlab中,图算法的实现主要依赖于图对象(Graph Object)和图函数库(Graph and Network Algorithms),Matlab提供了一套完整的图算法库供用户使用。
1. 图对象(Graph Object)Matlab中的图对象是用来存储图数据的数据结构,可以表示有向图或无向图。
可以通过创建图对象,设置节点和边的属性,以及添加节点和边来构建图。
图对象提供了很多有用的方法,用于访问和操作图数据。
2. 图函数库(Graph and Network Algorithms)Matlab提供了一系列的图函数,用于解决常见的图算法问题。
其中包括最短路径算法、最小生成树算法、最大流算法等。
这些图函数可以用来解决各种实际问题,例如计算两节点之间的最短路径、查找网络中的关键节点等。
在Matlab中,通过以下几个步骤可以实现图算法:1.创建图对象:使用图对象的构造函数可以创建一个空的图对象,并指定图的类型(有向图或无向图)。
2.添加节点和边:使用图对象的方法可以添加节点和边,设置节点和边的属性。
3.访问图数据:可以通过图对象的方法访问和操作图数据,例如获取节点数、获取边数、获取节点的邻居等。
matlab 最短路距离
在MATLAB中,可以使用图论算法来求解最短路问题。
其中,Dijkstra算法是一种常用的最短路算法。
假设我们有一个有向图,其中每条边的权重非负,那么可以使用Dijkstra算法来求解单源最短路问题,即求解从一个顶点到其他所有顶点的最短路径。
以下是一个使用Dijkstra算法求解最短路问题的MATLAB代码示例:matlab复制代码function[dist, path] = dijkstra(adjMatrix, startNode)% 输入:% adjMatrix:邻接矩阵,表示有向图的边权值% startNode:起始节点编号% 输出:% dist:距离矩阵,dist(i,j)表示从起始节点到第i个节点的最短距离% path:路径矩阵,path(i,j)表示从起始节点到第i个节点的前一个节点编号n = size(adjMatrix,1); % 获取顶点数zero_row = find(adjMatrix == 0); % 找到所有不与起始节点相连的行dist = inf(1,n); % 初始化距离矩阵为无穷大dist(startNode) = 0; % 起始节点到自己的距离为0path = zeros(1,n); % 初始化路径矩阵为0prev = zeros(1,n); % 记录前一个节点编号prev(startNode) = -1; % 起始节点的前一个节点编号为-1Q = 1:n; % 待处理的节点集合,初始时为所有节点while ~isempty(Q)[~,min_ind] = min(dist(Q)); % 选择距离最短的节点u = Q(min_ind); % 当前处理的节点编号Q(min_ind) = []; % 从集合中删除该节点neighbors = find(adjMatrix(u,:) > 0); % 找到所有与当前节点相连的节点编号for v = neighborsalt = dist(u) + adjMatrix(u,v); % 计算从起始节点经过u到v的距离if alt < dist(v) % 如果更短,则更新距离和路径dist(v) = alt;path(v) = u;prev(v) = u;if ~ismember(v,Q) % 如果该节点还没有处理过,则加入集合中Q = [Q v]; endendendend。
图论MATLAB算法
第一章:Dijkstra 算法开始?dot i ≤输入,确定邻接矩阵a 确定邻接矩阵a 的节点数dot1=i算每一个节点到U 中每一个节点的最小值 输出第n i 个节点到第一个节点的最小距离i L ,i=1∧dot结束算这dot 个最小值的最小值l ,并确定其节点位置i nl L i n =将第一个节点放入集合U 中将已经确定的第i n 节点到所有节点的权值赋为∞ 将所有节点到第i n 节点的权值加上l 并代替之 ?2>i1+=i i将第i n 节点放入集合U 中 YESNOYESNO求下面赋权图(左图)中顶点u0到其余顶点的最短路。
其邻接矩阵W 为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞=024782063446046340357630135102273201847210W)(i u l迭 代 次 数0u 1u 2u 3u 4u 5u 6u 7u1 2 3 4 5 6 7 8 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞1 2 ∞ 7 ∞ 4 82 4 7 ∞ 4 83 7 ∞4 86 9 4 86 9 69 6 9 最后标记)(v l )(v z0 1 2 3 6 9 4 6 0u 0u 0u 2u 3u 3u 0u 6u1u 2u 3u 4u 5u 6u 7u 0ufunction dijkstra%注:此程序仅作参考,欢迎批评指正。
clcclear%Dijkstra算法:%%%%给邻接矩阵赋值%%%%%%%%%%%%a=[0,1,2,inf,7,inf,4,8;1,0,2,3,inf,inf,inf,7;0,0,0,1,5,inf,inf,inf;0,0,0,0,3,6,inf,inf;0,0,0,0,0,4,3,inf;0,0,0,0,0,0,6,4;0,0,0,0,0,0,0,2;];for i=2:8for j=1:i-1a(i,j)=a(j,i);endenddot=size(a,1);%节点数fprintf('\t邻接矩阵的标准形式:');afuquantu=a;%在赋权图中用到fprintf('\t其中,inf代表无穷大∞,a(i,j)代表第i个节点到第j个节点的权。
图论在matlab中的实现
用 index2×n 存放各边端点的信息, 当选中某一边之后,就将此边对 应的顶点序号中较大序号改记为 此边的另一序号,同时把后面边 中所有序号为的改记为。此方法 的几何意义是:将序号的这个顶 点收缩到顶点,顶点不复存在。 后面继续寻查时,发现某边的两 个顶点序号相同时,认为已被收 缩掉,失去了被选取的资格。
while length(result)<loop temp=min(data(3,:)); flag=find(data(3,:)==temp); flag=flag(1); v1=data(1,flag);v2=data(2,flag); if index(1,flag)~=index(2,flag) result=[result,data(:,flag)]; end if v1>v2 index(find(index==v1))=v2; else index(find(index==v2))=v1; end data(:,flag)=[]; index(:,flag)=[]; end result
Kruskal算法如下 Kruskal算法如下 : clc;clear; M=1000; a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40; a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70; [i,j]=find((a~=0)&(a~=M)); b=a(find((a~=0)&(a~=M))); data=[i';j';b'];index=data(1:2,:); loop=max(size(a))loop=max(size(a))-1; result=[];
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图论算法及其MATLAB程序代码求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd算法:设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号.①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向②②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③.③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②.最短路线可由r ij得到.例1求图6-4中任意两点间的最短路.图6-4解:用Warshall-Floyd算法, MA TLAB程序代码如下:n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=R(k,j);end;end;end%更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end%存在一条含有顶点vi的负回路if(pd)break;end%存在一条负回路, 终止程序end%程序结束Kruskal避圈法:将图G中的边按权数从小到大逐条考察, 按不构成圈的原则加入到T 中(若有选择时, 不同的选择可能会导致最后生成树的权数不同), 直到q (T ) = p (G ) - 1为止, 即T的边数= G的顶点数- 1为止.Kruskal避圈法的MATLAB程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end%排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T中所有的元素赋值为0q=0; %记录加入到树T中的边数for(s=1:k)if(q==n)break;end%获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end%寻找TT中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0; p d=0;end;end%砍掉TT中的树枝if(pd)break;end;end%已砍掉了TT中所有的树枝pd=0; %判断TT中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0; %假如TT中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束求二部图G的最大匹配的算法(匈牙利算法), 其基本思想是:从G的任意匹配M开始, 对X中所有M的非饱和点, 寻找M-增广路. 若不存在M-增广路, 则M为最大匹配; 若存在M-增广路P, 则将P中M与非M的边互换得到比M多一边的匹配M1 , 再对M1重复上述过程.设G = ( X, Y, E )为二部图, 其中X = {x1, x2, … , x n }, Y = { y1, y2, … , y n}. 任取G的一初始匹配M (如任取e∈E, 则M = {e}是一个匹配).①令S = φ , T = φ , 转向②.②若M饱和X \ S的所有点, 则M是二部图G的最大匹配. 否则, 任取M的非饱和点u∈X \ S , 令S = S ∪{ u }, 转向③.③记N (S ) = {v | u∈S, uv∈E}. 若N (S ) = T, 转向②. 否则取y∈N (S ) \ T. 若y是M 的饱和点, 转向④, 否则转向⑤.④设x y∈M, 则令S = S ∪{ x }, T = T ∪{ y }, 转向③.⑤u -y路是M-增广路, 设为P, 并令M = M⊕P, 转向①. 这里M⊕P = M∪P \ M∩P, 是对称差.由于计算M-增广路P比较麻烦, 因此将迭代步骤改为:①将X中M的所有非饱和点(不是M中某条边的端点)都给以标号0和标记*, 转向②.②若X中所有有标号的点都已去掉了标记*, 则M是G的最大匹配. 否则任取X中一个既有标号又有标记*的点x i , 去掉x i的标记*, 转向③.③找出在G中所有与x i邻接的点y j (即x i y j∈E ), 若所有这样的y j都已有标号, 则转向②, 否则转向④.④对与x i邻接且尚未给标号的y j都给定标号i. 若所有的y j都是M的饱和点, 则转向⑤, 否则逆向返回. 即由其中M的任一个非饱和点y j的标号i找到x i, 再由x i的标号k找到y k , …, 最后由y t的标号s找到标号为0的x s时结束, 获得M-增广路x s y t…x i y j, 记P = {x s y t, …, x i y j }, 重新记M为M⊕P, 转向①.⑤将y j在M中与之邻接的点x k (即x k y j∈M), 给以标号j和标记*, 转向②.例1求图6-9中所示的二部图G的最大匹配.图6-9匈牙利算法的MATLAB程序代码如下:m=5;n=5;A=[0 1 1 0 01 1 0 1 10 1 1 0 00 1 1 0 00 0 0 1 1];M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;end;end%求初始匹配Mif(M(i,j))break;end;end%获得仅含一条边的初始匹配Mwhile(1)for(i=1:m)x(i)=0;end%将记录X中点的标号和标记*for(i=1:n)y(i)=0;end%将记录Y中点的标号和标记*for(i=1:m)pd=1; %寻找X中M的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;end;end%将X中M的所有非饱和点都给以标号0和标记*, 程序中用n+1表示0标号, 标号为负数时表示标记*pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;end;end%假如X中存在一个既有标号又有标记*的点, 则任取X中一个既有标号又有标记*的点xiif(xi==0)pd=1;break;end%假如X中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi的标记*k=1;for(j=1:n)if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;end;end%对与xi邻接且尚未给标号的yj都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;end;end%将yj在M中与之邻接的点xk (即xkyj∈M), 给以标号j和标记*if(pdd)break;end;endif(pdd)k=1;j=yy(j); %yj不是M的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取M的一个非饱和点yj, 逆向返回if(j==n+1)break;end%找到X中标号为0的点时结束, 获得M-增广路Pk=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配M在增广路P中出现的边去掉else M(P(i,1),P(i,2))=1;end;end%将增广路P中没有在匹配M中出现的边加入到匹配M中break;end;end;endif(pd)break;end;end%假如X中所有有标号的点都已去掉了标记*, 算法终止M %显示最大匹配M, 程序结束利用可行点标记求最佳匹配的算法步骤如下:设G = ( X , Y , E , F )为完备的二部赋权图, L 是其一个初始可行点标记, 通常取.,,0)(},|)(max{)(Y y X x y L Y y xy F x L ∈∈⎩⎨⎧=∈=M 是G L 的一个匹配. ① 若X 的每个点都是M 的饱和点, 则M 是最佳匹配. 否则取M 的非饱和点u ∈X , 令S = {u }, T = φ , 转向②.② 记N L (S ) = {v | u ∈S , uv ∈E L }. 若N L ( S ) = T , 则G L 没有完美匹配, 转向③. 否则转向④.③ 调整可行点标记, 计算a L = min { L ( x ) + L ( y ) - F (x y ) | x ∈S , y ∈Y \T }.由此得新的可行顶点标记H (v ) =,,),(,)(,)(T v S v v L a v L a v L L L ∈∈⎪⎩⎪⎨⎧+-令L = H , G L = G H , 重新给出G L 的一个匹配M , 转向①.④ 取y ∈N L ( S ) \T , 若y 是M 的饱和点, 转向⑤. 否则, 转向⑥.⑤ 设x y ∈M , 则令S = S ∪{ x }, T = T ∪{ y }, 转向②.⑥ 在G L 中的u - y 路是M -增广路, 记为P , 并令 M = M ⊕P , 转向①.利用可行点标记求最佳匹配算法的MATLAB 程序代码如下:n=4;A=[4 5 5 12 2 4 64 2 3 35 0 2 1];for (i=1:n)L(i,1)=0;L(i,2)=0;endfor (i=1:n)for (j=1:n)if (L(i,1)<A(i,j))L(i,1)=A(i,j);end ; %初始可行点标记LM(i,j)=0;end ;endfor (i=1:n)for (j=1:n) %生成子图Glif (L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;end ;end ;endii=0;jj=0;for (i=1:n)for (j=1:n)if (Gl(i,j))ii=i;jj=j;break ;end ;endif (ii)break ;end ;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;for (i=1:n)S(i)=0;T(i)=0;NlS(i)=0;endwhile (1)for (i=1:n)k=1;否则.for(j=1:n)if(M(i,j))k=0;break;end;endif(k)break;end;endif(k==0)break;end%获得最佳匹配M, 算法终止S(1)=i;jss=1;jst=0; %S={xi}, T=while(1)jsn=0;for(i=1:jss)for(j=1:n)if(Gl(S(i),j))jsn=jsn+1;NlS(jsn)=j; %NL(S)={v|u∈S,uv∈EL}for(k=1:jsn-1)if(NlS(k)==j)jsn=jsn-1;end;end;end;end;endif(jsn==jst)pd=1; %判断NL(S)=T?for(j=1:jsn)if(NlS(j)~=T(j))pd=0;break;end;end;endif(jsn==jst&pd)al=Inf; %如果NL(S)=T, 计算al, Inf为∞for(i=1:jss)for(j=1:n)pd=1;for(k=1:jst)if(T(k)==j)pd=0;break;end;endif(pd&al>L(S(i),1)+L(j,2)-A(S(i),j))al=L(S(i),1)+L(j,2)-A(S(i),j);end;end;end for(i=1:jss)L(S(i),1)=L(S(i),1)-al;end%调整可行点标记for(j=1:jst)L(T(j),2)=L(T(j),2)+al;end%调整可行点标记for(i=1:n)for(j=1:n) %生成子图GLif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;endM(i,j)=0;k=0;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end%获得仅含Gl的一条边的初始匹配MM(ii,jj)=1;breakelse %NL(S)≠Tfor(j=1:jsn)pd=1; %取y∈NL(S)\Tfor(k=1:jst)if(T(k)==NlS(j))pd=0;break;end;endif(pd)jj=j;break;end;endpd=0; %判断y是否为M的饱和点for(i=1:n)if(M(i,NlS(jj)))pd=1;ii=i;break;end;endif(pd)jss=jss+1;S(jss)=ii;jst=jst+1;T(jst)=NlS(jj); %S=S∪{x}, T=T∪{y}else %获得Gl的一条M-增广路, 调整匹配Mfor(k=1:jst)M(S(k),T(k))=1;M(S(k+1),T(k))=0;endif(jst==0)k=0;endM(S(k+1),NlS(jj))=1;break;end;end;end;endMaxZjpp=0;for(i=1:n)for(j=1:n)if(M(i,j))MaxZjpp=MaxZjpp+A(i,j);end;end;endM %显示最佳匹配MMaxZjpp %显示最佳匹配M的权, 程序结束从一个可行流f开始, 求最大流的Ford--Fulkerson标号算法的基本步骤:⑴标号过程①给发点v s以标号(+, +∞) , δs = +∞.②选择一个已标号的点x, 对于x的所有未给标号的邻接点y, 按下列规则处理:当yx∈E, 且f yx >0时, 令δy = min { f yx , δx }, 并给y以标号( x - , δy ).当xy∈E, 且f xy<C xy时, 令δy = min {C xy - f xy , δx }, 并给y以标号( x + , δy ).③重复②直到收点v t被标号或不再有点可标号时为止. 若v t得到标号, 说明存在一条可增广链, 转⑵调整过程; 若v t未得到标号, 标号过程已无法进行时, 说明f已经是最大流.⑵调整过程④决定调整量δ =δvt , 令u = v t.⑤若u点标号为( v +, δu ), 则以f vu + δ代替f vu ; 若u点标号为( v-, δu ), 则以f vu -δ代替f vu.⑥若v = v s, 则去掉所有标号转⑴重新标号; 否则令u = v, 转⑤.算法终止后, 令已有标号的点集为S, 则割集(S, S c )为最小割, 从而W f = C (S, S c ).例1求图6-19所示网络的最大流.图6-19利用Ford--Fulkerson标号法求最大流算法的MATLAB程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end%取初始可行流f为零流for(i=1:n)No(i)=0;d(i)=0;end%No,d记录标号while(1)No(1)=n+1;d(1)=Inf; %给发点vs标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt得到标号或者无法标号, 终止标号过程if(pd)break;end%vt未得到标号, f已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end%后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end%当t的标号为vs时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end%计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束设网络G = ( V , E , C ), 取初始可行流 f 为零流, 求解最小费用流问题的迭代步骤: ① 构造有向赋权图 G f = ( V , E f , F ), 对于任意的v i v j ∈E , E f , F 的定义如下:当f ij = 0时, v i v j ∈E f , F ( v i v j ) = b ij ;当f ij = C ij 时, v j v i ∈E f , F ( v j v i ) = -b ij ;当0< f ij <C ij 时, v i v j ∈E f , F ( v i v j ) = b ij , v j v i ∈E f , F ( v j v i ) = -b ij .转向②.② 求出有向赋权图G f = (V , E f , F )中发点v s 到收点v t 的最短路μ , 若最短路μ存在转向③; 否则f 是所求的最小费用最大流, 停止.③ 增流. 同求最大流的方法一样, 重述如下:令.,,,-+∈∈⎪⎩⎪⎨⎧-=μμδj i j i ij ij ij ij v v v v f f C δ = min {δ ij | v i v j ∈μ}, 重新定义流f = { f ij }为 f ij =,,,,-+∈∈⎪⎩⎪⎨⎧-+μμδδj i j i ijij ij v v v v f f f如果W f 大于或等于预定的流量值, 则适当减少δ 值, 使W f 等于预定的流量值, 那么 f 是所求的最小费用流, 停止; 否则转向①.求解含有负权的有向赋权图G = ( V , E , F )中某一点到其它各点最短路的Ford 算法. 当v i v j ∈E 时记w ij = F (v i v j ), 否则取w ii =0, w ij = +∞(i ≠j ). v 1到v i 的最短路长记为π ( i ), v 1到v i 的最短路中v i 的前一个点记为θ ( i ). Ford 算法的迭代步骤:① 赋初值π (1) = 0, π ( i ) = +∞, θ ( i ) = i , i = 2, 3, … , n .② 更新π ( i ), θ ( i ). 对于i = 2, 3, … , n 和j = 1, 2, … , n , 如果π ( i )<π ( j ) + w ji , 则令π ( i ) = π ( j ) , θ ( i ) = j .③ 终止判断:若所有的π ( i )都无变化, 停止; 否则转向②.在算法的每一步中, π ( i )都是从v 1到v i 的最短路长度的上界. 若不存在负长回路, 则从v 1到v i 的最短路长度是π ( i )的下界, 经过n -1次迭代后π ( i )将保持不变. 若在第n 次迭代后π ( i )仍在变化时, 说明存在负长回路.其它.例2在图6-22所示运输网络上, 求s到t的最小费用最大流, 括号内为(C ij , b ij ).图6-22求最小费用最大流算法的MATLAB程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf表示最大流量, wf0表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end%取初始可行流f为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;endfor(i=2:n)p(i)=Inf;s(i)=i;end %用Ford算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs到vt的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;endif(pd)break;end;end %求最短路的Ford算法结束if(p(n)==Inf)break;end %不存在vs到vt的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t的标号为vs时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end %如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t的标号为vs时, 终止调整过程t=s(t);endif(pd)break;end %如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end %计算最小费用f %显示最小费用最大流wf %显示最小费用最大流量zwf %显示最小费用, 程序结束。