二次函数的解析式PPT课件

合集下载

《高三数学二次函数》课件

《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3

二次函数图像与性质ppt课件

二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式

二次函数解析式的符号确定PPT教学课件

二次函数解析式的符号确定PPT教学课件

60 20
的分子、分母的最高次项系数化为正整数,然后约分,
化成最简分式.
解:原式=
( 1 5 x 2 x2 ) 60 46 3
( 7 )x 1 0.1x2 ) 60
=157x503x64x02x 2
40x2 50x 15 6x2 7x 3
60 20
=
15 50 x 40 x2 7x 3 6x2
4或a 3 2
1
即a=4或a=-1时,分式的值为零. (2)当2a-3=0即a=3/2时无意义. 故当a≠3/2时,分式有意义.
思考变题:(1当)为a正为;何(值2)时为,零.aa32 的值
➢ 典型例题解析
1 5 x 2 x2
【例2】
不改变分式的值,先把分式:
46 3 7 x 1 0.1x2
2.解分式方程一定要验根.
➢ 课前热身
1. (2004·南宁市)当x ≠1
时,分式
3 1 x
有意义。
2.
(2004年·南京)计算:a a
b
a
b
b
=
1
.
3.计算:x2 4x 4 5x x2 = 6 .
x2
x3 x3
x y
4.在分式① x y
3x2 y ,② 2x
,③4
5xy 5xy
,④
7.当x=cos60°时,代数式 x2 3x ÷(x+ 3 )的值是( A )
x2
2x
A.1/3
B. 3
3
C.1/2
D. 3 1
3
➢ 课前热身
8.(2004·西宁市)若分式 x2 2x 3 的值为0,则x= -3 。
x1
9. (2004年·呼和浩特)已知x 1 , xy 1

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

求二次函数解析式共14页PPT资料

求二次函数解析式共14页PPT资料

如图是某公园一圆形喷水池的效果图,水流在
各方向沿形状相同的抛物线落下。建立如图坐
标系,如果喷头所在处A(0,1.25),水流路
线最高处B(1,2.25),如果你是设计师,那
么水池的半径至少要多少米,才能使喷出的水
流不致落到池外?
y
B A
x
O
C
如图所示是喷灌设备图,水管AB高出地 面1.5米,B处是自转的喷水头,喷出水 流呈抛物线状,点B与水流最高点C的连
二次函数的 解析式
顶点
对称轴
y ax2 (0 , 0 )
yax2 k (0 , k )
ya(xh)2 ( h , 0 )
ya(xh)2k ( h , k )
y轴 y轴 直线x=h 直线x=h
我们生活中有很多“抛物线”的例子, 你能举出几个出来吗?
已知二次函数的顶点在原点,且经过点 (2,4),求该函数的解析式。
解:设二次函数的解析式为 y ax2
把(2,4)代入上式,得:
4a 4
a 1
所以,二次函数的解析式为 y x2
已知抛物线顶点为M(1,2),且过点N (2,4),求此二次函数解析式。
变式: 已知抛物线顶点为M(-1,-2),且 过点N(2,4),求此二次函数解析式。
注意:代顶点坐标时的符号处理!
线与水平地面成45°角,BC= 2 2 米。
求水流落地点D到原点O的距离
1、已知抛物线的顶点是(- 2,-3), 且经过点(-1,-2),求函数解析式;
2、如图,求抛物线的解析式
y
4
2
1
-5
-1 0
x已Leabharlann 抛物线 ya2xb xc(a0)经

二次函数解析式的求法(PPT课件(共24张PPT)

二次函数解析式的求法(PPT课件(共24张PPT)
解:∵抛物线的顶点为(2,-1) ∴设解析式为:y=a(x-2)2-1 把点(-1,2)代入
a(-1-2)2-1=2
(3)图象与X轴交于(2,0) (-1,0)且过点(0,-2)
解法(一)可设一般式 解法(二)可设两根式 解:∵抛物线与X轴交于点(2,0)(-1,0)
∴设解析式为:y=a(x-2)(x+1) 把点(0,-2)代入
元山中学九年级四班
年1月12日
有两个交点,则a的取值范围是————
6。抛物线y=(k-1)x2+(2-2k)x+1,那么此抛物
线的对称轴是直线_________,它必定经过
________和____
7。若
为二次函数

图象上的三点,则 y1 , y2 ,y3 的大小关
系是( )
A.
B.
C.
D.
8.抛物线y= (k2-2)x2 -4kx+m的对称轴是直线 x=2,且它的最低点在直线y= -k x+2上,求函数
解析式。
9. y= ax2+bx+c图象与x轴交于点A、点B,与y 轴交于点C,OA=2,OB=1 ,OC=1,
求函数解析式
10。若抛物线
的顶点在 x轴的下
方,则 的取值范围是( )
Aa>1. B.A<1 C. D.
11.(天津市)已知二次函数 的图象如图所示, 下列结论:①abc>0;②b<a+c;③4a+2b+c>0; ④2c<3b;⑤a+b>m(am+b), ( 的实数). 其中正确的结论序号有( )
8 已知抛物线 y=ax2+bx+c

二次函数的解析式课件

二次函数的解析式课件

弹性力学问题
在弹性力学中,二次函数 可以用于描述物体的应力 和应变关系,以及弹性体 的变形和稳定性等问题。
04
二次函数解析式的性质
二次函数的开口方向与a的关系
总结词:a的正负决定二次函数的开口方 向 a>0时,开口向上;a<0时,开口向下。
a的符号决定了二次函数的开口方向,这 是判断二次函数增减性的关键。
几何问题
二次函数与几何图形密切相关,可以 用于研究平面几何、立体几何中的一 些问题,例如抛物线、椭圆、双曲线 的性质和图像。
在物理问题中的应用
01
02
03
运动学问题
二次函数可以用于描述物 体在重力作用下的运动规 律,例如自由落体运动、 抛体运动等。
波动问题
在波动现象中,例如声波 、光波等,二次函数可以 用于描述波的传播规律和 性质。
参数的取值还影响抛物线 的顶点位置:顶点的x坐标 为-b/2a,y坐标为(4acb^2)/4a。
03
二次函数解析式的应用
在生活中的实际应用
金融领域
二次函数可以用于描述股 票价格、债券收益率等金 融数据的变动规律,帮助 投资者进行风险评估和预
测。
建筑领域
在建筑设计中,二次函数 可以用于计算结构物的受 力分析、稳定性等,以确 保建筑的安全性和稳定性
最小值为c-b^2/4a,此时二次函数开 口向上;最大值为c-b^2/4a,此时二 次函数开口向下。
二次函数的最小值或最大值在对称轴 上取得,即x=-b/2a处。
05
二次函数解析式的求解方法
配方法求解二次函数解析式
总结词
通过配方将二次函数转化为顶点式,便于分析函数的开口方向、对称轴和顶点坐标。
详细描述

二次函数解析式的求法1课件

二次函数解析式的求法1课件

求二次函数的对称轴
公式法:利用对称轴公式x=-b/2a求解 配方法:将二次函数配方成顶点式,顶点的横坐标即为对称轴 交点法:将二次函数与x轴交点横坐标的平均值作为对称轴 性质法:利用二次函数的性质,如对称性,确定对称轴的方程
求二次函数的开口方向
二次函数解析 式的一般形式
为 y=ax^2+bx+ c,其中a、b、
YOUR LOGO
THANK YOU
汇报人:XX
c为常数,且 a≠0
二次函数的开 口方向取决于 系数a的正负, 当a>0时,开
口向上;当 a<0时,开口
向下
可以通过观察 二次函数图像 的开口方向, 判断系数a的正

在实际应用中, 可以根据二次 函数的开口方 向判断函数的 增减性,从而 进行相应的计
算或分析
求二次函数的最大值或最小值
公式法:利用二次函数的顶点公式求最值 配方法:将二次函数配方成顶点式,再利用顶点求最值 判别式法:通过求解一元二次方程的判别式来求最值 导数法:利用导数求函数的极值,再与区间端点函数式的
04
应用
求二次函数的顶点坐标
顶点公式:$(\frac{b}{2a}, f(\frac{b}{2a}))$
顶点坐标的意义: 代表二次函数图像 的最高点或最低点
顶点坐标的求法: 将$x = \frac{b}{2a}$代入 $f(x)$中计算得到
顶点坐标的应用: 在解决实际问题中 ,可以通过顶点坐 标来描述二次函数 的最大值或最小值
法等
注意事项:因 式分解法的适 用范围较广, 但有时需要多 次尝试才能找 到合适的方法
待定系数法
定义:将二次 函数解析式表 示为待定系数
的形式

二次函数复习课课件

二次函数复习课课件

对称变换
总结词
对称变换是指二次函数的图像关 于某条直线进行对称。
详细描述
对称变换包括关于x轴、y轴或原点 对称。在对称变换过程中,二次函 数的开口方向、顶点和对称轴等性 质可能发生变化。
举例
将二次函数$f(x) = x^2 - 2x$的图 像关于x轴对称,得到新的函数$f(x) = (-x)^2 - 2(-x) = x^2 + 2x$。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。 当$a > 0$时,抛物线开口向上; 当$a < 0$时,抛物线开口向下。 抛物线的对称轴是直线$x = frac{b}{2a}$,顶点位于该对称轴 上,坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
详细描述
顶点式是二次函数的一种特殊形式,它通过完全平方的形式简化了函数表达式 ,使得函数图像的顶点和对称轴更加直观。顶点式在解决与二次函数顶点相关 的问题时非常有用。
交点式
总结词
二次函数的交点式为y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
详细描述
交点式是二次函数的一种特殊形式,它通过将函数表示为两个一次因式的乘积, 突出了函数与x轴的交点。交点式在解决与二次函数与x轴交点相关的问题时非常 有用。
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在 平面坐标系中沿x轴或y轴方向移
动。
详细描述
平移变换包括向左或向右移动图 像,以及向上或向下移动图像。 在平移过程中,二次函数的开口 方向、顶点和对称轴等性质保持

二次函数的解析式的三种形式 ppt课件

二次函数的解析式的三种形式 ppt课件
驶向胜利 的彼岸抛物线的解析式抛物线的解析式 驶向胜利
一般式 y=ax2+bx+c
的彼岸
: 顶点
b 2a
对称轴
b, 2a
4acb2 4a
抛物线的解析式 驶向胜利 的彼岸
顶点式 y=a(x-h)2+k
:顶点 (h,k
(h,k)
)
对称轴
h
直线:x=h
抛物线的解析式 驶向胜利 的彼岸
交点式 y=a(x-x1)(x-x2)
y=2x2+5
对称轴 直线x=0(即y轴

)
(0,5)
顶点: (0,5)
与y轴的交点: (0,5)
y=-2(x+2)(x-3)
对称轴 直线x=0.5 : 顶点:
(0,12)
(-2, 0.5 (3,0) 0)
与y轴的交点: (0,12)
y=2(x+1)2
对称轴 :
顶点:
直线x=-1 (-1,0)
与y轴的交点: (0,2)
(0,2)
-1
y=-2(x-1)(x-3)
对称轴 :
顶点:
直线x=2 (2,2)
(1,0) 2
(3,0)
与y轴的交点: (0,-6)
(0,-6)
(3,0)
y=-3(x-3)2
3
对称轴 直线x=3 :
顶点: (3,0)
与y轴的交点: (0,-27) (0,-27)
y=-(x+3)2+1 对称轴 直线x=-3 : 顶点: (-3,1)
ya(x2)21
已知抛物线 ,
点A(-1,y1), B(1,y2),
C(2,y3)在这条抛物线上,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

封面 5 例题
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
解:设抛物线的解析式为y=ax2+bx+c,
根据题意可知
抛物线经过(0,0),(20,16)和(40,0)三点
可得方程组
评价 通过利用给定的条件
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
顶点式: y=a(x-h,10)、 (1,4)、(2,7)三点,求这个函数的解析式?
解:设所求的二次函数为 y=ax2+bx+c
由条件得:
a-b+c=10 a+b+c=4
4a+2b+c=7 解方程得: a=2, b=-3, c=5
13 2、 已知抛物线与X轴的两个交点的横坐标是 2、2 ,
与Y轴交点的纵坐标是,求这个抛物线的解析式?
2020年10月2日
封面 9小结
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
根据题意可知 ∵ 点(0,0)在抛物线上,
评价
∴ 所求抛物线解析式为
通过利用条件中的顶 点和过愿点选用顶点 式求解, 方法比较灵活
2020年10月2日
封面 7练习
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
y ox
因此:所求二次函数是:
2020年10月2日
y=2x2-3x+5
封面 3 例题
例题选讲

一般式: 2
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
顶点式: y=a(x-h)2+k
已知抛物线的顶点为(-1,-3),与轴交点为 (0,-5)求抛物线的解析式?
解:设所求的二次函数为 y=a(x+1)2-3 y
用待定系数法求二次函数的解析式
课前复习 例题选讲 课堂练习 课堂小结
y
o
x
2020年10月2日
1
课前复习
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c • 两根式:y=a(x-x1)(x-x2) • 顶点式:y=a(x-h)2+k
2020年10月2日
封面 2 例题
例题选讲

一般式: 1
解: 设抛物线为y=ax(x-40 )
根据题意可知 ∵ 点(20,16)在抛物线上,
评价
选用两根式求解, 方法灵活巧妙,过 程也较简捷
2020年10月2日
封面 8练习
课堂练习
1、 一个二次函数,当自变量x= -3时,函数值y=2 当自变量x= -1时,函数值y= -1,当自变量x=1时 ,函数值y= 3,求这个二次函数的解析式?
解: 设所求的二次函数为 y=a(x+1)(x-1)
y
两根式:
由条件得:
y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1
故所求的抛物线解析式为 y=- (x+1)(x-1)
即:y=-x2+1
2020年10月2日
列出a、b、c的三元
一次方程组,求出a、
b、c的值,从而确定
函数的解析式.
过程较繁杂,
2020年10月2日
封面 6练习
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
解: 设抛物线为y=a(x-20)2+16
汇报人:XXX 汇报日期:20XX年10月10日
10
由条件得: 点( 0,-5 )在抛物线上
x o
a-3=-5, 得a=-2
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5
2020年10月2日
封面 4 例题
例题选讲
例 已知抛物线与X轴交于A(-1,0),B(1,0)
一般式: 3 并经过点M(0,1),求抛物线的解析式?
y=ax2+bx+c
相关文档
最新文档