枸杞多糖的生化和降血糖活性讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

枸杞多糖的生化分析和降血糖活性

摘要:本实验研究了枸杞多糖的纯化,表性特征和降血糖活性。通过超滤膜分离获得水溶性多糖(LBP),并通过DEAE纤维素柱和Sephadex的色谱法进一步纯化G-150得到LBP3a和LBP3b。分析表明LBP3b的平均分子量(Mw)为4.92kDa。单糖组成分析显示,LBP3b由摩尔比为5.52:5.11:28.06:1.00:1.70的甘露糖,鼠李糖,葡萄糖,半乳糖和木糖组成。并通过UV,FTIR,NMR和SEM研究了LBP3b的初步结构特征。体外细胞实验显示,LBP3b以剂量依赖的方式显著抑制葡萄糖的吸收。研究表明LBP3b具有作为抗糖尿病药物的潜在用途。

1.引言

糖尿病(DM)是指具有异常高水平的血糖的慢性代谢病,已经成为世界上主要的健康问题。它是由胰岛素分泌缺乏或器官对胰岛素的反应减弱引起的。包括1型和2型在内的DM在全球发病率急剧增加,到2030年估计超过4亿。许多口服降糖药,如双胍类和磺酰脲类可用于治疗糖尿病,但这些药物是化学合成的,缺乏多剂量方案,且高成本,具有不良副作用和毒性。因此,研究和发现新型更安全和更有效的替代品是至关重要的,其中传统的食用和药用资源已成为研究低血糖活性的焦点]。

枸杞,属于茄科,是中国著名的草药,已使用了2300多年。目前,枸杞受欢迎的功能食品已被广泛使用,其具有很大功效,如减少血糖和血清脂质,滋养眼睛,肾脏和肝脏,抗辐射,提高免疫力,抗衰老,抗癌,抗疲劳,增强血细胞生成,改善男性不育。据报道,枸杞果干中有胡萝卜素,氨基酸,微量矿物质,维生素,脂肪酸,多糖和甜菜碱与健康相关的生物活性成分。

在枸杞的这些化学成分中,最好研究的组分是水溶性的多糖(LBP)估计占干果的5-8%。许多关于药理学和光化学的研究已经证明LBP是以上的生物活性的主要成分之一[15-17]。然而,由于LBP的结构复杂性,不同的提取和纯化方法得到的LBP具有不同组分,结构和功能。而每种LBP的结构和功能从未进行过全面和深入的讨论。

本研究通过超滤膜分离方法从枸杞果实中提取粗LBP,通过DEAE离子交换纤维素和Sephadex凝胶过滤的方法纯化粗LBP,使用前柱衍生高效液相色谱法鉴定单糖组成,然后确定LBP亚基的结构。此外,进行体外细胞实验以评价LBP3b 的降低血糖的效应。部分(LBP3b)通过UV,FT-IR,NMR和SEM测定表型特征。

2.材料和方法

2.1. 材料和化学物质

枸杞果实在宁夏回族自治区市场购买。将植物材料干燥并在使用前储存在干燥的地方。DEAE-纤维素,Sephadex G-150,葡萄糖,半乳糖,阿拉伯糖,鼠李糖,甘露糖,木糖和三氟乙酸(TFA)购自Sigma。所有其他化学品和溶剂均为分析等级。

2.2. 粗多糖的制备

多糖通过Yin和Dang的方法制备。将枸杞果实的干果用搅拌器粉末化,并将研磨的样品浸入给定体积的60℃的热水中。在一定条件下,混合的提取物通过有机膜进行超滤,其分离分子量从300至50kDa(从Suntar Membrane Technology Co.,Ltd.,Xiamen,China获得)。超滤后用氯仿:甲醇(2:1)(v / v)的过滤液回流三次,以除去脂质。过滤后,将残余物风干,然后再次用80%乙醇回流。混合的滤液依次用95%乙醇,100%乙醇和丙酮沉淀。过滤和离心后,收集沉淀物并真空干燥,得到粗LBP(CLBP)的粗多糖(糖缀合物)。

2.3. CLBP的分离和纯化

CLBP用Sevag试剂脱蛋白3次,然后将所得多糖溶液冻干以得到粗产物。将粗产物溶解并经受DEAE纤维素柱(OH - ,2.6cm×90cm),并用蒸馏水和0.05-0.5mol / l NaCl以30ml / h的流速洗脱。通过自动级分收集器收集洗脱液并测定280nm处UV吸收和490nm的苯酚硫酸量。并且获得称为LBP1,LBP2,LBP3和LBP4的四个均匀子级分。其中含量最高的亚级分LBP3,使用Sephadex G-150柱(2.5cm×60cm)进一步纯化。经离心,浓缩和冷冻干燥后,LBP3b用于后续实验。通过苯酚 - 硫酸法[22],使用d-葡萄糖作为标准样品,测得LBP3b 的总糖含量为96.53%。

2.4 . 单糖组成和分子量测定的分析

LBP3b样品用三氟乙酸(TFA)水解,并由1-苯基-3-甲基-5-吡唑啉酮(PMP)衍生。LBP3b的单糖组成在ZORBAX Eclipse XDBC 18柱(250mm×4.6mm,Agilent,USA)上通过反相液相色谱(Agilent 1260,VWD检测器,美国)进行,流动相0.1mol / l PBS (pH6.7):乙腈为83:17,流速1ml / min,温度30℃,进样体积为10μl。检测在250℃ nm d-甘露糖,l-鼠李糖,d-葡萄糖,d-半乳糖,d-木糖,d-阿拉伯糖用作参考。

通过高效凝胶渗透色谱法(HPGPC)测定LBP3b的平均分子量,将样品溶液置于装有Shodex OHpak SB-802HQ和Shodex OHpak SB-805HQ柱(8.0mm×300mm,ShowaDenko,Japan)的Agilent高效液相色谱(HPLC),用含有0.2mol / l NaCl 的0.1mol / l磷酸盐缓冲液(pH 5.5)洗脱,其流速为0.8ml / min,并通过Agilent 1260折射率检测器检测。并用用已知分子量的葡聚糖P-82系列作为标准品(805000,339000,210000,48800,2700,10000,6000,180Da),制作标准曲线。参照上述制作的标准曲线,估算LBP3b的分子量。

2.5. 紫外和FT-IR分析

将均匀的LBP3b溶解稀释至适当的浓度,并用UV分光光度计(CARY

50UV-vis,Agilent,USA)对其测定。测定范围从200至500nm 。同时用配备有OMNIC软件的傅里叶变换红外分光光度计(NEXUS 870,USA)测定LBP3b的FT-IR。将LBP3b样品分别用KBr粉末研磨,然后压制为用于在4000-400cm -1的频率范围内进行变换红外光谱测量的粒料。

2.6. NMR分析

通过冻干将多糖与DMSO中的氘交换三次。并在NMR波谱仪(Brucker AVANCE III)上于600MHz记录1 H和13 C NMR光谱。

2.7. 扫描电子显微镜

将多糖用金箔涂覆,并在高真空条件下,于5kV的加速电压下,用扫描电子显微镜系统(Hitachi S-3400N,Japan)检测,并将图像放大500至10000倍。

2.8. LBP3b对Caco-2细胞培养模型中葡萄糖吸收的影响

细胞培养:从中国科学院(上海,中国)生物化学与细胞生物学研究所的细胞库得到了Caco-2细胞,细胞在含有10%胎牛血清DMEM培养基的25cm 塑料

相关文档
最新文档