第四章-几何图形初步单元测试题(含答案)

合集下载

《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为度.10.一个角的补角等于它的余角的6倍,则这个角的度数为.11.13°30'=°;(2)0.5°='= ″.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画条直线.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?《第4章几何图形初步》参考答案与试题解析一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.【点评】解题时勿忘记圆锥的特征及圆锥展开图的情形.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据余角、补角的定义计算.【解答】解:根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点评】根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°【考点】方向角.【专题】应用题.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:点A位于点O的北偏西65°的方向上.故选B.【点评】结合图形,正确认识方位角是解决此类问题的关键.4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到一个矩形右上角有一条线段,故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线【考点】线段的性质:两点之间线段最短.【分析】根据直线的性质,线段的性质,以及线段的大小比较对各选项分析判断即可得解.【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项正确;C、利用圆规可以比较两条线段的大小关系,是线段的大小比较,故本选项错误;D、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误.故选B.【点评】本题考查了线段的性质,直线的性质,是基础题,熟记各性质是解题的关键.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°【考点】钟面角.【专题】计算题.【分析】早上8时,时针指向8,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°.分针与时针之间有四个格,可求解.【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活【考点】专题:正方体相对两个面上的文字.【分析】根据正方形展开图相对的面应相隔一个面作答.【解答】解:和“崇”相隔一个面的面为“低”,故选A.【点评】解决本题的关键是理解正方体侧面展开图相对的面之间应相隔一个面.二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为20 度.【考点】余角和补角.【专题】计算题.【分析】根据余角定义直接解答.【解答】解:∠B=90°﹣70°=20°.【点评】本题比较容易,考查互余角的数量关系.根据余角的定义可得∠B=90°﹣70°=20度.10.一个角的补角等于它的余角的6倍,则这个角的度数为72°.【考点】余角和补角.【分析】利用题中的关系“一个角的补角等于这个角的余角的6倍”作为相等关系列方程求解即可.【解答】解:设这个角为x,则它的补角为(180°﹣x)余角为(90°﹣x),由题意得:180°﹣x=6(90°﹣x),180°﹣x=540°﹣6x,6x﹣x=540°﹣180°,5x=360°,x=72°.答:这个角的度数为72°.故答案为:72°.【点评】主要考查了利用余角和补角的定义和一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角之和为180度.11.13°30'=13.5 °;(2)0.5°=30 '= 1800 ″.【考点】度分秒的换算.【分析】(1)根据度分秒的换算,将30′换算成0.5°即可得出结论;(2)根据度分秒的换算,将0.5°换算成30′,再将30′换算成1800″即可得出结论.【解答】解:(1)13°30'=13°+()°=13.5°;(2)0.5°=(0.5×60)′=30′=(30×60)″=1800″.故答案为:(1)13.5;(2)30;1800.【点评】本题考查了度分秒的换算,熟练的掌握度分秒的进率是解题的关键.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条条直线.【考点】直线、射线、线段.【专题】规律型.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【考点】度分秒的换算.【专题】计算题.【分析】(1)先进行度、分、秒的除法计算,再算加法.(2)先进行度、分、秒的乘法计算,再算减法.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.【点评】此类题是进行度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?【考点】方向角.【分析】分别建立找到图书馆在学校的东北方向,在医院的南偏东60°方向,两直线的交点即是图书馆的位置.【解答】解:在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AO,在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BO,则AO与BO的交点为点O,则点O就是图书馆的位置.【点评】此题考查了方向角的知识,注意东北方向指的是东偏北45°这个知识点,难度一般.15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.【考点】比较线段的长短.【专题】计算题.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【考点】角的计算.【专题】计算题.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB 是∠DOC的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?【考点】角平分线的定义.【分析】已知一副三角板的直角顶点O重叠在一起,就是已知图形中的两个三角形各角的度数,这样重叠时存在的角的关系是:∠AOD=∠AOB+∠COD﹣∠COB.【解答】解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.注意一副三角板的直角顶点O重叠在一起时角的关系.。

(完整版)第四章:几何图形初步单元测试卷及答案.doc

(完整版)第四章:几何图形初步单元测试卷及答案.doc

第四章:几何图形初步 单元测试卷・、填空题:(每空1分,共28分) 1.82 032' 5" += 1809.四条直线两两相交时,交点个数最多有 _________ 个. 10.如果一个角是30°,用10倍的望远镜观察,这个角应是 ___________ ° . 11.38 041,的角的余角等于 ___________ ,123 059'的角的补角等于 ____________ .12 .如果N 1的补角是N 2,且N 1>Z2,那么N2的余角是 _____________ (用含N 1的式子表示). 13 .如果 Na 与NB 互补,且Na : N 8 =5 :4,那么,N a 二 _________ , ZP = __________ . 14 .根据下列多面体的平面展开图,填写多面体的名称.a ) __________ ,a ) ________ , o ) ________ •15 .圆锥由 ____ 面组成,其中一个是 ______ 面,另一个是 _____ 面. 16 .已知:Z AOB = 35° , Z BOC = 75° ,贝ijNAOC = 二、选择题:(每题2分,共14分)17、如图,是一个正方体纸盒的展开图,若在其中三个正方形A 、B 、C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数, 则填入正方形A 、B 、C 、中的三个数依次是 ()A 、l 、一 3、0B 、0、一 3、1C 、一 3> 0、1D 、- 3、1、0 18 .如图(8),直线 a 、b 相交,N 1= 130°,则 N2+N3=()A.50°B.100 0C.130C.1802 .如图(1),线段AD 上有两点B 、条线段.(1)3 .一个角是它补角的一半 ,则这个角的余角是(5)4 .线段AB=8cm ,C 是线段AB 上的一点,BC=5cm ,则AC= ____________5 .如图(2),直线AB 、CD 相交于点0 ,0E 平分N C0D,则N B0D 的余角 _____________ ,NC0E 的补角是 ___________ , Z AOC 的补角是 __________________________ .6 .如图(3),直线AB 、CD 相交于点0,NA0E =90°,从给出的A 、B 、C 三 个答案中选择适当答案填空. (1) N 1与N 2的关系是( (3) N 3与N 2的关系是(A.互为补角B.互为余角2)(4C.即不互补又不互余7 .如图(4) ,NA0D =90° ,NC0E =90°,则图中相等的锐角有对.8 .如图(5)所示,射线0 A 表示 方向,射线0B 表示 C,图中共有3 -1 B A19.轮船航行到C处观测小岛A的方向是北偏西48。

七年级数学上学期第四单元几何图形初步测试卷5套带答案

七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。

人教版数学七年级上册第4章 几何图形初步单元测试(含答案)

人教版数学七年级上册第4章 几何图形初步单元测试(含答案)

七年级上册第4章单元测试一.选择题(共10小题)1.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°2.下列图形能折叠成正方体的是()A .B .C .D .3.下面各图是圆柱的展开图的是()A .B .C .D .4.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80km第1页(共12页)D.南偏西40°方向,距离为80km5.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2020次后,骰子朝下一面的数字是()A.5B.4C.3D.26.下列各角中,()是钝角.A .周角B .平角C.平角D .平角7.小明家在学校的南偏西50°方向上,则学校在小明家()上.A.南偏西50°B.西偏南50°C.北偏东50°D.北偏东40°8.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)9.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变10.下列语句中,正确的个数是()第2页(共12页)①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个二.填空题(共5小题)11.已知,∠A=46°28',则∠A 的余角=.12.一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了cm3.13.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN=.14.已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.15.如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=度.三.解答题(共5小题)16.如图,CD是Rt△ABC斜边上的高,请找出图中各对互余的角.第3页(共12页)17.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.18.如图,已知线段AB=12 cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE =cm;(2)若AC=4 cm,求DE的长;(3)试说明无论AC取何值(不超过12 cm),DE的长不变.第4页(共12页)19.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.20.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:Ⅰ、画射线DC;Ⅱ、画直线AC与线段BD相交于点F ;(2)图中以F为顶点的角中,请写出∠AFB的补角.第5页(共12页)参考答案一.选择题(共10小题)1.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.2.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.3.解:由图可知,该圆柱底面直径为6,高为4,所以该圆柱的底面周长(圆柱侧面展开得到的长方形的长)为:6×3.14=18.84,故选:C.4.解:如图:第6页(共12页)∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.5.解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2020÷4=505,∴滚动第2020次后与第一个相同,∴朝下的数字是3的对面4,故选:B.6.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.7.解:∵小明家在学校的南偏西50°方向上,∴学校在小明家北偏东50°方向上.故选:C.8.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.9.根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和第7页(共12页)底面半径为边长的长方形的面积,所以表面积变大了.故选:B.10.解:①直线AB和直线BA是一条直线,原来的说法是错误的;②射线AB和射线BA是两条射线是正确的;③互余是指的两个角的关系,原来的说法是错误的;④一个角的余角比这个角的补角小是正确的;⑤周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的;⑥两点之间,线段最短是正确的.故正确的个数是3个.故选:C.二.填空题(共5小题)11.解:∵∠A=46°28′,∴∠A的余角=90°﹣46°28′=43°32′.故答案为:43°32′.12.解:长方体原体积为:4×4×10=160cm3.底面边长增加acm后,边长为(4+a)cm,体积为:10(4+a)2=(10a2+80a+160)cm3.体积增加为:10a2+80a+160﹣160=10a2+80a.故答案为:(10a2+80a).13.解:∵AB=10,AC=6,∴CB=10﹣6=4,第8页(共12页)∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.14.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.15.解:由折叠可得∠AEF=∠A'EF,∠BEG=∠B'EG,∵∠AEB=180°,∴∠FEG=∠A'EF+∠B'EG =∠AEB=90°,故答案为90.三.解答题(共5小题)16.解:∵CD⊥AB,∴△ABC,△BCD是直角三角形,又∵△ABC是直角三角形,∴∠A与∠B,∠A与∠ACD,∠B与∠BCD互余(直角三角形的两个锐角互余),又∵∠ACB=90°,∴∠ACD与∠BCD互余.∴图中互余的角有:∠A与∠B,∠A与∠ACD,∠B与∠BCD,∠ACD与∠BCD.17.解:(1)因为点C为OP的中点,第9页(共12页)所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.18.解:(1)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∴CD=2cm,∵AB=12cm,AC=4cm,∴BC=8cm,∴CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB),即DE =AB=6cm,故无论AC取何值(不超过12 cm),DE的长不变.第10页(共12页)19.解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,∠AOD=22°,则∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,∠AOD=22°则∠COD=∠AOC+∠AOD=110°;(3)∵OE平分∠AOD,∴∠AOE =,当射线OD在∠AOC内部时,∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,∠BOE=∠AOB+∠AOE=44°+11°=55°.∴∠BOE度数为33°或55°.故答案为:33°或55°20.解:(1)作图如下:第11页(共12页)(2)∠AFB的补角为∠BFC,∠AFD.第12页(共12页)。

第四章 几何图形初步单元练习题(含答案)

第四章 几何图形初步单元练习题(含答案)

人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)一、单选题1.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.2.如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.4.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.5.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C. D.6.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短D.两点确定一条直线7.下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个8.下列说法中正确的有( ). (1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠. A .1个B .2个C .3个D .4个9.如果一个角的度数比它的补角的度数2倍多30°,那么这个角的度数是( ) A .50°B .70°C .130°D .160°10.圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( ) A .2:3B .4:5C .2:1D .2:911.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是( ) A .笔尖在纸上移动划过的痕迹 B .长方形绕一边旋转一周形成的几何体 C .流星划过夜空留下的尾巴 D .汽车雨刷的转动扫过的区域12.己知点M 是线段AB 上一点,若14AM AB =,点N 是直线AB 上的一动点,且AN BN MN -=,则MNAB 的( ) A .34B .12C .1或12D .34或2二、填空题13.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色14.将两个三角尺的直角顶点重合为如图所示的位置,若108AOD ∠=︒,则COB ∠=_________.15.如图是用一副七巧板拼成的正方形,边长是10cm.图中小正方形(涂色部分)的面积是( )2cm.16.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.17.圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.18.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.三、解答题19.如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长。

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版七年级数学上册《第四章几何图形初步》单元测试卷一、选择题(共8小题,4*8=32)1.下列能用∠C表示∠1的是()2.A,B两点间的距离是()A.连结两点间的直线B.连结两点的线段C.连结两点间的直线的长度D.连结两点的线段的长度3.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.44.已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cmC.10cm或5cm D.7.5cm5.α与∠β的度数分别是(2m-67)°和(68-m)°,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cmC.7cm或3cm D.7cm7.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,则∠BOC=()A.10°B.40°C.40°或70°D.10°或70°8.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=50°,∠COD =100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°二、填空题(共6小题,4*6=24)9.如图,AB+BC>AC,其理由是____.10.如图,在横线上填上适当的角:∠AOB=-∠COB=∠AOD-.11.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_____倍.12.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.13.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=________.14.归纳与猜想:(1)观察下图填空:图1中有个角;图2有个角;图3中有个角;(2)根据(1)猜想:在一个角内引n-2条射线可组成个角.三、解答题(共5小题,44分)15.(6分)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.16.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?AB,点E是17.(8分)如图,已知A,B,C三点在同一直线上,AB=24cm,BC=38 AC的中点,点D是AB的中点,求DE的长.18.(10分)如图,已知∠AOB=12∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.19.(12分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD 的中点E,F之间的距离是10cm,求AB,CD的长.参考答案1-4CDBC5-8CBDC9.两点之间线段最短10.∠AOC ,∠DOB11.312.155°13.2cm 或8cm14.3,6,10;n (n -1)215.解:如图所示。

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。

人教版数学七年级上册第4章几何图形初步单元测试 含解析

人教版数学七年级上册第4章几何图形初步单元测试  含解析

第4章几何图形初步一.选择题(共10小题,每小题3分,共30分)1.一个几何体的表面展开图如图所示,这个几何体是()A.正方体B.三棱锥C.四棱锥D.圆柱2.由6个相同的立方体搭成的几何体如图所示,则从它的正面看到的图形是()A.B.C.D.3.正方体的平面展开图如图所示,“重”字的对面为()字.A.巴B.蜀C.中D.学4.下列图形中,可能是右面正方体的展开图的是()A.B.C .D .5.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA CB AB +>,其依据是( )A .两点之间,线段最短B .两点确定一条直线C .两点之间,直线最短D .直线比线段长6.如图,在下列说法中错误的是( )A .射线OA 的方向是正西方向B .射线OB 的方向是东北方向C .射线OC 的方向是南偏东60︒D .射线OD 的方向是南偏西55︒7.如图,AOC ∠和BOD ∠都是直角,如果28DOC ∠=︒,那么AOB ∠的度数是( )A .118︒B .152︒C .28︒D .62︒8.如果线段6AB cm =,4BC cm =,且点A 、B 、C 在同一直线上,那么A 、C 间的距离是()A .10cmB .2cmC .10cm 或者2cmD .无法确定9.OB 是AOC ∠内部一条射线,OM 是AOB ∠平分线,ON 是AOC ∠平分线,OP 是NOA ∠平分线,OQ 是MOA ∠平分线,则:(POQ BOC ∠∠= )A .1:2B .1:3C .2:5D .1:410.一副三角板ABC 、DBE ,如图1放置,(30D ∠=︒、45)BAC ∠=︒,将三角板DBE 绕点B 逆时针旋转一定角度,如图2所示,且090CBE ︒<∠<︒,则下列结论中正确的个数有( ) ①DBC ABE ∠+∠的角度恒为105︒;②在旋转过程中,若BM 平分DBA ∠,BN 平分EBC ∠,MBN ∠的角度恒为定值; ③在旋转过程中,两块三角板的边所在直线夹角成90︒的次数为2次; ④在图1的情况下,作DBF EBF ∠=∠,则AB 平分DBF ∠.A .1个B .2个C .3个D .4个二.填空题(共8小题,每小题3分,共24分)11.一个角的余角是这个角的补角的三分之一,则这个角的度数是m ︒,这里的m = . 12.如图,直线AB 、CD 相交于点O ,OB 平分EOD ∠,100COE ∠=︒,则AOC ∠=︒.13.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是 .14.已知线段AB 和线段CD 在同一直线上,线段(AB A 在左,B 在右)的长为a ,长度小于AB 的线段(CD D 在左,C 在右)在直线AB 上移动,M 为AC 的中点,N 为BD 的中点,线段MN 的长为b ,则线段CD 的长为 (用a ,b 的式子表示).15.巴蜀中学下午到校时间为14:15分,此时钟表上时针和分针的夹角为 .16.如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD 中点,F 是CD 的中点.则EF 的长度为 cm .17.已知线段AB 如图所示,延长AB 至C ,使BC AB =,反向延长AB 至D ,使13AD BC =,点E是线段CD 的中点. (1)依题意补全图形;(2)若AB 的长为30,则BE 的长为 .18.已知点C 在线段AB 上,1M 、1N 分别为线段AC 、CB 的中点,2M 、2N 分别为线段1M C 、1N C 的中点,3M 、3N 分别为线段2M C 、2N C 的中点,2019M ⋯、2019N 分别为线段2018M C 、2018N C的中点.若线段AB a =,则线段20192019M N 的值是 .三.解答题(第19~21题每题6分,第22、23题每题8分,第24、25题每题10分,第26题12分,共8小题,共66分)19.如图,已知A 、O 、B 三点在同一条直线上,OD 平分AOC ∠,OE 平分BOC ∠.(1)若62∠=︒,求DOE∠的度数;BOC(2)若BOC a∠的度数;∠=︒,求DOE(3)图中是否有互余的角?若有请写出所有互余的角.20.如图,已知点A、B、C、D、E在同一直线上且AC BDAD=,=,E是线段BC的中点,10 AB=.3(1)求线段BD的长度;(2)求线段BE的长度.21.如图,140∠∠=,求COBAOD COD∠的度数.∠,:1:2AOB∠=︒,OC平分DOB22.如图,点B、C在线段AD上,且::2:3:4AB BC CD=,点M是线段AC的中点,点N是线段CD上的一点,且9MN=.(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.23.已知线段(=为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别AB m m在线段BC、AC上,且满足3=.CM BM=,3CN AN(1)如图,当点C恰好在线段AB中点,且8m=时,则MN= 6 ;(2)若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断22+-的CN AM MN值是否与m有关?并说明理由.(3)若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度(用含m的代数式表示).24.如图所示,点A,B,C是数轴上的三个点,其中12AB=,且A,B两点表示的数互为相反数.(1)请在数轴上标出原点O,并写出点A表示的数;(2)如果点Q以每秒2个单位的速度从点B出发向左运动,那么经过秒时,点C恰好是BQ 的中点;(3)如果点P以每秒1个单位的速度从点A出发向右运动,那么经过多少秒时2PC PB=.25.将一副三角板如图1摆放,30︒的速度逆时针旋转,旋∠绕C点以15/s∠=︒,现将DCEDCE转时间为()t s.(1)t为多少时,CD恰好平分BCE∠?请在图2中自己画图,并说明理由.(2)当68∠,在图3中完成.<<时,CM平分ACEt∠,求MCN∠,CN平分BCD(3)当812<<时,(2)中结论是否发生变化?请在图4中完成.t26.对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB 的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON 内含对称,直接写出t的取值范围.参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.一个几何体的表面展开图如图所示,这个几何体是()A.正方体B.三棱锥C.四棱锥D.圆柱【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:1个长方形和两个圆形折叠后可以围成圆柱.故选:D.考查了几何体的展开图,熟记常见几何体的表面展开图特征,是解决此类问题的关键.2.由6个相同的立方体搭成的几何体如图所示,则从它的正面看到的图形是()A.B.C.D.【分析】从正面看所得到的图形,进行判断即可.【解答】解:从正面看的图形为,C选项中图形,故选:C.考查简单几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体的正投影所得到的图形.3.正方体的平面展开图如图所示,“重”字的对面为()字.A.巴B.蜀C.中D.学【分析】根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,据此作答.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“重”与面“蜀”相对,面“庆”与面“学”相对,“巴”与面“中”相对.故选:B.本题考查正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符合,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.此题主要考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.5.如图,点A、B在直线l上,点C是直线l外一点,可知CA CB AB+>,其依据是()A.两点之间,线段最短B.两点确定一条直线C .两点之间,直线最短D .直线比线段长【分析】依据线段的性质,即可得出结论.【解答】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知CA CB AB +>,其依据是:两点之间,线段最短,故选:A .本题主要考查了线段的性质,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.6.如图,在下列说法中错误的是( )A .射线OA 的方向是正西方向B .射线OB 的方向是东北方向C .射线OC 的方向是南偏东60︒D .射线OD 的方向是南偏西55︒【分析】根据方位角的确定方法分别把各个选项中对应的方位角确定即可判断正误.【解答】解:根据图示可知A 、射线OA 的方向是正西方向,正确;B 、射线OB 的方向是东北方向,正确;C 、射线OC 的方向是南偏东30︒,错误;D 、射线OD 的方向是南偏西55︒,正确.故选:C .主要考查了方位角的确定.注意角的度数是指的哪个夹角.7.如图,AOC ∠和BOD ∠都是直角,如果28DOC ∠=︒,那么AOB ∠的度数是( )A .118︒B .152︒C .28︒D .62︒【分析】从图形中可看出AOC ∠和DOB ∠相加,再减去DOC ∠即为所求.【解答】解:90AOC DOB ∠=∠=︒,28DOC ∠=︒,909028152AOB AOC DOB DOC ∴∠=∠+∠-∠=︒+︒-︒=︒.故选:B .此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.8.如果线段6AB cm =,4BC cm =,且点A 、B 、C 在同一直线上,那么A 、C 间的距离是( )A .10cmB .2cmC .10cm 或者2cmD .无法确定【分析】讨论:当点C 在线段AB 的延长线上时,AC AB BC =+;当点C 在线段AB 的上时,AC AB BC =-,再把6AB cm =,4BC cm =代入计算可求得AC 的长,即得到A 、C 间的距离.【解答】解:当点C 在线段AB 的延长线上时,如图,6410()AC AB BC cm =+=+=,即A 、C 间的距离为10cm ;当点C 在线段AB 的上时,如图,642()AC AB BC cm =-=-=,即A 、C 间的距离为2cm .故A 、C 间的距离是10cm 或者2cm .故选:C .本题考查了两点间的距离:两点间的线段的长叫两点间的距离.也考查了分类讨论思想. 9.OB 是AOC ∠内部一条射线,OM 是AOB ∠平分线,ON 是AOC ∠平分线,OP 是NOA ∠平分线,OQ 是MOA ∠平分线,则:(POQ BOC ∠∠= )A .1:2B .1:3C .2:5D .1:4【分析】依据OM 是AOB ∠平分线,OQ 是MOA ∠平分线,可得1124AOQ AOM AOB ∠=∠=∠,依据ON 是AOC ∠平分线,OP 是NOA ∠平分线,可得111()244AOP AON AOC AOB BOC ∠=∠=∠=∠+∠,进而得出:1:4POQ BOC ∠∠=.【解答】解:OM 是AOB ∠平分线,OQ 是MOA ∠平分线, 1124AOQ AOM AOB ∴∠=∠=∠, ON 是AOC ∠平分线,OP 是NOA ∠平分线,111()244AOP AON AOC AOB BOC ∴∠=∠=∠=∠+∠, POQ AOP AOQ ∴∠=∠-∠11()44AOB BOC AOB =∠+∠-∠, 14BOC =∠, :1:4POQ BOC ∴∠∠=,故选:D .本题主要考查了角平分线的定义的运用,解决问题的关键是利用角的和差关系进行推算.10.一副三角板ABC 、DBE ,如图1放置,(30D ∠=︒、45)BAC ∠=︒,将三角板DBE 绕点B 逆时针旋转一定角度,如图2所示,且090CBE ︒<∠<︒,则下列结论中正确的个数有( ) ①DBC ABE ∠+∠的角度恒为105︒;②在旋转过程中,若BM 平分DBA ∠,BN 平分EBC ∠,MBN ∠的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成90︒的次数为2次;④在图1的情况下,作DBF EBF ∠=∠,则AB 平分DBF ∠.A .1个B .2个C .3个D .4个【分析】①计算旋转角度大于45︒时,DBC ABE ∠+∠的大小与105︒比较便可得结论; ②利用角的和差与角的平分线得1122MBN DBC DBA CBE ∠=∠-∠-∠,便可求出其值; ③由当旋转30︒时,BD BC ⊥,当旋转45︒时,DE AB ⊥,当旋转75︒时,DB AB ⊥,便可得结论; ④当BE 在DBE ∠外时,作图判断便可.【解答】解:设旋转角度为x ︒,①当45x >︒时,(60)(45)(215)105DBC ABE x x x ∠+∠=+︒+-︒=+︒>︒,于是此小题结论错误; ②1111(60)(15)52.52222MBN DBC DBM CBN DBC DBA CBE x x x ∠=∠-∠-∠=∠-∠-∠=+︒-+︒-︒=︒,于是此小题的结论正确;③当旋转30︒时,BD BC ⊥,当旋转45︒时,DE AB ⊥,当旋转75︒时,DB AB ⊥,则在旋转过程中,两块三角板的边所在直线夹角成90︒的次数为3次,于是此小题结论错误;④当BE 在DBE ∠外时,如下图所示,虽然DBF EBF ∠=∠,但AB 不平分DBF ∠,于是此小题的结论错误.综上,正确的结论个数只有1个,故选:A .本题主要考查了角的和差,角的平分线,旋转的性质,关键根据题意正确进行角的和差计算.二.填空题(共8小题,每小题3分,共24分)11.一个角的余角是这个角的补角的三分之一,则这个角的度数是m ︒,这里的m = .【分析】因为这个角的度数为m ︒,则它的余角为90m ︒-︒,补角为180m ︒-︒,再根据题意列出方程,求出m 的值即可.【解答】解:因为这个角的度数为m ︒,所以它的余角为90m ︒-︒,补角为180m ︒-︒, 依题意得:190(180)3m m -=-, 解得45m =.故答案为:45.本题考查的是余角及补角的定义,能根据题意列出关于m 的方程是解答此题的关键.12.如图,直线AB 、CD 相交于点O ,OB 平分EOD ∠,100COE ∠=︒,则AOC ∠= ︒.【分析】利用邻补角性质可得EOD ∠的度数,再利用角平分线定义核对顶角相等可得答案.【解答】解:100COE ∠=︒,80DOE ∴∠=︒, OB 平分EOD ∠,40BOD ∴∠=︒,40AOC ∴∠=︒,故答案为:40.此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.13.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是 .【分析】由正方体展开图的特征得到结论.【解答】解:由正方体展开图的特征得出,折叠成正方体后,点11所在的正方形分别和点7、点1所在的两个正方形相交,故点1与点7、点1重合.故答案为1和7;此题考查的是正方体的展开图,解决此题的关键是运用空间想象能力把展开图折成正方体,找到重合的点.14.已知线段AB 和线段CD 在同一直线上,线段(AB A 在左,B 在右)的长为a ,长度小于AB 的线段(CD D 在左,C 在右)在直线AB 上移动,M 为AC 的中点,N 为BD 的中点,线段MN 的长为b ,则线段CD 的长为 (用a ,b 的式子表示).【分析】根据线段中点定义线段CD 在直线AB 上移动时,分五种情况解答即可.【解答】解:M 为AC 的中点,N 为BD 的中点,12MA MC AC ∴==,12BN DN BD ==. 线段AB 和线段CD 在同一直线上,线段(AB A 在左,B 在右)的长为a ,长度小于AB 的线段(CD D 在左,C 在右)在直线AB 上移动,∴分以下5种情况说明:①当DC 在AB 左侧时,如图1,MN DN DM =-1()2BD DC CM =-+ 1122BD DC AC =-- 即22MN BD DC AC =--2MN BD DC AC DC =---2MN AB DC ∴=-,22CD AB MN a b ∴=-=-;②当点D 与点A 重合时,如图2,MN MC CN =+1()2AC DN DC =+- 1122AC BD DC =+- 即22MN AC AB DC =+-22MN DC AB DC =+-2MN AB DC ∴=-,22CD AB MN a b ∴=-=-;③当DC 在AB 内部时,如图3,MN MC CN =+1()2AC BC BN =+- 1122AC BD BC =-+ 即22MN AC BD BC =-+2MN AC BC BD BC =+-+2MN AB DC ∴=-,22CD AB MN a b ∴=-=-;④当点C 在点B 右侧时,同理可得:2CD a b =-;⑤当DC 在AB 右侧时,同理可得:2CD a b =-;综上所述:线段CD 的长为2a b -.故答案为2a b -.本题考查了两点间的距离,解决本题的关键是分类讨论思想的运用.15.巴蜀中学下午到校时间为14:15分,此时钟表上时针和分针的夹角为 .【分析】钟表里,每一大格所对的圆心角是30︒,每一小格所对的圆心角是6︒,根据这个关系,求解即可. 【解答】解:时钟指示2时15分时,分针指到3,时针指到2与3之间,时针从2到这个位置经过了15分钟,时针每分钟转0.5︒,因而转过7.5︒,∴时针和分针所成的锐角是307.522.5︒-︒=︒.故答案为:22.5︒.本题考查钟面角,解决本题的关键是根据表面上每一格是30︒,时针每分钟转0.5︒,计算出分针与时针的夹角的度数.16.如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD 中点,F 是CD 的中点.则EF 的长度为 cm .【分析】结合图形和题意,利用线段的和差知CD AD AB BC =++,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF DF DE =-,即可求得EF 的长度.【解答】解:3418CD AD AB BC cm =++=++=; E 是AD 中点,F 是CD 的中点,118422DF CD cm ∴==⨯=,113 1.522DE AD cm ==⨯=. 4 1.5 2.5EF DF DE cm ∴=-=-=,故答案为:2.5.本题主要考查了两点间的距离和中点的定义,解题的关键是运用数形结合思想.17.已知线段AB 如图所示,延长AB 至C ,使BC AB =,反向延长AB 至D ,使13AD BC =,点E 是线段CD 的中点.(1)依题意补全图形;(2)若AB 的长为30,则BE 的长为 .【分析】(1)根据题意画出图形;(2)由图,根据线段中点的意义,根据线段的和与差进一步解决问题.【解答】解:(1)如图所示;(2)30AB =,BC AB =,30BC AB ∴==,1103AD BC ==, 103040BD AD AB ∴=+=+=, 点E 是线段CD 的中点,11(103030)3522DE CD ∴==++=, 5BE BD DE ∴=-=,故答案为:5.此题考查线段的和与差以及线段中点的意义,结合图形解题会变得形象直观.18.已知点C 在线段AB 上,1M 、1N 分别为线段AC 、CB 的中点,2M 、2N 分别为线段1M C 、1N C 的中点,3M 、3N 分别为线段2M C 、2N C 的中点,2019M ⋯、2019N 分别为线段2018M C 、2018N C 的中点.若线段AB a =,则线段20192019M N 的值是【分析】根据线段中点的定义得到112CM AC =,112CN BC =,求得111122M N AB a ==,同理2211211112222M N M N a a ==⨯=,于是得到结论. 【解答】解:1M 、1N 分别为线段AC 、CB 的中点,112CM AC ∴=,112CN BC =,111122M N AB a ∴==, 同理2211211112222M N M N a a ==⨯=,33312M N a ∴=, ⋯,20192019201912M N a ∴=,故答案为:201912a . 本题考查了两点间的距离,规律型:图形的变化类,正确的理解题意是解题的关键.三.解答题(第19~21题每题6分,第22、23题每题8分,第24、25题每题10分,第26题12分,共8小题,共66分)19.如图,已知A 、O 、B 三点在同一条直线上,OD 平分AOC ∠,OE 平分BOC ∠.(1)若62BOC ∠=︒,求DOE ∠的度数;(2)若BOC a ∠=︒,求DOE ∠的度数;(3)图中是否有互余的角?若有请写出所有互余的角.【分析】(1)OD 平分AOC ∠,OE 平分BOC ∠,得出1()2DOE BOC COA ∠=∠+∠,代入数据求得问题;(2)利用(1)的结论,把BOC a ∠=︒,代入数据求得问题;(3)根据(1)(2)找出互余的角即可.【解答】解:(1)OD 平分AOC ∠,OE 平分BOC ∠, 12DOC AOC ∴∠=∠,12COE BOC ∠=∠ 11()(6218062)9022DOE DOC COE BOC COA ∴∠=∠+∠=∠+∠=⨯︒+︒-︒=︒;(2)11()(180)9022DOE BOC COA a a ∠==∠+∠=⨯︒+︒-︒=︒;(3)DOA ∠与COE ∠互余;DOA ∠与BOE ∠互余;DOC ∠与COE ∠互余;DOC ∠与BOE ∠互余. 此题考查角平分线的意义以及余角的意义.20.如图,已知点A 、B 、C 、D 、E 在同一直线上且AC BD =,E 是线段BC 的中点,10AD =,3AB =.(1)求线段BD 的长度;(2)求线段BE 的长度.【分析】(1)根据线段的和差即可得到结论;(2)根据线段的和差和线段的中点的定义即可得到结论.【解答】解:(1)10AD =,3AB =,1037BD AD AB ∴=-=-=;(2)10AD =,3AB =,210234BC AD AB ∴=-=-⨯=,114222BE BC ∴==⨯=. 即线段BE 的长度为2.此题主要考查了两点间的距离,其中利用中点性质转化线段之间的倍分关系是解题的关键 21.如图,140AOB ∠=︒,OC 平分DOB ∠,:1:2AOD COD ∠∠=,求COB ∠的度数.【分析】由OC 平分DOB ∠可得BOC COD ∠=∠,由:1:2AOD COD ∠∠=可得::1:2:2AOD COD COB ∠∠∠=,再根据140AOB ∠=︒解得即可.【解答】解:OC 平分DOB ∠,COB COD ∴∠=∠, :1:2AOD COD ∠∠=, ::1:2:2AOD COD COB ∴∠∠∠=, 140AOD COD COB AOB ∠+∠+∠=∠=︒, 5140AOD ∴∠=︒,解得28AOD ∠=︒,256COB AOD ∴∠=∠=︒.此题主要考查了角的计算以及角平分线的定义,正确得出AOD ∠度数是解题关键.22.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长; (2)若点N 是线段CD 的三等分点,求BD 的长.【分析】(1)根据线段中点的定义和线段的和差倍分关系即可得到结论; (2)根据线段中点的定义和线段的和差倍分关系列方程即可得到结论. 【解答】解:(1)如图,点M 是线段AC 的中点,点N 是线段CD 的中点,12CM AC ∴=,12CN CD =, 11()922MN CM CN AC CD AD ∴=+=+==, 18AD ∴=,::2:3:4AB BC CD =,24234AB AD ∴=⨯=++,18414BD AD AB ∴=-=-=;(2)点N 是线段CD 的三等分点,∴当13CN CD =时,如图,::2:3:4AB BC CD =,∴设2AB x =,3BC x =,4CD x =,5AC x ∴=,点M 是线段AC 的中点,12.52CM AC x ∴==, 1433CN CD x ==,54923CM CN x x MN ∴+=+==, 5423x ∴=, 378723BD x ∴==; 当23CN CD =时,::2:3:4AB BC CD =,∴设2AB x =,3BC x =,4CD x =,5AC x ∴=,点M 是线段AC 的中点,12.52CM AC x ∴==, 2833CN CD x ==,58923CM CN x x MN ∴+=+==, 5431x ∴=, 378731BD x ∴==. 本题考查了线段的中点和求两点之间的距离,能求出各个线段的长度是解此题的关键. 23.已知线段(AB m m =为常数),点C 为直线AB 上一点(不与点A 、B 重合),点M 、N 分别在线段BC 、AC 上,且满足3CN AN =,3CM BM =.(1)如图,当点C 恰好在线段AB 中点,且8m =时,则MN = 6 ;(2)若点C 在点A 左侧,同时点M 在线段AB 上(不与端点重合),请判断22CN AM MN +-的值是否与m 有关?并说明理由.(3)若点C 是直线AB 上一点(不与点A 、B 重合),同时点M 在线段AB 上(不与端点重合),求MN 长度(用含m 的代数式表示).【分析】(1)设AN x =,BM y =,则3CN x =,3CM y =.由8AB =列出方程,求得x y +,再进而求得MN ;(2)把MN AM AN =+代入22CN AM MN +-中计算便可知道结果;(3)设AN x =,BM y =,则3CN x =,3CM y =,①当C 点在B 点右边时,不符合题意,舍去;②当点C 在点A 的左边,由AB CB CA =-得出14y x m -=,进而得33()4MN y x m =-=;③当点C 在线段(AB 上时,由AB CB CA =+得14y x m +=,进而得33()4MN y x m =+=,最后总结结论.【解答】解:(1)设AN x =,BM y =,则3CN x =,3CM y =.AB AN CN CM MB m =+++=,338x x y y m ∴+++==, 2x y ∴+=,MN NC CM =+33x y =+3()x y =+6=.(2)22CN AM MN +-的值与m 无关.理由如下: 如图1,3CN AN=,22CN AM MN∴+-322()AN AM AN AM =+-+AN =AN 与m 的取值无关, 22CN AM MN∴+-的值与m 无关;(3)设AN x =,BM y =,则3CN x =,3CM y = ①当C 点在B 点右边时,满足3CM BM =,M 在线段AB 上,如图2此时,M 不是线段BC 上的点,不符合题意,舍去; ②当点C 在点A 的左边,如图3,()()AB CB CA CM MB CN AN m =-=+-+=, (3)(3)y y x x m ∴+-+=,14y x m ∴-=,3333()4MN CM CN y x y x m ∴=-=-=-=; ③当点C 在线段(AB 上时,如图4,()()AB CB CA CM MB CN AN m =+=+++=, (3)(3)y y x x m ∴+++=,14x y m ∴+=, 3333()4MN CM CN y x y x m ∴=+=+=+=; MN ∴长度为34m . 综上,MN 长度为34m .本题主要考查两点间的距离,方程的应用,掌握线段的和差运算是解题的关键,分类讨论是难点.24.如图所示,点A ,B ,C 是数轴上的三个点,其中12AB =,且A ,B 两点表示的数互为相反数.(1)请在数轴上标出原点O ,并写出点A 表示的数;(2)如果点Q 以每秒2个单位的速度从点B 出发向左运动,那么经过 秒时,点C 恰好是BQ 的中点;(3)如果点P 以每秒1个单位的速度从点A 出发向右运动,那么经过多少秒时2PC PB =.【分析】(1)根据12AB =,以及A ,B 两点表示的数互为相反数即可判断点O 的位置. (2)设经过t 秒时,点C 恰好是BQ 的中点,点Q 对应的数为2t -,点B 对应的数为6,点C 对应的数为2-,根据中点坐标公式即可求出答案.(3)设经过t 秒2PC PB =.由已知,经过t 秒,点P 在数轴上表示的数是6t -+.根据两点之间距离公式即可求出答案.【解答】解:(1)如图,标出原点O ,点A 表示的数是6-,(2)设经过t 秒时,点C 恰好是BQ 的中点,由题意可知:点Q 对应的数为62t -,点B 对应的数为6,点C 对应的数为2-,当点C 是BQ 的中点时,∴62622t -+=-,解得:8t =, 故答案为:8秒(3)设经过t 秒2PC PB =.由已知,经过t 秒,点P 在数轴上表示的数是6t -+.|62||4|PC t t ∴=-++=-,|66||12|PB t t =-+-=-.2PC PB =.|4|2|12|t t ∴-=-.20t ∴=或283本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型. 25.将一副三角板如图1摆放,30DCE ∠=︒,现将DCE ∠绕C 点以15/s ︒的速度逆时针旋转,旋转时间为()t s .(1)t 为多少时,CD 恰好平分BCE ∠?请在图2中自己画图,并说明理由. (2)当68t <<时,CM 平分ACE ∠,CN 平分BCD ∠,求MCN ∠,在图3中完成. (3)当812t <<时,(2)中结论是否发生变化?请在图4中完成.【分析】(1)利用角平分线的性质得出30BCD DCE ∠=∠=︒,进而利用60DCA ∠=︒,进而得出t 的值;(2)当6t >时,CD 在CB 左边,当8t <时,CE 在CB 右边,设BCN DCN x ∠=∠=,ACM ECM y ∠=∠=.则302BCE x ∠=-,进而利用90ACB ∠=︒得出即可;(3)当8t >时,CD 在CB 左边,当12t <时,CE 在CB 左边,设BCN DCN x ∠=∠=,ACM ECM y ∠=∠=.则230BCE x ∠=-,进而利用90ACB ∠=︒得出即可.【解答】解:(1)当CD 平分BCE ∠时,30BCD DCE ∴∠=∠=︒, 60DCA ∴∠=︒,60154()t s ∴=÷=;(2)当6t >时,CD 在CB 左边,当8t <时,CE 在CB 右边, 设BCN DCN x ∠=∠=,ACM ECM y ∠=∠=.则302BCE x ∠=-,90ACB ∠=︒,302290x y ∴-+=, 30y x ∴-=,30260MCN x x y ∴∠=+-+=︒(3)当8t >时,CD 在CB 左边,当12t <时,CE 在CB 左边, 设BCN DCN x ∠=∠=,ACM ECM y ∠=∠=.则230BCE x ∠=-,90ACB ∠=︒,2(230)90y x ∴--=, 30y x ∴=+,30NCE x ∴∠=-,30303060MCN x y x x ∴∠=-+=-++=︒.此题主要考查了角的计算和角平分线的性质,利用数形结合得出等式是解题关键.26.对于平面内给定射线OA ,射线OB 及∠MON ,给出如下定义:若由射线OA 、OB 组成的∠AOB 的平分线OT 落在∠MON 的内部或边OM 、ON 上,则称射线OA 与射线OB 关于∠MON 内含对称.例如,图1中射线OA 与射线OB 关于∠MON 内含对称. 已知:如图2,在平面内,∠AOM =10°,∠MON =20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON 内含对称,直接写出t的取值范围.【答案】(1)OB2;(2)10≤x≤50;(3)20≤t≤32.5.【分析】(1)由∠MON内含对称的定义可求解;(2)由∠MON内含对称的定义可得10°≤(x+10)°≤30°,可求解;(3)分两种情况讨论,利用∠MON内含对称的定义列出不等式,即可求解.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON 内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.。

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列四个几何体中,是棱柱的是()A.B.C.D.2.已知∠α=35°40′,则∠α的补角的度数为()A.55°60′B.55°20′C.144°60′D.144°20′3.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.①②④D.①③④4.将一副常规的三角尺如图放置,则图中∠ACB的度数是()A.75°B.95°C.15°D.120°5.如图,若∠1=32°,则∠2的度数是()A.32°B.58°C.48°D.68°6.如图,若∠AOB=∠COD=∠EOF=90°,且∠DOF=45°,∠AOE=30°,求∠BOC 的度数为()A.15°B.20°C.25°D.30°7.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3﹣∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3﹣∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A.①B.①②C.①②③D.①②③④8.如图,∠AOB与∠COB的度数分别记为m,n(m>n),OM,ON分别是∠COB,∠AOC 的平分线,则∠MON的度数为()A.B.C.D.二.填空题(共8小题,满分32分)9.如图,已知线段AB长度为x,CD长度为y,则图中所有线段的长度和为.10.点A,B,C是同一直线上的三个点,若AB=7cm,BC=5cm,则AC=cm.11.(1)钟表上的时间是3时30分,此时时针与分针所成的夹角是度.(2)计算:24°24′=°.(3)一个角是40°,则它的补角是度.12.如图是一个底面各边都相等的六棱柱,它的底面边长为2cm,高为5cm.这个棱柱共有条棱,个面,侧面积是cm2.13.在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成一个几何体,如图所示:这个几何体露出的表面积是cm2.14.如图,将一个三角板60°角的顶点与另一个三角的直角顶点重合,∠1=28°,∠2=°.15.如图,已知点O是直线AB上的一点,∠COE=120°,∠AOF=∠AOE.(1)当∠BOE=15°时,∠COA的度数为;(2)当∠FOE比∠BOE的余角大40°,∠COF的度数为.16.某天卢老师在数学课上,利用多媒体展示如下内容:如图,C为直线AB上一点,∠DCE 为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各学习小组经过讨论后得到以下结论:①∠ACF与∠BCH互余;②∠HCG=45°;③∠ECF与∠GCH互补;④∠ACF﹣∠BCG=45°.聪明的你认为哪些结论是正确的,请写出正确结论的序号.三.解答题(共7小题,满分56分)17.如图所示的是一个正方体的平面展开图,若将该展开图折叠成正方体后,相对面上的两个数字互为相反数,求2x+y﹣z的值.18.如图是一个食品包装盒的表面展开图.(1)该包装盒的几何体名称是;(2)根据图中所标尺寸,用a,b表示这个几何体的表面积S,并计算当a=1,b=4时,S的值.19.如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.20.如图,点C在线段AB上,点M,N分别为AC,BC的中点.(1)若AC=6cm,MB=10cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC=2acm,MB=bcm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC=xcm,BC=ycm,M,N分别是线段AC,BC的中点,请画出图形,并用含x,y的式子表示MN的长度.21.如图1,∠AOC和∠BOD都是直角.(1)如果∠DOC=35°,则∠AOB=;(2)找出图1中一组相等的锐角为:;(3)若∠DOC变小,∠AOB将;(填变大、变小、或不变)(4)在图2中,利用能够画直角的工具在图2上再画一个与∠BOC相等的角.22.直观想象,逻辑推理已知点O为直线AB上一点.(1)如图1,过点O作射线OC,使∠AOC:∠BOC=3:2,求∠AOC与∠BOC的度数;(2)如图2,射线OC为∠AOB内部任意一条射线,射线OD、OE分别是∠AOC、∠BOC 的角平分线,求∠DOE的度数,并写出简要的推理过程;(3)写出图2中所有互余的角和互补的角.23.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.参考答案一.选择题(共8小题,满分32分)1.解:选项A中的几何体是圆柱,因此选项A不符合题意;选项B中的几何体是三棱柱,因此选项B符合题意;选项C中的几何体是三棱锥,因此选项C不符合题意;选项D中的几何体是四棱台,因此选项D不符合题意;故选:B.2.解:∵∠α=35°40′,∴∠α的补角的度数为180°﹣35°40′=144°20′.故选:D.3.解:①④可以用“两点确定一条直线”来解释;②可以用“两点之间线段最短”来解释;③根据“作一条线段等于已知线段”的方法进行解释;故选:A.4.解:由题意得:∠ACD=45°,∠BCD=30°,则∠ACB=∠ACD﹣∠BCD=15°.故选:C.5.解:由图可得∠1+∠2+90°=180°,∵∠1=32°,∴∠2=58°.故选:B.6.解:∵∠COD=90°,∠DOF=45°,∴∠COF=45°,∵∠EOF=90°,∴∠EOC=45°,∵∠AOB=90°,∴∠AOE+∠BOC=45°,∵∠AOE=30°,∴∠BOC=15°,故选:A.7.解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)﹣(1)得,∠3﹣∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°﹣2∠1,∴②正确;(2)﹣(1)×2得,∠3﹣∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°﹣∠1=2(∠1+∠2)﹣∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C.8.解:∵∠AOC=∠AOB+∠BOC=m+n,∵射线ON平分∠AOC,∴∠CON=∠AOC=(m+n),∵OM平分∠BOC,∴∠COM=∠BOC=n,∴∠MON=∠CON﹣∠COM=(m+n)﹣n=m;故选:A.二.填空题(共8小题,满分32分)9.解:∵线段AB长度为x,∴AB=AC+CD+DB=x,又∵CD长度为y,∴AD+CB=x+y,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=x+x+x+y=3x+y,故答案为:3x+y.10.解:①当点C在线段AB的延长线上时,AC=AB+BC=7+5=12cm.②当点C在线段AB上时.AC=AB﹣BC=7﹣5=2cm.故答案为:12或2.11.解:(1)3点30分时,时针与分针的较小夹角是2.5个大格,一个大格的度数是30°,所以30°×2.5=75°;故答案为:75;(2)24°24′=24.4°.故答案为:24.4;(3)由补角的性质,得40°角的补角是180°﹣40°=140°,故答案为:140.12.解:六棱柱有18条棱,8个面,侧面积是2×6×5=60cm2.故答案为:18,8,60.13.解:∵几何体露出的小正方体的面一共有32个,∴这个几何体露出的表面积为32×4=128(cm2),故答案为:128.14.解:∵∠BAC=60°,∠1=28°,∴∠EAC=∠BAC﹣∠1=32°,∵∠DAE=90°,∴∠2=∠DAE﹣∠EAC=58°.故答案为:58.15.解:(1)∵∠BOE=15°,∠COE=120°,∴∠COA=180°﹣120°﹣15°=45°.故答案为:45°.(2)由题意得,∠FOE=90°﹣∠BOE+40°=130°﹣∠BOE.∵∠AOF=∠AOE,∴180°﹣∠BOF=.∴180°﹣(∠EOF+∠BOE)=60°﹣.∴180°﹣130°=60°﹣.∴∠BOE=30°.∴∠EOF=90°﹣30°+40°=100°.∴∠COF=∠COE﹣∠EOF=120°﹣100°=20°.故答案为:20°.16.解:∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD=∠ACD,∠DCH=∠HCB=∠DCB,∠BCG=∠ECG=∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,∴∠ACF﹣∠BCG=45°.故④正确.故答案为:①②④.三.解答题(共7小题,满分56分)17.解:由题意得:2与y,3与z,x与﹣2分别是相对面上的两个数,所以y=﹣2,z=﹣3,x=2,则2x+y﹣z=4﹣2+3=5.18.解:(1)由展开图知,该包装盒的几何体为长方体,故答案为:长方体;(2)由题知,S=2×2a×a+2×2a×b+2×a×b=4a2+6ab,当a=1,b=4时,S=4+6×4=28.19.解:(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)∵点B为CD的中点,BD=2cm.∴CD=2BD=2×2=4(cm),∴AC=AD﹣CD=9﹣4=5(cm),答:AC的长是5cm.(3)AB=AC+BC=7cm,EA=3cm,当点E在线段AD上时,BE=AB﹣AE=7﹣3=4(cm),当点E在线段DA的延长线上时,BE=AB+AE=7+3=10(cm),答:BE的长是4或10cm.20.解:(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)∵点M、N分别是AC、BC的中点,AC=2acm,MB=bcm,∴AM=AC=a cm,AC+CB=(a+b)cm,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=(a+b)cm,即线段MN的长是(a+b)cm;(3)如图:MN=(x﹣y)cm,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=(x﹣y)cm,∴CM=AC,CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=(x﹣y)cm,即线段MN的长是(x﹣y)cm.21.解:(1)∵∠AOC=∠DOB=90°,∠DOC=35°,∴∠COB=∠BOD﹣∠DOC=90°﹣35°=55°,∴∠AOB=∠AOC+∠COB=90°+55°=145°;故答案为:145°;(2)∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC;故答案为:∠AOD=∠BOC;(3)∵∠AOD+∠DOC+∠DOC+∠BOC=∠AOB+∠COD=∠AOC+∠BOD=180°,∴∠AOB=180°﹣∠DOC,∴∠DOC逐渐变小,∠AOB逐渐变大;故答案为:变大;(4)利用三角板画∠AOC=∠BOD=90°,则∠AOD=∠BOC,理由如下:∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC.22.解:(1)设∠AOC=3x,∠BOC=2x,∵∠AOC+∠BOC=180°,∴3x+2x=180°,∴x=36°,∴∠AOC=3×36°=108°,∠BOC=2×36°=72°;(2)∵OD、OE分别是∠AOC、∠BOC的角平分线,∴∠DOC=∠AOD=,∠COE=∠BOE=∠BOC,∵∠AOC+∠BOC=180°,∠DOE=∠DOC+∠COE,∴∠DOE====90°;(3)互余的角有,∠DOC与∠COE,∠AOD与∠COE,∠BOE与∠COD,∠BOE与∠AOD;互补的角有,∠AOD与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE.23.解:(1)∵OD、OE分别平分∠BOC、∠AOC,∴∠DOE==60°;(2)由(1)知,∠DOE===;(3)补充图形如下:∵∠AOB=m°,∴∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,∵OM、ON分别平分∠BOP、∠AOP,∴∠MON=∠MOP+∠NOP==.。

【七年级数学】最新人教版七年级数学上册_第四章_几何图形初步_单元检测试卷(有答案).doc

【七年级数学】最新人教版七年级数学上册_第四章_几何图形初步_单元检测试卷(有答案).doc

人教版七年级数学上册《第4章几何图形初步》单元测试一.选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.下列图形不是正方体展开图的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是()A.75°30'B.74°30'C.65°30'D.64°30' 6.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD 内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°8.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.22二.填空题11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG 上,折痕分别是DE,DF,则∠EDF的度数为.12.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是.13.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.14.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.15.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线.若OC是∠AOD的平分线,则∠BOC=°,射线OC的方向是.16.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.18.如图,以图中的A、B、C、D为端点的线段共有条.三.解答题19.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.20.如图,直线AB、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.(1)求∠1,∠2,∠3的度数;(2)判断OF是否平分∠AOD,并说明理由.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD度数.22.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)23.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.24.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.25.(14分)数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.新人教版七年级数学上册《第4章几何图形初步》单元测试参考答案与试题解析一.选择题1.B.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.A.10.A.二.填空题11.90°.12.80°.13.我.14.36.15.120,北偏东80°.16.圆锥.17.40.18.6.三.解答题19.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.20.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE是∠BOC的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF平分∠AOD.21.解:∵OD平分∠AOB,∴∠AOD=∠AOB=×114°=57°,∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=×114°=38°,∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:23.解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.24.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.25.解:(1)∠ACB+∠DCE=180°;若∠DCE为任意锐角时,∠ACB+∠DCE=180°,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;(2)∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有()个.A. 9B. 8C. 5D. 42.如图所示几何图形中,是棱柱的是()A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是()A. 正方体B. 长方体C. 三棱柱D. 四棱锥4.如图,∠AOC>∠BOD,则()A. ∠AOB>∠CODB. ∠AOB=∠CODC. ∠AOB<∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为()A. 30°B. 40°C. 50°D. 60°6.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是()度.A.45B.60C.90D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC的度数为()A. 50°B. 50°或120°C. 50°或130°D. 130°9.直棱柱的侧面都是()A. 正方形B. 长方形C. 五边形D. 菱形10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有( )A. 1次B. 2次C. 3次D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC 的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是________cm2.18.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。

人教版七年级数学第四章《几何图形初步》单元测试带答案解析

人教版七年级数学第四章《几何图形初步》单元测试带答案解析
故选:C.
【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.
4.C
【分析】根据正方体表面展开图的特征进行判断即可.
【详解】解:由正方体表面展开图.
【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.
分两种情况:
当点P在点B的右侧,
∵M,N分别为AP,BP的中点,
∴ , ,
∴ ,
当点P在点B的左侧,
∵M,N分别为AP,BP的中点,
, ,
∴ ,
∴在点P的运动过程中,线段MN的长度不变,故④正确.
所以,上列结论中正确的是②④.
故选:D.
【点睛】本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.
A.长方体B.圆柱C.圆锥D.正方体
3.下列图形是正方体展开图的个数为()
A.1个B.2个C.3个D.4个
4.如图是正方体的表面展开图,则与“话”字相对的字是( )
A.跟B.党C.走D.听
5.如图,把一个高6分米的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米.原来这个圆柱的体积是( )立方分米.
20.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.
(1)请你帮小华分析一下拼图是否存在问题,若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,求出修正后所折叠而成的长方体的体积.
故选:D.
【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.

七年级数学上册《第四章 几何图形初步》单元测试卷及答案-人教版

七年级数学上册《第四章 几何图形初步》单元测试卷及答案-人教版

七年级数学上册《第四章几何图形初步》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列几何体中,三棱锥是()A.B.C.D.2.在下面的图形中,不是正方体的展开图的是()A.B.C.D.3.将下列平面图形绕轴旋转一周,可以得到图中所示的立体图形是()A.B.C.D.4.如图,在一个正方体纸盒上切一刀,切面与棱的交点分别为A,B,C,切掉角后,将纸盒剪开展成平面,则展开图不可能是()A.B.C.D.5.已知线段AB=8,BC=3,且A,B,C三点在同一条直线上,则AC的长是()A.5 B.11 C.5或11 D.246.如图,下列说法错误的是()A.点A在直线AC上,点B在直线m外B.射线AC与射线CA不是同一条射线C.直线AC还可以表示为直线CA或直线D.图中有直线3条,射线2条,线段1条7.如图,一张地图上有A、B、C三地,C地在A地的东南方向,若∠BAC=102°,则B地在A地的()A.南偏西57°方向B.南偏西67°方向C.南偏西33°方向D.西南方向8.已知∠2是∠1的余角,且∠1=35∘,则∠2的补角等于()A.145∘B.125∘C.115∘D.65∘二、填空题9.34.37°=34°′′′.10.如图,用一个平面去截一个三棱柱,截面的形状可能是.①三角形②四边形③五边形④六边形11.已知∠A与∠B互余,且∠A=37°则∠B的补角是度.BC那么AC=.12.点A,B,C在同一条直线上,如果BC=8,AB=1413.如图所示的网格是正方形网格,点 A,B,C,D,O 是网格线交点,那么∠AOB∠COD三、解答题CB,求线段CD和BD的长. 14.如图AB=24,点C为AB的中点,点D在线段AC上,且AD=1315.如图,点O在直线AB上,已知∠AOE=∠COD,且射线OC平分∠BOE,∠EOD=30°求∠AOD 的度数.16.如图是一个正方体的表面展开图,每一个面上都写有一个整数,并且相对两个面上所写的两个互为相反数,求−b a+2ac的值.17.如图,AB是直线OD,OE分别是∠AOC,∠BOC的平分线.(1)∠BOC=72°20′求∠1,∠2,∠DOE的度数.(2)若∠BOC=α,求∠DOE.18.如图1,OC平分∠AOB,OD是∠BOC内部从点O出发的一条射线,OE平分∠AOD.(1)[基础尝试]如图2,若∠AOB=120°,∠COD=10°,求∠DOE的度数;(2)[画图探究]设∠COE=x°,用x的代数式表示∠BOD的度数;(3)[拓展运用]若∠COE与∠BOD互余,∠AOB与∠COD互补,求∠AOB的度数.参考答案1.C2.D3.D4.B5.C6.D7.A8.B9.22;1210.①②③11.12712.6或10或10或613.>或大于14.解:∵点C为AB的中点AB=12∴AC=BC=12CB∵AD=13×12=4∴AD=13∴CD=AC−AD=8∴BD=BC+CD=2015.解:∵∠AOE=∠COD∴∠AOE−∠DOE=∠COD−∠DOE即∠AOD=∠COE∵射线OC平分∠BOE∴∠BOC=∠COE,则∠AOD=∠BOC=∠COE∵∠EOD=30°∴3∠AOD+30°=180°∴∠AOD=50°.16.解:∵a与−3相对,b与2相对,c与1相对,相对两个面上所写的两个互为相反数∴a=3 b=−2 c=−1∴−b a+2ac=−(−2)3+2×3×(−1)=2.故答案为:2.17.(1)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∠BOC=72°20′∴∠1=∠EOB=12∠BOC=36°10′∴∠DOC=∠AOD=12∠AOC=12(180°−∠BOC)=12(180°−72°20′)=53°50′∴∠DOE=∠1+∠2=36°10′+53°50′=90°;(2)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∴∠1=∠EOB=12∠BOC∴∠DOC=∠AOD=12∠AOC∴∠DOE=∠1+∠2=12∠AOC+12∠BOC=90°.18.(1)解:∵∠AOB=120°,OC平分∠AOB ∴∠AOC=∠COB=60°∵∠COD=10°∴∠AOD=60°+10°=70°∵OE平分∠AOD∴∠DOE=35°;(2)解:设∠COD=a∵∠COE=x°∴∠EOD=x°+a∵OE平分∠AOD∴∠AOD=2∠COD=2(x°+a) =2x°+2a∴∠AOC=2x°+a∵OC平分∠AOB∴∠BOC=∠AOC=2x°+a∴∠BOD=∠BOC-∠COD=2x°;(3)解:由上题得∠BOD=2x°∵∠COE与∠BOD互余∴x+2x=90°解得x=30 .∵∠AOB与∠COD互补∴4x+2a+a=180°4×30°+3a=180°a= 20°∴∠AOB=160°。

人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)

人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)

人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。

人教版七年级上册数学《第四章 几何图形初步》章节检测试卷及答案(共五套)

人教版七年级上册数学《第四章 几何图形初步》章节检测试卷及答案(共五套)

人教版七年级上册数学《第四章几何图形初步》章节检测试卷《第四章几何图形初步》单元检测试卷(一)考试时间:60分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法正确的是( ).A.直线的一半是射线B.直线上两点间的部分叫做线段C.线段AB的长度就是A,B两点间的距离D.若点P使PA=AB,则P是AB的中点2.钟表在5点半时,它的时针和分针所成的锐角是( ).A.15° B.70° C.75° D.90°3.从点A看B的方向是北偏东35°,那么从B看A的方向是( ).A.南偏东55° B.南偏西55°C.南偏东35° D.南偏西35°4.如图是一正方体展开图,则“有”“志”“者”三面的对面分别是( ).A.事竟成B.事成竟C.成竟事D.竟成事5.下图中的三棱柱从正面、左面、上面看到的图形是( ).A.三个三角形B .两个长方形和一个三角形C .三个长方形D .两个长方形,且长方形内有一条连接对边的点的线段和一个三角形6.如图所示,点P ,Q ,C 都在直线AB 上,且P 是AC 的中点,Q 是BC 的中点,若AC =m ,BC =n ,则线段PQ 的长为( ).A .B . C.D . 7.如图所示的四个图形,可以折叠成棱柱的是( ).8.线段AB =5厘米,BC =4厘米,那么A ,C 两点间的距离是( ).A .1厘米B .9厘米C .1厘米或9厘米D .以上结果都不对9.已知一个角的余角的补角是这个角补角的,则这个角的余角度数是( ). A .90° B .60° C .30° D .10°10.轮船从A 地出发向北偏东70°方向行驶了4海里到达B 地,又从B 地出发向南偏西20°方向行驶了5海里到达C 地,则∠ABC 等于( ).A .90°B .50°C .110°D .70°二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.植树时只要先确定两个树坑的位置,就能确定一行树所在的位置,其根据是__________.12.已知线段AB =9厘米,在直线AB 上画线段BC ,使它等于3厘米,则线段AC =__________.13.若∠AOB =40°,∠BOC =60°,则∠AOC =__________.14.53°40′30″×2-75°57′28″÷2=__________.15.已知线段AB =3厘米,延长AB 到C ,使BC =2AB ,若D 为AB 中点,则线段3m 2n 2m n +2m n -45DC 的长为__________.16.8°44′24″用度表示为__________,110.32°用度、分、秒表示为__________.17.如图是一套三角尺组成的图形,则∠AFD =____________,∠AEB =__________,∠BED =____________.18.∠α与∠β互补,若∠α=47°37′,则∠β=__________.19.将线段AB 延长到C ,使BC=,延长BC 到D ,使CD =,延长CD到E ,使DE =,若AE =80厘米,则AB =__________. 20.在圆柱的展开图中,圆柱的侧面展开图为__________,棱柱的侧面展开图为三、解答题(本大题共5小题,共40分)21.(6分)如图所示的一张纸:(1)将其折叠能叠成什么几何体?(2)要把这个几何体重新展开,最少需要剪开几条棱?22.(7分)如图所示,点E ,F 分别是线段AC ,BC 的中点,若EF =3厘米,求线段AB 的长.23.(8分)如图所示,直线AB ,CD ,EF 都经过点O ,且AB ⊥CD ,OG 二等分∠BOE ,如果∠EOG =∠AOE ,求∠EOG ,∠DOF 和∠AOE 的度数.13AB 13BC 13CD 2524.(9分)如图所示,设相邻两个角∠AOB ,∠BOC 的平分线分别为OE ,OF ,且∠EOF 是直角,你能说明OA ,OC 为什么成一条直线吗?试试看吧!25.(10分)某校七年级学生李刚在周六下午六点多钟外出买东西时,看手表上的时针和分针的夹角是110°,下午近七点回家时,发现时针和分针的夹角又是110°,你能知道李刚同学外出用了多长时间吗?你是怎么知道的呢?参考答案1答案:C2答案:A 点拨:由于5点半时,时针在5和6之间,分针在6上,所以它们之间的夹角是半个大格,即×30°=15°. 3答案:D4答案:A5答案:D6答案:C 点拨:PQ =PC +CQ =. 7答案:C 点拨:由于棱柱的上底与下底分别在两边,所以A ,B ,D 都不对. 8答案:D 点拨:C 点可能在线段AB 内,亦可能在线段AB 的延长线上,还可能在直线AB 外.9答案:B 点拨:设这个角为∠α,则180°-(90°-∠α)=, ∴∠α=30°.∴90°-∠α=90°-30°=60°.10答案:B11答案:两点确定一条直线12答案:6厘米或12厘米 点拨:由于点C 的位置不确定,所以要分情况讨论:当C 在线段AB 上时,AC =AB -BC =9-3=6(厘米);当C 在AB的延长线上时,1211222m n AC BC ++=4(180)5a ︒-∠AC =AB +BC =9+3=12(厘米).13答案:100°或20°14答案:69°22′16″15答案:7.5厘米16答案:8.74° 110°19′12″17答案:135° 30° 60°18答案:132°23′19答案:54厘米 点拨:设DE =x 厘米,则CD =3x 厘米,BC =9x 厘米,AB =27x 厘米,∴AE =x +3x +9x +27x =80,解得x =2,∴AB =54厘米. __________,圆锥的侧面展开图为__________.20答案:长方形 长方形 扇形21解:(1)三棱柱.(2)最少剪开5条棱.22解:∵E ,F 分别是AC ,BC 的中点,∴EC =,FC =, ∴EF =EC -FC =-===3(厘米), ∴AB =6厘米.23解:∵∠EOG =,OG 平分∠BOE , ∴∠BOE =. ∵∠AOE +∠BOE ==180°, ∴∠AOE =100°,∠BOE ==×100°=80°,∴∠EOG =40°. ∵AB ⊥CD ,∠EOF =180°,∴∠DOF =180°-∠BOE -∠BOD =180°-80°-90°=10°.24解:根据题意可得:∠AOE =∠BOE ,∠COF =∠BOF ,∠EOF =90°, ∴(∠AOE +∠EOB )+(∠COF +∠BOF )=2×90°=180°,即∠AOB +∠BOC =180°,∴∠AOC =180°,12AC 12BC 12AC 12BC 1()2AC BC -12AB 25AOE ∠45AOE ∠95AOE ∠45AOE ∠45∴AO ,OC 成一直线(即A ,O ,C 三点共线).25解:设时针从李刚外出到回家走了x °,则分针走了(2×110°+x °), 由题意,得,解得x =20, 因时针每小时走30°,则小时,即李刚外出用了40分钟时间.《第四章 几何图形初步》单元检测试卷(二)姓名:________班级:_____得分:_________一 选择题:1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A.5B.6C.7D.82.如图,把一个正方形三次对折后沿虚线剪下则得到的图形是 ( )3.下列四个图中能用,,三种方法表示同一个角的是( )A. B. C. D.22036030x x ︒+︒︒=︒︒202303︒=︒4.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A. B. C. D.5.下列说法中,正确的有( )①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,垂线最短;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个6.下列命题中是真命题是()A.锐角大于它的余角B.锐角大于它的补角C.钝角大于他的补角D.锐角与钝角之和等于平角7.下列举反例说明“一个角的余角大于这个角”是假命题的四个选项中,错误的是( )A.设这个角是45°,它的余角是40°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°8.把两条线段AB和CD放在同一条直线上比较长短时,下列说法错误的是()A.如果线段AB的两个端点均落在线段CD的内部,那么AB<CDB.如果A,C重合,B落在线段CD的内部,那么AB<CDC.如果线段AB的一个端点在线段CD的内部,另一个端点在线段CD的外部,那么AB〉CDD.如果B,D重合,A,C位于点B的同侧,且落在线段CD的外部,则AB〉CD9.下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从地到地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④如果AB=BC则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线⑥直线经过点A,那么点A在直线上.A.2个B.3个C.4个D.5个11.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5cmB.1cmC.5或1 cmD.无法确定12.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为()A.8.1cmB.9.1cmC.10.8cmD.7.4cm13.经过同一平面内A、B、C三点可连结直线的条数为( )A.只能一条B.只能三条C.三条或一条D.不能确定14.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ等于()A.1B.2C.3D.415.如图∠AOB是平角,过点O作射线OE,OC,OD.把∠BOE用图中的角表示成两个角或三个角和的形式,能有几种不同的表示方法()A.2种 B.3种 C.4种 D.5种16.如图,甲从 A 点出发向北偏东 70°方向走到点 B,乙从点 A 出发向南偏西15°方向走到点 C,则∠BAC 的度数是()A.85° B.160° C.125°D.105°17.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为( )A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°18.如图,∠AOB=∠COD,若∠AOD=110º,∠BOC=70º,则以下结论正确的个数为()①∠AOC=∠BOD=90º②∠AOB=20º③∠AOB=∠AOD-∠AOC ④A.1个B.2个C.3个D.4个19.一个角比它的余角大18°22′46″,则这个角的补角的度数为( )A.35°48′37″B.144°11′23″C.125°48′37″D.36°11′23″20.如图所示, 两人沿着边长为90m的正方形, 按A→B→C→D→A……的方向行走. 甲从A点以65m/min的速度、乙从B点以72m/min的速度行走, 当乙第一次追上甲时, 将在正方形的()(A)AB边上(B)DA边上(C)BC边上(D)CD边上二填空题:21.如图,点C是的边OA上一点,D、E是边OB上两点,则图中共有条线段,条射线,个小于平角的角。

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列几何图形中,不能一笔画成的是()A. B. C. D.2.已知∠AOB=30°,∠BOC=45°,则∠AOC等于()A.15°B.75°C.15°或75°D.不能确定3.在数轴上与表示-2的点距离等于3的点所表示的数是()A.1 B.-1或5 C.-5 D.-5或14.已知锐角α,那么∠α的补角与∠α的余角的差是()A.90°B.120°C.60°+αD.180°﹣α5.如图所示,OA是北偏东60︒方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30︒B.北偏西60︒C.东偏北30︒D.东偏北60︒6.如图,OE⊥AB,直线CD经过点O,∠COA=35°,则∠BOD的余角度数为()A.35°B.45°C.55°D.60°7.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是()A.文B.明C.全D.运8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A .BC=AB-CDB .BC= 12 (AD-CD)C .BC= 12AD-CD D .BC=AC-BD 二、填空题:9.计算:902648︒-︒'= .10.将一副三角板如图放置,若 20AOD ∠= ,则 BOC ∠ 的大小为 .11.如图,点B 在线段AC 上,已知9cm AB =,4cm BC =点O 是线段AC 的中点,则线段OB = cm.12.如图,点O 是直线AD 上的点,∠AOB ,∠BOC ,∠COD 三个角从小到大依次相差25°,则这三个角的度数是 .13.如图,白纸上放有一个表面涂满染料的小正方体,在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次,则在白纸上可以形成的图形有 .(填序号)三、解答题:14.已知:如图,A ,B ,C 在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且 5AM cm = cm = 求线段AB 的长.15.如图是一个正方体的表面展开图,它的每一个面上都写有一个数,并且相对的两个面的数字互为相反数,求2a b c +-的值.16.如图,直线AB ,CD 相交于点O ,OE AB ⊥且OF 平分AOC ∠,且40BOD ∠=︒,求EOF ∠的度数.17.如图,OC AB ⊥于点O ,OD 平分BOC ∠,OE 平分AOD ∠(1)求BOD ∠的度数;(2)求COE ∠的度数.18.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a+24|+|b+10|+(c-10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.参考答案:1.C 2.C 3.D 4.A 5.A 6.C 7.A 8.B9.6312︒'10.160°11.5212.35°,60°,85°13.①③14.解: M 是线段AC 的中点,N 是线段BC 的中点5MC AM cm ∴== 和 3BN CN cm ==16AB AM MC CN NB cm ∴=+++=15.解:因为相对的两个面的两个数字互为相反数所以80a +=,40b +=和50c +=所以845a b c =-=-=-,,所以()()2842584102a b c +-=-+--⨯-=--+=-16.解:∵40BOD ∠=︒∴40AOC BOD ∠=∠=︒∵OF 平分AOC ∠ ∴1202AOF AOC ∠=∠=︒ ∵OE AB ⊥∴90AOE ∠=︒∴9020110EOF AOE AOF ∠=∠+∠=︒+︒=︒.17.(1)解:∵OC AB ⊥∴90BOC AOC ∠=∠=︒∵OD 平分BOC ∠ ∴1452BOD COD BOC ∠=∠=∠=︒ (2)解:由(1)可得9045135AOD AOC COD ∠=∠+∠=︒+︒=︒∵OE 平分AOD ∠ ∴167.52AOE AOD ∠=∠=︒ ∴9067.522.5COE ∠=︒-︒=︒18.(1)解:∵|a+24|+|b+10|+(c-10)2=0∴a+24=0,b+10=0,c-10=0解得:a=-24,b=-10,c=10;(2)解:-10-(-24)=14①点P 在AB 之间,AP=14×221+ = 283 -24+ 283 =- 443点P的对应的数是- 443;②点P在AB的延长线上,AP=14×2=28-24+28=4点P的对应的数是4;(3)解:∵AB=14,BC=20,AC=34∴t P=20÷1=20(s),即点P运动时间0≤t≤20点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s)当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t= 463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t= 623>20(舍去)当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8。

人教版七年级数学上册《第4章几何图形初步》单元测试题人教版(有答案)

人教版七年级数学上册《第4章几何图形初步》单元测试题人教版(有答案)

人教版七年级数学上册《第4章几何图形初步》单元测试题一.选择题(共10小题)1.如图,一个正方体有盖盒子(可密封)里装入六分之一高度的水,改变正方体盒子的放置方式,下列选项中不是盒子里的水能形成的几何体是()A.正方体B.长方体C.三棱柱D.三棱锥2.下列说法中错误的是()A.线段AB和射线AB都是直线的一部分B.直线AB和直线BA是同一条直线C.射线AB和射线BA是同一条射线D.线段AB和线段BA是同一条线段3.已知A、B、C三点,过其中任意两点画直线,一共可以画多少条直线()A.1B.3C.3或1D.无数条4.图中下列从A到B的各条路线中最短的路线是()A.A→C→G→E→B B.A→C→E→B C.A→D→G→E→B D.A→F→E→B 5.将一副直角三角尺按如下不同方式摆放,则图中锐角∠1与∠2互余的是()A.B.C.D.6.下列图形中,不是正方体平面展开图的是()A.B.C.D.7.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面8.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC 为()A.70°B.65°C.55°D.45°9.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm 10.如图,已知轮船甲在A处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为()A.北偏西40°B.北偏东40°C.北偏西35°D.北偏东35°二.填空题(共8小题)11.若∠A=52°16'32'',则∠A的补角为.12.班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米),则此长方体包装盒的体积为立方毫米(用含x、y的式子表示).13.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠COD=,∠BOC=,∠AOB=.14.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为.15.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为.17.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.18.如图,点B是线段AC上一点,点O是线段AC的中点,且AB=20,BC=8.则线段OB的长为.三.解答题(共8小题)19.(1)如图,已知点C在线段AB上,AC=8cm,BC=6cm,M,N分别是AC,BC的中点,求线段MN的长度;(2)在(1)题中,如果AC=acm,BC=bcm,其他条件不变,求此时线段MN的长度.20.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=25°,OD平分∠COE,(1)写出图中所有互补的角.(2)求∠COB的度数.21.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)22.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC 的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,()(填推理的依据).∵AP=,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC()(填推理的依据).即PQ∥l.25.如图,已知点A为线段CB上的一点.(1)根据要求画出图形(不要求写法):延长AB至点D,使BD=AB;反向延长CA 至点E,使CE=CA;(2)如果ED=18,BD=6,求CA的长参考答案与试题解析一.选择题(共10小题)1.解:根据题意可知,盒子里的水能形成的几何体是长方体,三棱柱,三棱锥;不可能是正方体.故选:A.2.解:A、线段AB和射线AB都是直线的一部分,正确,不合题意;B、直线AB和直线BA是同一条直线,正确,不符合题意;C、射线AB和射线BA不是同一条射线,错误,符合题意;D、线段AB和线段BA是同一条线段,正确,不合题意;故选:C.3.解:如图最多可以画3条直线,最少可以画1条直线;.故选:C.4.解:最短的路线是A→F→E→B.故选:D.5.解:∵∠1+∠2+90°=180°,∴1+∠2=90°,即∠1和∠2互余,因此A选项符合题意;选项B中的∠1=∠2,因此选项B不符合题意;选项C中的∠1=∠2=135°,因此选项C不符合题意;可求出选项D中的∠1=45°,∠2=60°,因此选项D不符合题意;故选:A.6.解:根据正方体的展开图的特征可知,共有11种情况,可以分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,没有“1﹣2﹣3型”的,因此选项B不是正方体平面展开图,故选:B.7.解:根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.故选:B.8.解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故选:C.9.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.10.解:设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB=∠B,根据题意得,∠B=∠CAB=180°﹣65°﹣40°=75°,75°﹣40°=35°,所以轮船乙的航行方向为北偏东35°.故选:D.二.填空题(共8小题)11.解:∵∠A=52°16'32'',∴∠A的补角=180°﹣52°16'32''=127°43′28″,故答案为:127°43′28″.12.解:将展开图折叠,可得长、宽、高为y毫米、x毫米、65毫米的长方体,于是,体积为y•x×65=65xy立方毫米,故答案为:65xy.13.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=3×15°=45°,∠BOC=∠COD﹣∠BOD=45°﹣15°=30°,∵OC是∠AOB的平分线,∴∠AOC=∠BOC=30°=∠AOB,∴∠AOB=60°,故答案为:45°,30°,60°.14.解:∵B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,∴∠ABC的度数为80°﹣44°=36°,故答案为:36°.15.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.16.解:AC的长度有两种情况:①点C在线段AB的延长线时,如图1所示:∵AC=AB+BC,AB=1cm,BC=3cm,∴AC=1+3=4cm;②点C在线段AB的反向延长线时,如图2所示:∵AC=BC﹣AB,AB=1cm,BC=3cm,∴AC=3﹣1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.17.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.18.解:如图所示:∴AC=AB+BC,AB=20,BC=8,∴AC=20+8=28,又∵点O是线段AC的中点,∴AO=CO===14,又∵OB=OC﹣BC,∴OB=14﹣8=6,故答案为6.三.解答题(共7题)19.解:(1)∵AC=8cm,点M是AC的中点,∴CM=AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm;(2)∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∵AC=acm,BC=bcm,∴MN=(AC+BC)=cm.20.解:(1)∵点A,O,E在同一直线上,∴∠AOB+∠BOE=180°,∠AOC+∠COE=180°,∠AOD+∠DOE=180°,∵OD平分∠COE,∴∠COD=∠DOE,∴∠COD+∠AOD=180°.∴图中所有互补的角有:∠AOB与∠BOE,∠AOC与∠COE,∠AOD与∠DOE,∠COD 与∠AOD.(2)因为∠EOD=25°,OD平分∠COE,所以∠COE=2∠EOD=50°,所以∠COB=180°﹣∠AOB﹣∠COE,=180°﹣40°﹣50°=90°.21.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.22.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:(1)如图所示,直线PQ即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵AP=AQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行),即PQ∥l.故答案为:等边对等角;AQ;同位角相等,两直线平行.25.解:(1)画出的图形如图所示:(2)∵BD=AB,BD=6,∴AB=6,∵ED=18,∴AE=ED﹣AB﹣BD=18﹣6﹣6=6,∵CE=CA∴AC=AE=×6=3.。

人教版七年级数学上册 第四章 几何图形初步 单元检测试题(含答案)

人教版七年级数学上册 第四章 几何图形初步 单元检测试题(含答案)

第四章几何图形初步单元检测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 射线上有、两点,若,,线段、的中点分别为、,则线段的长为()A. B. C. D.或2. 笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对3. 下列说法正确的有( )个①连接两点的线段的长叫两点之间的距离;②直线比线段长;③若,则为的中点;④由不在同一直线上的几条线段首尾顺次相连所组成的封闭图形叫多边形.A. B. C. D.4. 下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线B.两个锐角的和为钝角C.相等的角互为余角D.钝角的补角一定是锐角5. 下列说法正确的个数为()过两点有且只有一条直线连接两点的线段叫做两点间的距离两点之间的所有连线中,线段最短射线比直线短一半直线和直线表示同一条直线.A. B. C. D.6. 如图,设正方体的棱长为,黑、白两个甲壳虫同时从点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是…,白甲壳虫爬行的路线是…,并且都遵循如下规则:所爬行的第与第条棱所在的直线必须是既不平行也不相交(其中是正整数).那么当黑、白两个甲壳虫各爬行完第条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A. B. C. D.7. 下面平面图形经过折叠不能围成正方体的是()A. B. C. D.8. 一个正方体的个面分別标有“”、“”、“”、“”、“”、“”中的一个字母,如图表示的是该正方体种不同的摆法,当“”在右面时,左面的字母是()A. B. C. D.9. 已知线段,点是直线上一点,,若是的中点,是的中点,则线段的长度是()A. B. C.或 D.10. 如图,已知,以点为圆心,以任意长为半径画弧①,分别交,于点,,再以点为圆心,以长为半径画弧,交弧①于点,画射线.若,则的补角的度数为( )A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 夜晚的流星划过天空时留下一道明亮的光线,由此说明了________的数学事实.12. 水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图,若图中的“锦”表示正方体的右面,则“________”表示正方体的左面.13. 如图,平分,,则________.14. 如图,、是线段上两点,若,,是的中点,则线段的长是________.15. 如图所示,直线________和直线________相交于点;直线和直线相交于点________;点是直线________和直线________的交点.16. 现在的时间是时分,此时钟面上时针与分针夹角的度数是________度.17. 木工师傅用两颗水泥钉就能将一根木条固定在墙壁上,这样做的数学依据是________.18. 看的方向是北偏东,那么看的方向是________.19. 刘瞬在李可得南偏东方向上,那么李可在刘瞬的________方向上.20. 下列语句是有关几何作图的叙述.①以为圆心作弧;②延长射线到点;③作,使;④作直线,使;⑤过三角形的顶点作它的对边的平行线.其中正确的有________.(填序号即可)三、解答题(本题共计6 小题,共计60分,)21. 已知线段和线段.(1)按要求作图(保留作围痕迹,不写作法);延长线段至点,使,反向延长线段至点,使;(2)如果,分别是线段,的中点,且,,求线段的长.22. 已知线段,.(1)线段的长度能否确定?(直接回答“能”或“不能”即可);(2)是否存在使、之间的距离最短的情形?若存在,请求出此时的长度;若不存在,说明理由.(3)能比较与的大小吗?为什么?23. 边长分别为和的两个正方形按如图的样式摆放,求图中阴影部分的面积.24. 一个立方体的六个面上分别标有,,,,,如图所示是从三个不同方向看到的情形.请分别说出,,的面相对面上分别是什么字母.25. 现有一长方体水槽如图,装入一些水,然后固定底面的一边慢慢倾斜但不能使水从水槽中流出.(1)请你先实践操作一下,再说说你所见到的立体图形有哪些?(2)在这个变化中,你认为其中什么没有变化?26. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了________条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为,底面是一个正方形,并且这个长方体纸盒所有棱长的和是,求这个长方体纸盒的体积.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:当在线段上时,线段、的中点分别为、,得,,由线段的和差,得;当在线段的延长线上时,线段、的中点分别为、,得,,由线段的和差,得;故选:.2.【答案】A【解答】解:笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为点动成线.故选.3.【答案】C【解答】解:①连接两点的线段的长叫两点之间的距离,故①正确;②直线与线段无法比较,故②错误;③若,不在线段上时,不是的中点,故③错误;④由不在同一直线上的几条线段首尾顺次相连所组成的封闭图形叫多边形,故④正确.故选.4.【答案】D【解答】解:、应为分成两个相等的角,故错误;、反例:,故错误;、两个角之和为时才互余,故错误;、利用钝角大于,互补为,故钝角的补角一定是锐角,故正确.故选.5.【答案】B【解答】解:过两点有且只有一条直线,正确;应为连接两点的线段的长度叫做两点间的距离,故本小题错误;两点之间的所有连线中,线段最短,正确;射线比直线短一半,错误;直线和直线表示同一条直线,正确;综上所述,说法正确的是共个.故选.6.【答案】A【解答】解:∵黑甲壳虫爬行的路径为:…,白甲壳虫爬行的路径为:…,∴黑、白甲壳虫每爬行条边后又重复原来的路径,∵,∴当黑、白两个甲壳虫各爬行完第条棱分别停止时,黑甲壳虫停在点,白甲壳虫停在点,∴.故选.7.【答案】B【解答】解:由展开图可知:、、能围成正方体,不符合题意;、围成几何体时,有两个面重合,故不能围成正方体,符合题意.故选:.8.【答案】C【解答】解:∵根据正方体的摆放可知的邻面分别是、、、,由一、二两种摆放方式可知当为正面时,为底面,∴与是对面,与是对面.故选:.9.【答案】D【解答】解:当点在线段上时,则;当点在线段的延长线上时,则.综合上述情况,线段的长度是.故选.10.【答案】C【解答】解:由题意可得:,,∴的补角的度数.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】点动成线【解答】解:夜晚的流星划过天空时留下一道明亮的光线,由此说明了点动成线.故答案为:点动成线.12.【答案】程【解答】根据题中已知条件,折叠成正方体后,“程”与“锦”相对,若图中的“锦”表示正方体的右面,则“程”表示正方体的左面.13.【答案】【解答】解:如图,∵平分,,∴,∴.故答案是:.14.【答案】【解答】解:由线段的和差,得,由中点的性质,得由线段的和差,得.故答案为:.15.【答案】,,,,【解答】解:直线和直线相交于点;直线和直线相交于点;点是直线和直线的交点.故答案为:;;;;.16.【答案】【解答】解:∵“”至“”的夹角为,时针偏离“”的度数为,∴时针与分针的夹角应为.故答案为:.17.【答案】两点确定一条直线【解答】解:∵要两颗水泥钉,∴符合两点确定一条直线.故答案为:两点确定一条直线.18.【答案】南偏西【解答】解:从看的方向是南偏西.故答案是:南偏西.19.【答案】北偏西【解答】解:如图则李可在刘瞬的北偏西20.【答案】③⑤【解答】解:①以为圆心作弧可以画出无数条弧,因为半径不固定,所以叙述错误;②射线是由向向无限延伸,所以叙述错误;③根据作一个角等于已知角的作法,可以作一个角,使等于已知,所以叙述正确;④直线可以向两方无限延伸,所以叙述错误;⑤根据平行公理:过直线外一点有且只有一条直线与已知直线平行,可以过三角形的顶点作它的对边的平行线,所以叙述正确.所以正确的有③⑤.故答案为:③⑤.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】(1)见解析;(2)云【解答】(1)如图,即为所作图形:&&&(2)如图,&:,分别是线段,的中点,.&∴&&&&一22.【答案】解:(1)不能.(2)存在使、之间的距离最短的情形,此时.(3)能.当点在线段的延长线上时,;当点在线段上时,;当点在直线外时,,因为两点之间线段最短.【解答】解:(1)不能.(2)存在使、之间的距离最短的情形,此时.(3)能.当点在线段的延长线上时,;当点在线段上时,;当点在直线外时,,因为两点之间线段最短.23.【答案】由题意可得,阴影部分面积:==.【解答】由题意可得,阴影部分面积:==.24.【答案】解:由图可知,相邻的字母有、、、,所以,对面的字母是,与相邻的字母有、、、,所以,对面的字母是,所以,对面的字母是.【解答】解:由图可知,相邻的字母有、、、,所以,对面的字母是,与相邻的字母有、、、,所以,对面的字母是,所以,对面的字母是.25.【答案】解:(1)我所见到的立体图形有长方体,棱柱等;(2)在这个变化中,水的体积不变.【解答】解:(1)我所见到的立体图形有长方体,棱柱等;(2)在这个变化中,水的体积不变.26.【答案】【解答】此题暂无解答。

人教版七年级上第四章《几何图形初步》单元测试(含答案解析)

人教版七年级上第四章《几何图形初步》单元测试(含答案解析)

人教版七年级上册《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD 的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∵∠AOD=90°,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C B A
B
第1题图会社谐和设

D
C B
A
β
β
βα
α
α
第3题图
七级数学第四章几何图形初步测试题(新课标)
(时限:100分钟 总分:100分)
一、选择题:将下列各题正确答案的代号填在下表中。

每小题2分,共24分。

1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )
A.和
B.谐
C.社
D.会
2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )
A B C D
3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥
4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )
5.下列说法中正确的是( )
A.画一条3厘米长的射线
B.画一条3厘米长的直线
C.画一条5厘米长的线段
D.在线段、射线、直线中直线最长
6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )
1乙甲
N M
P D C B A B ()D C A D C B A 第9题图B
A 7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =2
1
CD ;③CD =2CE ; ④CD =
2
1
DE .其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个
8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( ) A. 3cm B. 4cm C. 5cm D. 6cm
9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )
A. 1
B. 2
C. 3
D. 4
10.用度、分、秒表示91.34°为( ) A. 91°20/24// B. 91°34/ C. 91°20/4// D. 91°3/4// 11.下列说法中正确的是( )
A.若∠AOB =2∠AOC ,则OC 平分∠AOB
B.延长∠AOB 的平分线OC
C.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOC
D.若OC 平分∠AOB ,则∠AOC =∠BOC
12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),
两人做法如下:
甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°;
乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,
则∠MAN =45°
对于两人的做法,下列判断正确的是( )
A.甲乙都对
B.甲对乙错
C.甲错乙对
D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。

13.下列各图形中, 不是正方体的展开图(填序号).
① ② ③ ④
14.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6cm ,则AB = cm
.
第19题D C B A
O
第20题C
B A
第18题C
B A O D C
B A b
a
15.已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,若BD =3cm ,则AC 的长为 cm .
16.若时针由2点30分走到2点55分,则时针转过 度,分针转过 度. 17.一个角的补角是这个角的余角的4倍,则这个角的度数是 .
18.如图,已知点O 是直线AD 上的点,∠AOB 、∠BOC 、∠COD 三个角从小到大依 次相差25°,则这三个角的度数分别为.
19.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB = . 20.如图所示,一艘船从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东15°方向行至点C ,则∠ABC = 度.
三、解答题:(本大题共52分)
21.(每小题3分,共6分)根据下列语句,画出图形.
⑴已知四点A 、B 、C 、D .
① 画直线AB ; ② 连接AC 、BD ,相交于点O ;
③ 画射线AD 、BC ,交于点P .
⑵如图,已知线段a 、b ,画一条线段,使它等于2a -b .(不要求写画法)
22.计算题:(每小题5分,共20分) ⑴ (180°-91°32/24//)÷3 ⑵ 34°25/×3+35°42/
⑶ 一个角的余角比它的补角的3
1
还少20°,求这个角.
D
C
B
A 第24题图
3x -2A 1
-2x 3第25题图
E A /
D
C B A
⑷ 如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,
求∠AOC 的度数.
23.(本大题9分)
如图,是由7块正方体木块堆成的物体,请说出图⑴、图⑵、图⑶分别是从哪一个方向看得到的?
⑴ ⑵ ⑶
24.(本大题7分)
如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体
的左面与右面标注的式子相等.
⑴ 求x 的值.
⑵ 求正方体的上面和底面的数字和.
25.(本大题10分)探究题:
如图,将书页一角斜折过去,使角的顶点A 落在A /处,BC 为折痕,BD 平分 ∠A /BE ,求∠CBD 的度数.
参考答案
一、选择题:
1.D;
2.D;
3.A;
4.B;
5.C;
6.C;
7.C;
8.C;
9.B;10.A;11.D;12.A;13.③;
二、填空题:14.12;15.18;16. 12.5°,150°;17.60°;18.35°,60°,85°;
19.180°20.60°
三、解答题:21.略;22.⑴.29°29/12//;⑵.138°57/;⑶.75°;⑷.69°.
23.⑴是从上面看;⑵.是从正面看到;⑶.是从左面看. 24.⑴1;⑵4.
25.90°。

相关文档
最新文档