欧拉图与哈密顿图s

合集下载

欧拉图与哈密顿图

欧拉图与哈密顿图
哈密顿回路。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的

离散数学课件15欧拉图与哈密顿图

离散数学课件15欧拉图与哈密顿图
证明 若G是平凡图,结论显然成立。
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。

欧拉图于哈密顿图

欧拉图于哈密顿图
§15.1 欧拉图
一、历史背景--哥尼斯堡七桥问题
}
1
二、定义 欧拉通路 (欧拉迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的回路。 欧拉图 ——存在欧拉回路的图。
}
2
三、无向图是否具有欧拉通路或回路的判定
(3) 具有哈密尔顿回路而没有欧拉回路,
解:
(4) 既没有欧拉回路,也没有哈密尔顿回路。
解:
}
14
作业
习题十五 2、11、14、15、20
}
15
余顶点的入度均等于出度, 这两个特殊的顶点中,一个 顶点的入度比出度大1,另一 个顶点的入度比出度小1。
D 有欧拉回路( D为欧拉图) D 连通, D 中所有
顶点的入度等于出度。
}
6
例3、判断以下有向图是否欧拉图。
}
7
§15.2 哈密尔顿图
一、问题的提出
1859年,英国数学家哈密尔顿,周游世界游戏。
(2)
解:是哈密尔顿图,
存在哈密尔顿回路和通路。
}
11
例1、判断下图是否具有哈密尔顿回路,通路。
(3)
解:不存在哈密尔顿回路,
也不存在哈密尔顿通路。
}
12
例2、画一个无向图,使它
(1) 具有欧拉回路和哈密尔顿回路,
解:
(2) 具有欧拉回路而没有哈密尔顿回路, 解:
}
13
例2、画一个无向图,使它
G 中只有两个奇度 G 有欧拉通路 G 连通,
顶点(它们分别是欧拉通路的
两个端点)。
G有欧拉回路( G为欧拉图) G 连通, G 中均

欧拉图与哈密顿图

欧拉图与哈密顿图

求欧拉图中欧拉回路的算法
Fleury算法;能不走桥就不走桥
1 任取v0∈VG;令P0=v0; 2 设Pi=v0e1v1e2…eivi已经行遍;按下面方法来从
EGe1;e2;…;ei中选取ei+1: a ei+1与vi相关联; b 除非无别的边可供行遍;否则ei+1不应该为
Gi=Ge1;e2;…;ei中的桥; 3当2不能再进行时;算法停止;
例15 1
例15 1 设G是非平凡的且非环的欧拉图;证明: 1λG≥2; 2对于G中任意两个不同顶点u;v;都存在简单回路C含u和v;
证明 1由定理15 5可知;e∈EG;存在圈C;e在C中; 因而pGe=pG;故e不是桥; 由e的任意性λG≥2;即G是2边连通图;
例15 1
例15 1 设G是非平凡的且非环的欧拉图;证明: 1λG≥2; 2对于G中任意两个不同顶点u;v;都存在简单回路C含u和v;
可以验证彼得松图满足定理中的条件;但不是哈密顿图;
若一个图不满足定理中的条件;它一定不是哈密顿图;
推论
推论 设无向图G=<V;E>是半哈密顿图;对于任意的V1V且 V1≠;均有 pGV1≤|V1|+1
证明 设P是G中起于u终于v的哈密顿通路; 令G =G∪u;v在G的顶点u;v之间加新边; 易知G 为哈密顿图; 由定理15 6可知;pG V1≤|V1|; 因此;pGV1 = pG V1u;v ≤ pG V1+1 ≤ |V1|+1
若vi与vj有哈共密同语顿言图;就是在v能i;vj将之间图连中无向所边有vi;v顶j; 由此组成点边都集合能E;安则G排为8在阶无某向个简单初图级; 回路 vi∈V;上dvi为的与图vi有;共同语言的人数;

欧拉图和哈密尔顿图ppt课件

欧拉图和哈密尔顿图ppt课件
有欧拉通路
全部结点为偶结点, 有欧拉回路
有欧拉通路
。a
a、b、c、e
。a
全部结点为
b。 。c 都为奇结点, 。 。 。 无欧拉通路
b。
。c
d
e
f 与欧拉回路 。 。 。
偶结点, 有欧拉回路
d e f 有欧拉通路
ppt课件
8
例7-8 如图街道,是否存在一条投递线路使 邮递员从邮局a出发通过所有街到一次在回 到邮局a?
可达的:在图G中,结点u和结点v之间存在一
条路,则称结点u到结点v是可达的。
ppt课件
2
无向图的连通性
连通:在无向图G中,结点u和结点v之间存在一 条路,则称结点u与结点v是连通的。约定:任一 结点与自身总是连通的。 连通图:若图G中,任意两个结点均连通,则称G 是连通图,否则称非连通图。对非连通图可分成几
个无公共结点的连通分支。无向图中结点间的连通
关系是等价关系。 图是连通的判定法则:从图中任意一结点出发,
通过某些边一定能到达其它任意一结点,则称
图是连通的。
ppt课件
3
练习1:连通图的判定
指出下列各图是否连通
(1)
(2)
(3)
(4)
(5)
(6)
ppt课件 (7)
(8)
4
欧拉图
设G=<V,E>是连通无向图 欧拉通路:在图G中存在一条通路,经过图G 中每条边一次且仅一次。
第二节 图的连通性
通路和回路 无向图的连通性 有向图的连通性 欧拉图 哈密顿图
ppt课件
1
通路和回路 给定图G V , E
通路: G中前后相互关联的点边交替序列 w=v0e1v1e2…envn称为连接v0到vn的通路。 W中边的数目K称为通路W的长。

第十五章欧拉图与哈密顿图

第十五章欧拉图与哈密顿图

定理15.5 G是非平凡的欧拉图当且仅当G是 连通的且为若干个边不重的圈的并.
本定理的证明可用归纳法. 例15.1 设G是非平凡的且非环的欧拉图,证明:
(1)λ(G)≥2. (2)对于G中任意两个不同顶点u, v,都存在 简单回路C含 u 和 v.
证 (1)由定理15.5可知,e E(G), 存在圈C, e 在C中,因而 p(G - e) p(G), 故 e 不是桥。 由 e 的任意性λ(G)≥2,即G是2边-连通图。
在这里做个规定: 平凡图是欧拉图.
例1 下列各图中 是否有欧拉回路、欧位通路? 图15.1
解:e1 e2 e3 e4 e5 为(1)中的欧拉回路,所以(1)图为欧拉图. e1 e2 e3 e4 e5 为(2)中的一条欧拉通路,但图中不存在 欧拉回路(为什么?),所以(2)为半欧拉图。
(3)中既没有欧拉回路也没有欧拉通路(为什么?), 所以(3)不是欧拉图,也不是半欧拉图。
设(2)中图为G2,则 G2 V1,V2 , E , 其中 V1 {a, g,h,i,c},V2 {b,e, f , j,k,d }, 易知, p(G2 -V1) |V2 | 6 |V1 | 5,由定理15.6可知, G2不是哈密顿图,但G2是半哈密顿图,其实, baegjckhfid 为G2中一条哈密顿通路.
图示:
(a)
“周游世界” 智力题
(b)
哈密顿图
一、哈密顿通路、哈密顿回路、 哈密顿图、 半哈密顿图的定义
定义15.2 经过图(有向图或无向图)中所有 顶点一次且仅一次的通路称为哈密顿通路;
经过图中所有顶点一次且仅一次的回路称为哈密 顿回路;
具有哈密顿回路的图称为哈密顿图; 具有哈密顿通路但不具有哈密顿回路的图称为半哈 密顿图.

离散数学--第十五章 欧拉图和哈密顿图

离散数学--第十五章 欧拉图和哈密顿图
13
实例
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
14
无向哈密顿图的一个必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1|
证 设C为G中一条哈密顿回路。
当V1顶点在C上均不相邻时, p(CV1)达到最大值|V1|,
求图中1所示带权图k29主要内容欧拉通路欧拉回路欧拉图半欧拉图及其判别法哈密顿通路哈密顿回路哈密顿图半哈密顿图带权图货郎担问题基本要求深刻理解欧拉图半欧拉图的定义及判别定理深刻理解哈密顿图半哈密顿图的定义
第十五章 欧拉图与哈密顿图
主要内容
➢ 欧拉图 ➢ 哈密顿图 ➢ 带权图与货郎担问题
1
15.1 欧拉图
大时,计算量惊人地大
27
例6 求图中(1) 所示带权图K4中最短哈密顿回路.
(1)
(2)
解 C1= a b c d a,
W(C1)=10
C2= a b d c a,
W(C2)=11
C3= a c b d a,
W(C3)=9
可见C3
(见图中(2))
是最短的,其权为9. 28
第十五章 习题课
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、货郎担问题
点.
由vi 的任意性,结论为真. 充分性 对边数m做归纳法(第二数学归纳法). (1) m=1时,G为一个环,则G为欧拉图. (2) 设mk(k1)时结论为真,m=k+1时如下证明:
5
从以上证明不难看出:欧拉图是若干个边不重的圈之 并,见示意图3.

离散数学课件15欧拉图与哈密顿图

离散数学课件15欧拉图与哈密顿图

04
欧拉图与哈密顿图的应用 场景
欧拉图的应用场景
路径规划
欧拉图可以用于表示从一 个点到另一个点的路径, 常用于物流、交通和旅行 等领域。
网络流问题
欧拉图可以用于解决最大 流和最小割等问题,在网 络优化、资源分配和计划 制定等方面有广泛应用。
组合优化
欧拉图可以用于表示组合 优化问题,如旅行商问题、 排班问题等,是求解这些 问题的常用工具。
一个图存在哈密顿回路当且仅当其所有顶点的度都大于等于2 。
哈密顿图的性质
哈密顿图中的所有顶点的度都 大于等于2。
一个图存在哈密顿回路当且仅 当其所有顶点的度都大于等于2。回 路。
哈密顿图的构造方法
添加边法
在所有顶点的度都大于等于2的图 中,不断添加边,直到所有顶点的 度都大于等于2,最后得到的图就 是哈密顿图。
哈密顿图的应用场景
社交网络分析
哈密顿图可以用于表示社交网络 中的路径,分析人际关系和信息
传播路径。
生物信息学
哈密顿图可以用于表示基因组、蛋 白质组等生物信息数据,进行基因 序列比对、蛋白质相互作用分析等。
推荐系统
哈密顿图可以用于表示用户和物品 之间的关系,进行个性化推荐和智 能推荐。
欧拉图与哈密顿图在计算机科学中的应用
欧拉图的构造方法
欧拉图的构造方法1
总结词
通过添加一条边将所有顶点连接起来, 从而形成一个欧拉图。
详细描述了两种构造欧拉图的方法, 为实际应用中构造欧拉图提供了思路。
欧拉图的构造方法2
通过将两个欧拉图合并,并连接它们 的所有顶点,从而形成一个新的欧拉 图。
02
哈密顿图
哈密顿图的定义
哈密顿图(Hamiltonian Graph)是指一个图存在一个遍历其 所有边且每条边只遍历一次的路径,这个路径称为哈密顿路径, 如果该路径的起点和终点是同一点,则称这个路径为哈密顿回 路。

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图图论是数学的一个分支,研究图的性质及其应用。

在图论中,哈密顿图和欧拉图是两个重要的概念。

本文将介绍哈密顿图和欧拉图的定义、性质和应用,并探讨它们在现实生活中的实际应用。

一、哈密顿图的定义与性质哈密顿图是指一种包含了图中所有顶点的路径的图。

具体来说,哈密顿图是一个简单图,其中任意两个不同的顶点之间都存在一条路径,使得该路径经过图中的每个顶点且不重复。

哈密顿图具有以下的性质:1. 哈密顿图是一个连通图,即图中的每两个顶点之间都存在通路。

2. 图中每个顶点都是度数大于等于2的点,即每个顶点都至少连接着两条边。

二、欧拉图的定义与性质欧拉图是指一种可以通过图中每条边恰好一次的路径来穿越图的图。

具体来说,欧拉图是一个简单图,其中经过图中每条边且路径不重复的路径称为欧拉路径,而形成闭合回路的欧拉路径称为欧拉回路。

欧拉图具有以下的性质:1. 每个顶点的度数都是偶数,即每个顶点都连接着偶数条边。

2. 欧拉图中至少有两个连通分量,即图中有至少两个不同的部分可以从一部分通过路径到达另一部分。

三、哈密顿图与欧拉图的应用哈密顿图和欧拉图在实际生活中有广泛的应用,下面将分别介绍它们的应用领域。

1. 哈密顿图的应用:哈密顿图在旅行商问题中有着重要的应用。

旅行商问题是指一个旅行商要依次拜访若干个城市,然后返回起始城市,而要求找到一条最短的路径使得每个城市都被访问一次。

哈密顿图可以解决这个问题,通过寻找一条哈密顿路径来确定最短的路径。

2. 欧拉图的应用:欧拉图在电路设计和网络规划中发挥着重要的作用。

在电路设计中,欧拉图可以帮助我们确定如何安排电线的布线以最大程度地减少电线的长度和复杂度。

在网络规划中,欧拉图可以用于确定如何正确地连接不同的网络节点以实现高效的信息传输。

四、结论哈密顿图和欧拉图是图论中的两个重要概念。

哈密顿图是一种包含了图中所有顶点的路径的图,而欧拉图是一种可以通过图中每条边恰好一次的路径来穿越图的图。

欧拉图及哈密顿

欧拉图及哈密顿
哈密顿路径是指一条遍历图的所有顶 点的路径,这条路径的起点和终点是 同一点,但路径上的边可以重复。
哈密顿图的性质
哈密顿图具有连通性,即任意两 个顶点之间都存在一条路径。
哈密顿图的顶点数必须大于等于 3,因为至少需要3个顶点才能 形成一条遍历所有顶点的路径。
哈密顿图的边数必须为奇数,因 为只有奇数条边才能形成一条闭
欧拉图及哈密顿
• 欧拉图 • 哈密顿图 • 欧拉图与哈密顿图的应用 • 欧拉回路与哈密顿回路 • 欧拉路径与哈密顿路径
目录
01
欧拉图
欧拉图的定义
总结词
欧拉图是指一个图中存在一条路径,这条路径可以遍历图中的每条边且每条边 只遍历一次。
详细描述
欧拉图是由数学家欧拉提出的一种特殊的图,它满足特定的连通性质。在欧拉 图中,存在一条路径,这条路径从图的一个顶点出发,经过每条边一次且仅一 次,最后回到起始顶点。
互作用网络的研究。
04
欧拉回路与哈密顿回路
欧拉回路的概念与性质
概念
欧拉回路是指一个图形中,从一点出 发,沿着一条路径,可以回到起始点 的路径。
性质
欧拉回路必须是连续的,不能中断, 也不能重复经过同一条边。此外,欧 拉回路必须是闭合的,起始点和终点 必须是同一点。
哈密顿回路的概念与性质
概念
哈密顿回路是指一个图形中,存在一 条路径,该路径经过了图中的每一条 边且每条边只经过一次。
随机构造法
通过随机选择边和顶点,不断扩展图,直到满足哈密顿图的条件。这种方法需要大量的计 算和随机性,但可以用于构造大规模的哈密顿图。
03
欧拉图与哈密顿图的应用
欧拉图在计算机科学中的应用
算法设计
欧拉图理论是算法设计的重要基础,特别是在图算法和动态规划 中,用于解决诸如最短路径、最小生成树等问题。

欧拉图和哈密而顿图

欧拉图和哈密而顿图
15.1 欧拉图 欧拉(1707-1783):瑞士著名的数学家。13岁进入 欧拉 :瑞士著名的数学家。 岁进入 巴塞尔大学, 岁取得哲学硕士学位 岁取得哲学硕士学位。 巴塞尔大学,16岁取得哲学硕士学位。1736年, 年 他证明了欧拉定理, 他证明了欧拉定理,并解决了哥尼斯堡桥的问 从而成为图论的创始人。 题,从而成为图论的创始人。 定义15.1 通过图(无向图或有向图)中每一条边 通过图(无向图或有向图) 定义 一次且仅一次行遍图中所有顶点的通路称为欧 拉通路。通过图(无向图或有向图) 拉通路。通过图(无向图或有向图)中每一条 边一次且仅一次行遍图中所有顶点的回路称为 欧拉回路。具有欧拉回路的图称为欧拉图, 欧拉回路。具有欧拉回路的图称为欧拉图,具 有欧拉通路而无欧拉回路的图称为半欧拉图。 有欧拉通路而无欧拉回路的图称为半欧拉图。
16
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.2 哈密顿图
到目前为止, 到目前为止,还没有找到哈密尔顿通路存在的充 分必要条件。下面介绍一个必要定理。 分必要条件。下面介绍一个必要定理。 定理15.6:设无向图 G=<V , E> 是哈密尔顿 G=<V, 定理 : 设无向图G=<V E>是哈密尔顿 图,则对V的每个非空真子集 均成立: 则对 的每个非空真子集S均成立: 的每个非空真子集 均成立 w(G-S) ≤|S| 其中, 中的顶点数, 表示G删去 其中, |S| 是S中的顶点数, w(G-S)表示 删去 中的顶点数 表示 删去S 顶点集后得到的图的连通分图的个数。 顶点集后得到的图的连通分图的个数。
9
15.欧拉图与哈密顿图 欧拉图与哈密顿图
例:用定理解决哥尼斯堡桥的问题
15.1 欧拉图
个结点为奇次数, 有4个结点为奇次数, ∴不存在欧拉回路,也不存在欧拉路径。 不存在欧拉回路,也不存在欧拉路径。 故要从一点出发经过桥一次且仅一次的路径, 故要从一点出发经过桥一次且仅一次的路径 , 再回到出发点是不可能的。 再回到出发点是不可能的。

离散数学中的欧拉图与哈密顿图

离散数学中的欧拉图与哈密顿图

欧拉图和哈密顿图是离散数学中的两个重要的图论概念。

它们分别研究了图中的路径问题,对于解决一些实际问题具有很大的应用价值。

欧拉图是指一个无向图中存在一条路径,经过图中的每条边一次且仅一次,这条路径称为欧拉路径。

如果这个路径的起点和终点重合,则称为欧拉回路。

而对于有向图,存在一条路径,使得经过每一个有向边恰好一次,称为欧拉有向路径,如果该路径起点和终点相同,则称为欧拉有向回路。

1722年,瑞士数学家欧拉首次提出了这个概念,并证明了一系列欧拉图的性质。

欧拉图的性质是其路径的存在性。

既然有了这个概念,那如何判断一个图是不是欧拉图就是一个非常重要的问题。

根据欧拉图的定义,我们可以发现,图中的每个节点的度数都应该是偶数,否则该节点无法成为路径中的中间节点。

因此,一个图是欧拉图的充分必要条件是该图中每个节点的度数都是偶数。

哈密顿图是指一个图中存在一条路径,经过图中的每个顶点一次且仅一次,这条路径称为哈密顿路径。

如果这个路径的起点和终点重合,则称为哈密顿回路。

哈密顿图的概念由19世纪初英国数学家哈密顿引入,其研究对象是关于骑士巡游问题。

与欧拉图不同的是,哈密顿路径并没有一个十分明显的判定条件。

唯一已知的是某些图是哈密顿图,比如完全图和圈图。

至于一般的图是否存在哈密顿路径,目前尚无通用的判定方法。

这也是全世界许多数学家所面临的一个著名且具有挑战性的开放问题,被命名为“哈密顿路径问题”。

欧拉图和哈密顿图在实际问题中具有广泛的应用。

欧拉图的应用包括电子电路和网络的设计,路线规划等。

而哈密顿图的应用更多地涉及路径的优化问题,比如旅行商问题。

在实际应用中,我们常常需要通过对欧拉图和哈密顿图的研究,来寻找最优解或者设计最佳路径。

总的来说,离散数学中的欧拉图和哈密顿图是两个重要的图论概念,它们研究的是图中的路径问题。

欧拉图的判定条件相对明确,而哈密顿图的判定则是一个尚未完全解答的开放问题。

这两个概念在实际中具有广泛的应用,对于解决一些路径优化问题具有重要的参考价值。

22 欧拉图与哈密顿图

22 欧拉图与哈密顿图

2.若h1=G,则G是欧拉图,否则转下一步。 3.记H=G-h1,因为G是连通图,所以H与h1至少有一个节点重 合,不妨记为vi,又因为h1中d(vi)是偶数,故在H中d(vi)仍 是偶数,从而从图H的节点vi出发,重复步骤1的做法,又 可得简单回路h2: (vi,e’1,v1,e’2,…,vi)这里ei’≠ ej’(i≠j),那么h1∪ h2所对应的简单回路是:(v0,e1,v1,e2,…,vi, e1’,v1,e2’,…,vi, ei+1,…,ek+1,v0)。不妨将h1∪ h2仍记为h2,转步骤2。 对于有限图G,我们总可以在有限步骤中构造出简单回路 h1,使得h1=G,故G是欧拉图。
②现在我们来证明:若G中对于每一对不相邻的节点u,v, 有d(u)+d(v)≧n,则G是哈密顿图。因为若在G中每一对不 相邻节点u,v之间连一条无向边,得到图H,则H是n阶无 向完全图,从而H是哈密顿图,由引理,可知G是哈密顿 图。 ③由2,我们可直接推出若任一节点v满足d(v)≥n/2,则G是 哈密顿图。 例8 格雷码及其应用:构造长度为n的2进制编码的序列, 使相邻的码仅相差1位 用Qn来建模 (接下页)
例6 证明图7-35中的图没有哈密顿回路。
证明: 证明: G中没有哈密顿回路,因为G有1度顶点,即e。现 在考虑H。因为顶点a, b,d 和e 的度都为2,所以这些顶 点关联的每一条边都必然属于任意一条哈密顿回路。现在 容易看出H中不存在哈密顿回路,因为任何这样的哈密顿 回路都不得不包含4条关联c的边,这是不可能的。
解: 图G1具有欧拉回路,例如a, e, c, d, e, b, a。G2和G3都没 有欧拉回路。但是G3具有欧拉通路,即a, c, d, e, b, d, a, b。 G2没有欧拉通路。 图H2具有欧拉回路,例如a, g, c, b, g, e, d, f, a。H1和 H3都没有欧拉回路。H3具有欧拉通路,即c, a, b, c, d, b,但 是H1没有欧拉通路。

(完整word版)第三章欧拉图和哈密顿图

(完整word版)第三章欧拉图和哈密顿图

第三章欧拉图与哈密顿图(七桥问题与一笔画,欧拉图与哈密顿图)教学安排的说明章节题目:§3.1环路;§3.2 欧拉图;§3。

3 哈密顿图学时分配:共2课时本章教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别.其它:由于欧拉图与一笔画问题密切相关,因此本章首先从一笔画问题讲起,章节内容与教材有所不同。

课堂教学方案课程名称:§3.1环路;§3。

2欧拉图;§3。

3哈密顿图授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别.教学重点、难点:(1)理解环路的概念;(2)掌握欧拉图存在的充分必要条件;(3)理解哈密顿图的一些充分和必要条件;教学内容:看图1,有点像“回"字,能不能从某一点出发,不重复地一笔把它画出来?这就是中国民间古老的一笔画游戏,而这个图形实际上也是来源于生活。

中国古代量米用的“斗"?上下都是四方的,底小口大,从上往下看就是这样的图形.这类“一笔画”问题中最著名的当属“哥尼斯堡七桥问题”了。

一、问题的提出图1哥尼斯堡七桥问题.18世纪,哥尼斯堡为东普鲁士的首府,有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥联结起来,见图2(1),当时那里的居民热衷于一个难题:游人怎样不重复地走遍七桥,最后回到出发点。

1735年,一群执着好奇的大学生写信请教当时正在圣彼得堡科学院担任教授的著名数学家欧拉。

欧拉通过数学抽象成功地解决了这一问题。

欧拉发现欧几里得几何并不适用于这个问题,因为桥不涉及“大小",也不能用“量化计算”来解决.相反地,这问题属于提出的“位置几何"。

欧拉想到,岛与河岸陆地仅是桥梁的连接地点和通往地点,桥仅是从一地通往另一地的路径,一次能否不重复走遍七桥与河岸陆地大小是没有本质联系的,与桥的宽窄也是没有关系的。

离散数学15 欧拉图与哈密顿图

离散数学15 欧拉图与哈密顿图
穿过每一道门,通过所有房间?
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发明 了一个旅游世界的游戏。将一个正十二面体的 20个顶点分别标上世界上大城市的名字,要求 玩游戏的人从某城市出发沿12面体的棱,通过 每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
◼ Fleury算法
◼ (1)任取v0V(G),令P0=v0。 ◼ (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
判断所示两图是否为欧拉图、半欧拉图?
无向欧拉图与无向半欧拉图的判断方法
定理15.1(无向欧拉图的判定)无向图G是欧拉图当 且仅当G是连通图,且G中没有奇度顶点。
定理15.2(无向半欧拉图的判定)无向图G是半欧拉 图当且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
有向欧拉图与有向半欧拉图的判断方法
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。

欧拉图和哈密顿图

欧拉图和哈密顿图

例如,由定理可知,下图 (a)图为欧拉图,本图 既v成圈8 可圈画v6之v以在1并(看vc2)(成v中为3 圈v)清。4 vv晰1将5v起v2(6av见v)87分v,v1解8,将v成1v与42若个v圈3干圈vv42个画vv24边在,v6不(vb4v)8重v中5v2的v)之6,圈v并也4,的(可两v并6看个v7 不是(a)图特有性质,任何欧拉图都有这个性质。
尽管讨论哈密顿通路和哈密顿回路在形式上与欧
拉通路和欧拉回路非常相似,但遗憾的是到目前为止, 仍然没有找到一个合适的条件来作为判断哈密顿通路 或哈密顿回路存在的充要条件。不过,可以给出哈密 顿通路和哈密顿回路存在的充分条件或必要条件。
定理9.2.1设无向图G=<V, 的任意非空子集,则
E>是哈密顿图,V1是V
下面给出一些哈密顿图的充分条件。
定理9.2.2设G=<V, E>是具有n个节点的简单无向图,若
对任意的u, v∈V均有
deg(v) +deg(u) ≥n-1
则G中存在哈密顿通路。
容易看出,定理9.2.2中的条件对图中是否存在哈密顿路 是充分而不必要的。
如图9.2.6所示的六边形G,虽然任意两个节点度数之和 等于4<6-1(n=6),但G中却显然有哈密顿路(实际上G是哈密 顿图)。
只要数一下图中节点的度数即可。
❖ 9.1.4 欧拉图的应用 一笔画问题 所谓“一笔画问题”就是画一个图形,笔不离纸,每条 边只画一次而不许重复地画完该图。“一笔画问题”本质上 就是一个无向图是否存在欧拉通路(回路)的问题。如果该 图为欧拉图,则能够一笔画完该图,并且笔又回到出发点; 如果该图只存在欧拉通路,则能够一笔画完该图,但笔回不 到出发点;如果该图中不存在欧拉通路,则不能一笔画完该 图。

第13节欧拉图与哈密顿图

第13节欧拉图与哈密顿图
18/25
集合与图论
哈密顿图的充分条件之一
若顶点vir-1,(r=2,3,...,k)与顶点vp相邻, 则G 有哈密顿圈v1v2...vi(r-1)vpvp-1...virv1.
因此vp至少与v1,v2,...,vp-1中的k个顶点不相邻. vp的度数为h,于是h≤p-1-k,从而k+h≤p-1, 因此k与h中至少有一个小于p/2,G 中有一个顶 点的度小于p/2.
集合与图论
欧拉图的判别定理
若G2中还有边,则同样的方式,G2中有圈Z3,如 此等等,最后必得到一个图Gn,Gn中无边. 于是我们得到了G中的n个圈Z1,Z2,...,Zn,,它们是两 两无公共边的,因此,G的每条边在且仅在其中的一个 圈上,于是G的边集被划分为n个圈. 由于G是连通的,所以每个圈Zi至少与其余的某个 圈有公共顶点,从而图G由一些边不重的相互之间有公 6/25 共顶点的圈构成.
19/25
集合与图论
哈密顿图的充分条件之二
定理3 设G是有p(p≥3)个顶点的图,如果 对G的任意一对不相邻的顶点u和v,均有 degu+degv≥p, 则G是一个哈密顿图. 只需证明p(p≥3)个顶点的每个非哈密顿图中至少 有两个不相邻的顶点u和v,有degu+degv≤p-1即可. 刚才的证明中的v1,vp就满足这个性质.
22/25
集合与图论
实 例
例4:某次国际会议8人参加,已知每人至少与其余7 人中的4人有共同语言,问服务员能否将他们安排在 同一张圆桌就座,使得每个人都与两边的人交谈? 解 做无向图G=<V,E>, 其中 V={v| v为与会者}, E={{u,v} | u,vV且u与v有共同语言,且u v}. 易知G为无向图且vV, deg(v)4,于是,u,vV, 有 deg(u)+deg(v) 8,可知G为哈密顿图. 服务员在G中 找一条哈密顿圈C,按C中相邻关系安排座位即可.

第二章欧拉图及哈密顿图

第二章欧拉图及哈密顿图
若d(u)+d(v)=n-1,由于n≥4,在结点集V-{u,v}中至少有两个结点 a和b,其中a与u和v都相邻,而b只与u和v中的一个相邻,不妨 设b与u相邻,此时v与b和u都不相邻,显然与已知矛盾,因此 d(u)+d(v)>n-1,即 d(u)+d(v)n
综上所述,对u,vV(G),都有d(u)+d(v)≥n.因此G中存在一 条哈密顿回路,从而这n个人能站成一圈,使得每一个人的两 旁站着自己认识的人.
证明:设C是G的一个哈密顿回路,则对于V(G)的任意一 个非空真子集S,均成立 W(C - S) S . 由于C-S为G-S 的一个生成子图,因而W(G-S)W(C-S),故
W (G S ) S .
9.哈密顿图(5)
说明:定理6只是一个必要条件,如下的彼特森图,尽 管有 W (G S ) S 但它不是哈密顿图.
第二节 哈密顿图(1)
定义3 具有哈密顿回路的无向图与具有哈密 顿有向回路的有向图,统称为哈密顿图.
例1 对于完全图Kn(n3),由于Kn中任意两个顶点之 间都有边,从Kn的某一顶点开始,总可以遍历其余节 点后,再回到该结点,因而Kn(n3)是哈密顿图. 说明:判断一个给定的图是否为哈密顿图,是图论中尚 未解决的难题之一,下面介绍若干必要条件和充分 条件.
第二节 哈密顿图(2)
定理1 设任意n(n3)阶图G,对所有不同非邻接顶 点x和y,若deg(x)+deg(y) n,则G是哈密顿图.
证明:仅就G是无向图加以证明.假设定理不成立.则存在 一个阶为n(n3),满足定理条件且边数最多的非哈密 顿图,即G是一个非哈密顿图且对G的任何两个非邻 接点x1和x2,图G+边{x1,x2}是哈密顿图.

15欧拉图与哈密顿图

15欧拉图与哈密顿图
问题转化为在图中找一条哈密顿回路. ABDFGECA即可.
哈密顿图的判定 定理1(必要条件): 设无向图G=<V, E>是哈密顿 图, V1是V的任意非空子集, 则p(G-V1)≤V1. 推论: 设无向图G=<V, E>是半哈密顿图, V1是V 的任意非空子集, 则p(G-V1)≤V1+1.
在Peterson图中, 虽然对任意顶 点集V1, 都满足p(G-V1)|V1|,但 它不是哈密顿图.
基本思想:能不走桥就不走桥
15.2 哈密顿图 定义1. 经过无向(有向)图中所有顶点恰好一次 的路(圈)称为哈密顿路(圈). 定义2. 具有哈密顿圈的图称为哈密顿图. 定义3. 具有哈密顿路但不具有哈密顿圈的图 称为半哈密顿图. 例1. 判断下列图形是否哈密顿图或半哈密顿图.
半哈密顿图 哈密顿图
都不是
例4. 判断下列有向图是否欧拉图或半欧拉图.
都不是 半欧拉图
欧拉图
一笔画问题:从某点出发,不间断地画完整个图. 即在图中找出欧拉通路(回路).
Fleury算法: (1) 任取v0∊V(G), (2) 设Pi=v0e1v1e2eivi,
若E(G)-{e1,e2,ei}中没有与vi关联的边, 则计 算停止; 否则在vi关联的边中优先选择非桥的边 添加. (3) 令i=i+1, 返回(2).
定理2(充分条件): 设G=<V, E>是无向简单图. 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|-1, 则G中存在哈密顿路; 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|, 则G是哈密顿图.
推论: n阶无向简单图G中, n>2, (G)n/2, 则G是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:该推论是充分条件但不是必要的。 例如:
该五边形是哈密顿图,但任意两个不相邻的顶点度 数之和为4,图形阶数为5。
座位问题
例 在某次国际会议的预备会中,共有8人参加,他 们来自不同的国家。如果他们中任两个无共同语言的人 与其余有共同语言的人数之和大于或等于8,问能否将这 8个人排在圆桌旁,使其任何人都能与两边的人交谈。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
例15.2(P296)
利用欧拉图可以解决哥尼斯堡七桥问题: 从某地出发,对每座跨河桥只走一次,而在遍历 了七座桥之后,却又能回到原地。
由定理15.1(无向欧拉图的判定定理)可知该问题无解。
思考 如下图所示,从一房间出发,问能否不重复地
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
到目前为止,还没有找到判断哈密顿图简单的充分必 要条件。
下面介绍哈密顿图和半哈密顿图的必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,V1是V的任意 非空子集,则有p(G-V1)≤|V1|,其中p(G-V1)为G-V1的连 通分支数。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
欧拉图的性质:欧拉图可以分解成若干个边不重的圈。
定理15.5(欧拉图的判定) G是非平凡的欧拉图当 且仅当G是连通的且为若干个边不重的圈的并。
中国的“一笔画”的问题
从图某一点出发,线可以相交但不能重合 将图画完的问题。
第十五章 欧拉图与哈密顿图
15.1 欧拉图
1736年数学家欧拉发表了第一篇图论论文, 解诀了哥尼斯堡七桥问题。
定义(欧拉通路和欧拉回路) 通过图(无向图或有向图)中所有边一次且
仅一次行遍图中所有顶点的通路称为欧拉通路 通过图中所有边一次并且仅一次行遍所有顶
点的回路称为欧拉回路 定义(欧拉图和半欧拉图)
定理15.3 (有向欧拉图的判定)有向图D是欧拉图 当且仅当D是强连通的且每个顶点的入度都等于出度。
定理15.4(有向半欧拉图的判定)有向图D是半欧拉 图当且仅当D是单向连通的,且D中恰有两个奇度顶点, 其中一个的入度比出度大1,另一个的出度比入度大1, 而其余顶点的入度都等于出度。
(4)
(5)
(6)
解:将这8个人看为平面上的8个点,设为 v1,v2,v3,v4,v5,v6,v7,v8。
如果vi和vj有共同语言,就在vi和vj之间连无向边 (vi,vj)。
这样得到一个8阶无向简单图G。 viV,d(vi)为与vi有共同语言的人数。 由 已 知 条 件 可 知 , vi,vjV 且 ij, 均 有 d(vi)+d(vj)8。 由定理15.7的推论可知,G中存在哈密顿回路, 条回路设的C=顺vi序1v安i2排…座v次i7v即i8可为。G中一条哈密顿回路,按这
例如
彼得松图 彼得松图满足定理15.6,但不是哈密顿图。
下面给出哈密顿图和半哈密顿图的充分条件 定理15.7 设G=<V,E>为n阶无向简单图,如G中任
意两个不相邻的顶点vi,vj,均有d(vi)+d(vj)n-1, 则G中存在哈密顿通路,即G为半哈密顿图。
推论 设G=<V,E>为n(n3)阶无向简单图,如G中 任意两个不相邻的顶点vi,vj,均有d(vi)+d(vj)n, 则G是哈密顿图。
推论 设无向图G=<V,E>是半哈密顿图,V1是V的任意非 空子集,则有p(G-V1)≤|V1|+1。
注意:
(1)定理15.6和推论是必要条件。
(2)两定理可以证明一个图不是哈密尔顿图或半哈 密顿图。
例如
G
G-{v1,v2}
易见p(G-{v1,v2})=3,|{v1,v2}|=2 p(G-{v1,v2})|{v1,v2}| 不满足定理15.6,所以图G不是哈密顿图。
可以看出在“一笔画”的问题中,终点与 始点重合的图对应着欧拉图,不重合的对应半 欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
Fleury算法
(1)任取v0V(G),令P0=v0。 (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
具有欧拉回路的图称为欧拉图 具有欧拉通路无欧拉回路的图称为半欧拉图 规定平凡图是欧拉图

(1)
(2)
(3)
(4)
(5)
(6)
(1)欧拉图。 (2)半欧拉图。 (3)不存在欧拉通路,也不存在欧拉回路。 (4)欧拉图。 (5)不存在欧拉通路,也不存在欧拉回路。 (6)不存在欧拉通路,也不存在欧拉回路。
穿过每一道门,通过所有房间?
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发 明了一个旅游世界的游戏。将一个正十二面体 的20个顶点分别标上世界上大城市的名字,要 求玩游戏的人从某城市出发沿12面体的棱,通 过每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。
无向欧拉图与无向半欧拉图的判断方法
定理15.1(无向欧拉图的判定)无向图G是欧拉图当 且仅当G是连通图,且G中没有奇度顶点。
定理15.2(无向半欧拉图的判定)无向图G是半欧拉 图当且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
判断所示两图有向半欧拉图的判断方法
方法来从E(G)-{e1,e2,….,ei}中选取ei+1: (a)ei+1与vi相关联; (b)除非无别的边可供选择,否则ei+1不应
该为 G-{e1,e2,….,ei}中的桥。 (3)当(2)不能再进行时,算法停止,得到
的Pn=v0e1v1e2…..envn为G中的一条欧拉回路。
桥:设eE(G),若p(G-e)>p(G), 则称e为G中的桥。
相关文档
最新文档