二次函数的解析式PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y ox
因此:所求二次函数是:
2020年10月2日
y=2x2-3x+5
封面 3 例题
例题选讲
例
一般式: 2
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
顶点式: y=a(x-h)2+k
已知抛物线的顶点为(-1,-3),与轴交点为 (0,-5)求抛物线的解析式?
解:设所求的二次函数为 y=a(x+1)2-3 y
汇报人:XXX 汇报日期:20XX年10月10日
10
列出a、b、c的三元
一次方程组,求出a、
b、c的值,从而确定
函数的解析式.
过程较繁杂,
2020年10月2日
封面 6练习
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
解: 设抛物线为y=a(x-20)2+16
13 2、 已知抛物线与X轴的两个交点的横坐标是 2、2 ,
与Y轴交点的纵坐标是,求这个抛物线的解析式?
2020年10月2日
封面 9小结
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
由条件得: 点( 0,-5 )在抛物线上
x o
a-3=-5, 得a=-2
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5
2020年10月2日
封面 4 例题
例题选讲
例 已知抛物线与X轴交于A(-1,0),B(1,0)
一般式: 3 并经过点M(0,1),求抛物线的解析式?
y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
顶点式: y=a(x-h)2+k
已知一个二次函数的图象过点(-1,10)、 (1,4)、(2,7)三点,求这个函数的解析式?
解:设所求的二次函数为 y=ax2+bx+c
由条件得:
a-b+c=10 a+b+c=4
4a+2b+c=7 解方程得: a=2, b=Baidu Nhomakorabea3, c=5
根据题意可知 ∵ 点(0,0)在抛物线上,
评价
∴ 所求抛物线解析式为
通过利用条件中的顶 点和过愿点选用顶点 式求解, 方法比较灵活
2020年10月2日
封面 7练习
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
解: 设抛物线为y=ax(x-40 )
根据题意可知 ∵ 点(20,16)在抛物线上,
评价
选用两根式求解, 方法灵活巧妙,过 程也较简捷
2020年10月2日
封面 8练习
课堂练习
1、 一个二次函数,当自变量x= -3时,函数值y=2 当自变量x= -1时,函数值y= -1,当自变量x=1时 ,函数值y= 3,求这个二次函数的解析式?
解: 设所求的二次函数为 y=a(x+1)(x-1)
y
两根式:
由条件得:
y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1
故所求的抛物线解析式为 y=- (x+1)(x-1)
即:y=-x2+1
2020年10月2日
封面 5 例题
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
解:设抛物线的解析式为y=ax2+bx+c,
根据题意可知
抛物线经过(0,0),(20,16)和(40,0)三点
可得方程组
评价 通过利用给定的条件
用待定系数法求二次函数的解析式
课前复习 例题选讲 课堂练习 课堂小结
y
o
x
2020年10月2日
1
课前复习
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c • 两根式:y=a(x-x1)(x-x2) • 顶点式:y=a(x-h)2+k
2020年10月2日
封面 2 例题
例题选讲
例
一般式: 1