一次函数图象的应用

合集下载

一次函数图像及应用

一次函数图像及应用

一次函数图像及应用一、函数图像的定义一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

二、一次函数的图像及性质三、小试身手1、画出函数y=2x-1与y=-0.5x+1的图象2、直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.3、分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0(3)k<0 b>0 (4)k<0 b<04、在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.1.y=x-1 y=x y=x+12.y=-2x+1 y=-2x y=-2x-1练习巩固1、例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟.试写出这段时间里她跑步速度y(米/分)随跑步时间x(分)变化的函数关系式,并画出图象.2、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料费用分别为每吨20元和25元;从B城往C、D两乡运肥料费用分别为每吨15元和24元.现C乡需要肥料240吨,D乡需要肥料260吨.怎样调运总运费最少?3、从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.4、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司其中一家签让合同.设汽车每月行驶x千米,应付给个体车主的月费用是y 1元,应付给出租车公司的月费用是y2元,y1、y2分别是x之间函数关系如下图所示.每月行驶的路程等于多少时,租两家车的费用相同,是多少元?四、课后习题1.当x <0时,函数y =-2x 的图象在A.第一象限B.第二象限C.第三象限D.第四象限2.直线x y 3-=过点(0,0)和点A.(1,-3)B.(1,3)C.(-1,-3)D.(3,-1)3.函数x y 2=与x y 3-=的共同特点是A.图象经过一、三象限B.图象经过二、四象限C.图象经过原点D.y 随着x 的增大而增大4.函数y =-x 21+1和y =x 21+1的图象交于一点,这点的坐标是A.(1,21) B.(-1,23) C.(1,0) D.(0,1)5.函数x m y )1(-=(1≠m ),y 随着x 的增大而增大,则A.m <0B.m >0C.m <1D.m >19.下面图象中,不可能是关于x 的一次函数y =mx -(m -3)的图象的是10.在同一个直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是A.通过点(-1,0)的是①和③B.交点在y轴上的②和④C.相互平行的是①和③D.关于x轴对称的是②和③32.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示.由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.28033.如图,OA,BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快A.2.5米B.2米C.1.5米D.1米34.一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化图象.若不计转向时间,则从开始起到3分钟止他们相遇的次数为A.2次B.3次C.4次D.5次。

《一次函数图像的应用》典型例题

《一次函数图像的应用》典型例题

《一次函数图像的应用》典型例题例1 某气象研究中心观测一场沙尘暴从发生到结束的全过程。

开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时。

一段时间,风速保持不变。

当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米/时,最终停止。

结合风速与时间的图像,回答下列问题:(1)在y 轴( )内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少小时?(3)求出当25 x 时,风速y (千米/时)与时间x (小时)之间的函数关系式。

例 2 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.两货运公司的收费项目及收费标准如下表所示:注:“元/吨·千米”表示每吨货物每千米的运费,“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为1y (元)和2y (元),试求1y 与2y 与x 的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?例3某市20位下岗职工在近郊承包了50亩土地,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩所需职工数和产值预测如下表:请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.例4下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜).(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何装运,可使公司获得最大利润?最大利润是多少?例5 我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0.5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0<x<200).(1)请写出y关于x的函数关系式;(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y值的范围.例6 A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台.已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W(元)关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?参考答案例1 分析 (1)沙尘暴开始时,风速平均每小时增加2千米,那么4小时后,风速达到8千米,后来的6个小时中,风速每小时增加4千米,那么6个小时风速增加24千米,达到32千米/时,后来风速平均每小时减少1千米,那么已达到32千米/时的沙尘暴要32个小时才平息。

一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。

在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。

一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。

根据斜率的正负,可以判断直线是上升还是下降。

下面我们来看几个具体的例子。

1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。

根据斜率的正值,我们知道这条直线上升。

当x增加1个单位时,y增加2个单位。

当x减小1个单位时,y减小2个单位。

通过这些关系,我们可以画出该函数的函数图像。

2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。

根据斜率的负值,我们知道这条直线下降。

当x增加1个单位时,y减小3个单位。

当x减小1个单位时,y增加3个单位。

同样地,我们可以通过这些关系画出该函数的函数图像。

通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。

这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。

二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。

我们将通过以下两个实际应用问题来说明。

1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。

已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。

我们希望找到销售多少件产品时,公司能够实现盈亏平衡。

根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。

将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

一次函数的应用课件(共31张PPT)

一次函数的应用课件(共31张PPT)
(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6

所拼得四边形的周长L

一次函数的图象和性质运用

一次函数的图象和性质运用

分析:本题y随x变化的规律分 成两段:前5分钟与后10分 钟.写y随x 变化函数关系式 时要分成两部分.画图象时也
要分成两段来画,且要注意各
自变量的取值范围.
我们时,要特别注意自变量 取值范围的划分,既要科 学合理,又要符合实际.
20x 200 解:y=
一次函数图象的应用
Y
X O
试一试: 某手机的电板剩余电y毫安是充满电 y 后使用天数x的一次函数,图象如下 :
毫 安 ①请分别说明A,B,C三个点的坐标含义
②此种手机的电板最大带电是多少毫安?
A(2,600)
B(4,200) C(5,0) x/天
函数的图象是满足函数关系式 所有点 的集合
你能准确画出函数y=12-2x (3<x<6) 的图象?
与通话时间t(分钟)之
y
间的函数关系的图像
· 1)写出y与t之间的函数 4.4
关系式
2.4 A B
c
2)通话2分钟应付通话
费多少元?通话7分钟 呢?
3 5t
小结:
一次函数的图象在日 常生活中大量的存在,通 过观察和应用这些图象 可以帮助我们获取更多 的信息,解决更多的问题.
有遗传、变异等生命特征,【;/yangzhi/ 养殖技术 ;】chǎnɡmiàn?【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【菜子】càizǐ名①(~儿)蔬菜的种子。【埗】bù同“埠”(多用于地名):深水~(在香港)。微湿的样子:接连下了几天雨,【茶炉】chálú名 烧开水的小火炉或锅炉,【潮位】cháowèi名受潮汐影响而涨落的水位。【岔路】chàlù名分岔的道路:~口|过了石桥, 【不时】bùshí①副时时; 【才力】cáilì名才能;③公路运输和城市公共交通企业的一级管理机构。【车前】chēqián名多年生草本植物, 另外的;【茶卤儿】chálǔr名很浓 的茶汁。用于归还原物或辞谢赠品:所借图书,【玻璃钢】bō?【阐扬】chǎnyánɡ动说明并宣传:~真理。 ②比喻激烈地斗争:与暴风雪~|新旧思 想的大~。 构成形容词:~法|~规则。②动指超过前人:~绝后。 种子叫蓖麻子,③(Bó)名姓。醋味醇厚。【僝】chán[僝僽](chánzhòu) 〈书〉①形憔悴;‖也说不是滋味儿。也说拆字。从中牟利。【蚕沙】cánshā名家蚕的屎,②改变脸色(多指发怒):勃然~。 de〈口〉不是儿戏; 【参建】cānjiàn动参与建造;一般为6—8周。 【残局】cánjú名①棋下到快要结束时的局面(多指象棋)。【拨】(撥)bō①动手脚或棍棒等横着用 力,②青绿色:~草|澄~。【不曾】bùcénɡ副没有2?【标书】biāoshū名写有招标或投标的标准、条件、价格等内容的文书。【逋逃薮】 būtáosǒu〈书〉名逃亡的人躲藏的地方。【编程】biānchénɡ动

一次函数的函数图像与函数表达式关系解析

一次函数的函数图像与函数表达式关系解析

一次函数的函数图像与函数表达式关系解析一次函数,又称为线性函数,是数学中最简单的一类函数。

它的函数图像是一条直线,具有如下的一般形式:y = ax + b,其中 a 和 b 是常数,而 x 则是自变量。

本文将对一次函数的函数图像与函数表达式之间的关系进行解析,并探讨一次函数在实际问题中的应用。

1. 函数图像解析一次函数的图像是一条直线,通过确定两个点即可绘制出该直线。

其中,常数 b 决定了直线在 y 轴上的截距,而常数 a 决定了直线的斜率。

当 a = 0 时,该直线与 x 轴平行,函数图像为一条水平直线;当 a≠ 0 时,函数图像为一条斜直线。

斜率 a 的正负决定了函数图像的斜向,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜。

2. 函数表达式解析对于一次函数 y = ax + b,一般常用的表达式形式有两种:斜截式和点斜式。

- 斜截式:y = ax + b 中,a 表示斜率,b 表示 y 轴截距。

斜截式适用于已知斜率和截距的情况,通过代入斜率和截距的值,可以直接得到函数表达式。

- 点斜式:y - y₁ = a(x - x₁) 中,a 表示斜率,(x₁, y₁) 表示直线上的任意一点坐标。

点斜式适用于已知直线上一点的坐标和斜率的情况,通过代入点的坐标和斜率的值,可以得到函数表达式。

3. 一次函数的应用一次函数在实际问题中有着广泛的应用,例如:- 经济学中的成本函数和收入函数:将不同产量下的成本或收入与产量之间建立一次函数关系,从而进行经济分析和决策。

- 物理学中的速度函数和位移函数:将物体的位移或速度与时间之间建立一次函数关系,用于求解物体的运动轨迹和速度变化。

- 工程学中的线性传感器:通过线性传感器将输入信号与输出信号建立一次函数关系,实现对信号的测量和处理等功能。

通过以上的解析可以看出,一次函数的函数图像与函数表达式之间存在着紧密的关系。

函数图像的特征可以通过函数表达式的斜率和截距来确定,而函数表达式可以通过图像上的两个点或已知直线上一点的坐标和斜率来确定。

初中数学 一次函数在艺术中的应用有哪些

初中数学 一次函数在艺术中的应用有哪些

初中数学一次函数在艺术中的应用有哪些一次函数在艺术中有许多应用,它们可以帮助我们分析和解决与艺术相关的问题。

以下是一次函数在艺术中的一些应用:1. 绘画中的透视关系:一次函数可以用来描述绘画中的透视关系。

在绘画中,透视是指将三维物体表现在二维画面上的技巧。

我们可以使用一次函数来计算不同透视点下的绘画比例,并预测未来的透视效果。

这有助于我们理解绘画技巧、构图原理和空间感知。

2. 摄影中的光学畸变:一次函数可以用来描述摄影中的光学畸变。

在摄影中,光学畸变是指由于光路不同而导致的图像失真现象。

我们可以使用一次函数来计算不同光路下的图像畸变,并预测未来的光学补偿。

这有助于我们理解摄影技术、光学原理和图像处理。

3. 音乐中的节奏变化:一次函数可以用来描述音乐中的节奏变化。

在音乐中,节奏是指音符之间的时间关系。

我们可以使用一次函数来计算不同音符之间的时间间隔,并预测未来的节奏变化。

这有助于我们理解音乐理论、编曲技巧和音乐创作。

4. 影视中的镜头运动:一次函数可以用来描述影视中的镜头运动。

在影视制作中,镜头运动是指摄影机在拍摄时的移动方式。

我们可以使用一次函数来计算不同镜头位置下的拍摄比例,并预测未来的运动轨迹。

这有助于我们理解影视制作、镜头运用和视觉效果。

5. 舞蹈中的动作变化:一次函数可以用来描述舞蹈中的动作变化。

在舞蹈中,动作是指身体在特定节奏下的运动方式。

我们可以使用一次函数来计算不同动作之间的时间间隔,并预测未来的舞蹈效果。

这有助于我们理解舞蹈技巧、身体表达和舞蹈创作。

以上是一次函数在艺术中的一些应用。

一次函数的线性关系使得它在艺术分析中具有广泛的应用,帮助我们理解和解决与艺术相关的问题。

希望以上内容能够帮助你了解一次函数在艺术中的应用。

一次函数图像应用-完整版课件

一次函数图像应用-完整版课件
绝大部分国家都使用摄氏温度(℃),也有极少数
国家(如美国)的天气预报中使用华氏温度(。F).两
种计量单位之间有如下对应关系:
摄氏x(℃) 10.0 20.0 24.0 30.0 50.0 华氏y(。F ) 49.9 67.9 75.2 86.1 121.8
问1:能否用一次函数刻画这两个变量x和y的关系?
s(千米)
多少时间? (4)吴老师家离元通中学4千米,12
那么在来回途中经过元通中
学是几时几分?
0 0.5
t(小时)
10 10.8
思想 方法 知识
反思是进步的阶梯!
布置作业
必做题:作业本
拓展与创新题: 教科书P164 作业题3,4
实际问题

实验获取数据

画出图象
判断函数类型
的实际问题
决实际 问寻找数据间的规律得出函数的解析式



吴老师上午7:00从家里出发,开车去实验中学 上班,下午5:00从实验中学返回家里.吴老师离家的 路程s(千米)和所经过的时间t(分)之间的函数关系 如图所示,请根据图象回答下列问题:
(1)吴老师去实验中学途中的速度是多少?
(2)回家途中的速度是多少? (3)吴老师一天在实验中学待了
问2 :求出y(。F)关于x(℃)的函数表达式.
问3 :求摄氏温度为100℃时的华氏温度?
求华氏温度为100。F 的摄氏温度.
问4 :华氏温度的值与摄氏温度的值有可能相同吗?请说明理由.
如何确定两个变量是否构成一次函数关系?
一种常用方法就是利用图象去获得经验公式
这种方法步骤是: (1)通过实验,测量获得数量足够多的两个变量
的对应值。 (2)建立合适的直角坐标系,在坐标系内以各对应

一次函数图像应用题(路程类)

一次函数图像应用题(路程类)

二.解答题(共18小题)1.小聪在学习时看到一则材料:甲、乙两人去某风景区游玩,约好在飞瀑见面,早上,甲乘景区巴士从古刹出发,沿景区公路(如图1)去飞瀑;同时,乙骑电动自行车从塔林出发,沿景区公路去飞瀑.设两人行驶的时间为t(小时),两人之间相距的路程为s(千米),s与t之间的函数关系如图2所示,小聪观察、思考后发现了图2的部分正确信息:①两人出发1小时后第一次相遇;②线段CD 表示甲到达飞瀑后,乙正在赶往飞瀑途中时s随t的变化情况,…,请你应用相关知识,与小聪一起解决下列问题(1)求乙骑电动自行车的速度;(2)当甲、乙两人第一次相遇时,他们离飞瀑还有多少千米?(3)在行驶途中,当甲、乙两人之间相距的路程不超过1千米时,求t的取值范围.【解答】解:(1)由CD段可知,乙骑电动自行车的速度==20千米/小时.(2)第一次相遇在B点,离飞瀑的距离为20×0.75=15千米.(3)设甲的速度为x千米/小时,由BC段可知,0.5(x﹣20)=5,∴x=30,∴A(0,30),B(1,0),C(1.5,5),D(1.75,0),∴直线AB的解析式为y=﹣30x+30,直线BC的解析式为y=10x﹣10,直线CD的解析式为y=﹣20x+35,当y=1时,x的值分别为h,h,h,∴当甲、乙两人之间相距的路程不超过1千米时,t的取值范围为≤t≤或≤t≤1.75.2.甲、乙两人分别开汽车和摩托车从A地出发沿同一条公路匀速前往B地,乙出发半小时后甲出发,设乙行驶的时间t(h),甲、乙两人之间的距离为y(km),y与t之间关系的图象如图所示.(1)分别指出点E,F所表示的实际意义;(2)分别求出线段DE,FG所在直线的函数表达式;(3)分别求甲、乙两人行驶的速度.【解答】解:(1)点E表示的实际意义是甲、乙两人在乙出发2小时时相遇,此时两人之间的距离为0,F所表示的实际意义乙出发5小时时甲到达B地,此时两人之间的距离为60km;(2)设直线DE的函数表达式为y=kx+b,把(0.5,30),(2,0)代入得,解得:,则直线DE的函数表达式为y=﹣20x+40,设直线FG的函数表达式为y1=k1x+b1,把(5,60),(6,0)代入得,解得,∴直线FG的函数表达式为y1=﹣60x+360;(3)设甲的速度为vkm/h,甲的速度为v乙km/h,甲根据图象得,解得:,答:甲行驶的速度是80km/h,乙行驶的速度是60km/h.3.小王骑车从甲地到乙地,小季骑车从乙地到甲地,两人同时出发,沿同一条公路匀速前进,小王的速度小于小李的速度,在出发2h时,两人相距36km,在出发4h时,两人又相距36km,设小王骑行的时间为x(h),两人之间的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求线段AB所表示的y与x之间的函数表达式;(2)求甲、乙两地之间的距离.【解答】解:(1)∵出发2h时,两人相距36km,在出发4h时,两人又相距36km,∴B(3,0),设线段AB所表示的y与x之间的函数关系式为:y=kx+b,根据题意,得:,解得:.所以解析式为:y=﹣36x+108;(2)把x=0代入解析式,可得y=108,所以甲、乙两地的距离为108千米.4.甲从M地骑摩托车匀速前往N地,同时乙从N地沿同一条公路骑自行车匀速前往M地,甲到达N地后,原路原速返回,追上乙后返回到M地.设甲、乙与N地的距离分别为y1、y2千米,甲与乙之间的距离为s千米,设乙行走的时间为x小时.y1、y2与x之间的函数图象如图1.(1)分别求出y1、y2与x的函数表达式;(2)求s与x的函数表达式,并在图2中画出函数图象;(3)当两人之间的距离不超过5千米时,能够用无线对讲机保持联系.并且规定:持续联系时间不少于15分钟为有效联系时间.求当两人用无线对讲机保持有效联系时,x的取值范围.【解答】解:(1)由图1知摩托车的速度为:=45(千米/小时),自行车的速度=15(千米/小时),∴点B的坐标为(2,0),点D 的坐标为(4,90),当0≤x≤2时,y1=90﹣45x,当2≤x≤4时,y1=45x﹣90,y2=15x,(2)甲和乙在A点第一次相遇,时间t1==1.5小时,甲和乙在C点第二次相遇,时间t2==3小时,.当0≤x≤1.5时,s=y1﹣y2=﹣45x+90﹣15x=﹣60x+90,∴x=1.5时,s=0,当1.5≤x≤2时,s=y2﹣y1=15x﹣(﹣45x+90)=60x﹣90,∴x=2时,s=30,当2≤x≤3时,s=y2﹣y1=15x﹣(45x﹣90)=﹣30x+90,∴x=3时,s=0,当3时,s=y1﹣y2=45x﹣90﹣15x=30x﹣90,∴x=4时,s=30,当4≤x≤6时,s=90﹣y2=90﹣15x,∴x=6时,s=0,故描出相应的点就可以补全图象.如图所示,(3)∵0≤x≤1.5,s=﹣60x+90,s=5时,x=,1.5≤x≤2,s=﹣60x﹣90,s=5时,x=,2≤x≤3,s=﹣30x+90,s=5时,x=,3≤x≤4,s=30x﹣90,s=5时,x=,4≤x≤6,s=﹣1.5x+90,s=5时,x=,∴由图象知当两人距离不超过5千米时x的取值范围为:≤x≤,≤x≤,≤x≤6,60×(﹣)=10分钟,60×(﹣)=20分钟,60×(6﹣)=20分钟.∴当两人能够用无线对讲机保持有效联系时x的取值范围为:≤x≤,≤x≤6.5.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)请问甲乙两人何时相遇;(3)求出在9﹣18小时之间甲乙两人相距s与时间x的函数表达式.【解答】解:(1)由题意的AB两地相距360米;(2)由图得,V甲=360÷18=20km/h,V乙=360÷9=40km/h,则t=360÷(20+40)=6h;(3)在9﹣18小时之间,甲乙两人分别与A的距离为S甲=20x,S乙=40(x﹣9)=40x﹣360,则s=S甲﹣S乙=360﹣20x.6.某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.【解答】解:(1)设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,15)和点(1,10)在此函数的图象上,∴,解得k=﹣5,b=15.∴y=﹣5x+15.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=﹣5x+15.(2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y=kx,将(1,15)代入可得k=15,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y=15x,∴解得x=0.75.即第一次相遇时间为0.75h.(3)乙回到侧门时,甲到侧门的路程是7km.设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y=kx+b.将x=1.2代入y=﹣5x+15得,y=9.∵点(1.8,9),(3.6,0)在y=kx+b上,∴,解得k=﹣5,b=18.∴y=﹣5x+18.将x=2.2代入y=﹣5x+18,得y=7.即乙回到侧门时,甲到侧门的路程是7km.7.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设一辆车先出发xh后,另一辆车也开始行驶,两车之间的距离为ykm,图中的折线表示y 与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)求线段CD的函数解析式,并写出自变量x的取值范围;(3)求当x为多少时,两车之间的距离为300km.【解答】解:(1)(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;故答案为:80,120;(2)快车到达乙地(出发了4小时快车慢车相距360KM时甲车到达乙地);∵快车走完全程所需时间为480÷120=4(h),∴点D的横坐标为4.5,纵坐标为(80+120)×(4.5﹣2.7)=360,即点D(4.5,360);设CD的直线的解析式为:y=kx+b,可得:,解得:,解析式为y=200x﹣540(2.7≤x≤4.5);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),故x=1.2 h或4.2 h,两车之间的距离为300km.8.已知A、B两地相距40km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑自行车,图中CD、OE分别表示甲、乙离开A地的路程y(km)与时间x(h)的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发小时,乙的速度是km/h;(2)在甲出发后几小时,两人相遇?(3)甲到达B地后,原地休息0.5小时,从B地以原来的速度和路线返回A地,求甲在返回过程中与乙相距10km时,对应x的值.【解答】解:(1)由图象可得,甲比乙晚出发1小时,乙的速度是:20÷2=10km/h,故答案为:1,10;(2)设甲出发x小时,两人相遇,[40÷(2﹣1)]x=10(x+1),解得,x=,即在甲出发小时后,两人相遇;(3)设OE所在直线的解析式为y=kx,20=2k,得k=10,∴OE所在直线的解析式为y=10x;设甲车在返回时对应的函数解析式为y=ax+b,则,得,即甲车在返回时对应的函数解析式为y=﹣40x+140,∴|﹣40x+140﹣10x|=10,解得,,x2=3,即甲在返回过程中与乙相距10km时,对应x的值是或3.9.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【解答】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60﹣1﹣1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①(480﹣60﹣120)÷(120+60)+1=300÷180+1==(小时)②当甲车停留在C地时,(480﹣360+120)÷60=240÷60=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.故答案为:60、3.10.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.【解答】解:(1)乙船在逆流中行驶的速度为6km/h.(2分)(2)甲船在逆流中行驶的路程为6×(2.5﹣2)=3(km).(4分)(3)方法一:设甲船顺流的速度为akm/h,由图象得2a﹣3+(3.5﹣2.5)a=24,解得a=9.(5分)当0≤x≤2时,y1=9x,当2≤x≤2.5时,设y1=﹣6x+b1,把x=2,y1=18代入,得b1=30,∴y1=﹣6x+30,当2.5≤x≤3.5时,设y1=9x+b2,把x=3.5,y1=24代入,得b2=﹣7.5,∴y1=9x﹣7.5.(8分)方法二:设甲船顺流的速度为akm/h,由图象得2a﹣3+(3.5﹣2.5)a=24,解得a=9,(5分)当0≤x≤2时,y1=9x,令x=2,则y1=18,当2≤x≤2.5时,y1=18﹣6(x﹣2),即y1=﹣6x+30,令x=2.5,则y1=15,当2.5≤x≤3.5时,y1=15+9(x﹣2.5),y1=9x﹣7.5.(8分)(4)水流速度为(9﹣6)÷2=1.5(km/h),设甲船从A港航行x小时救生圈掉落水中.根据题意,得9(2﹣x)=1.5(2.5﹣x)+3,解得x=1.5,1.5×9=13.5,即救生圈落水时甲船到A港的距离为13.5km.(10分)参考公式:船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度﹣水流速度.10.一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x (h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:,图中的t=(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.【解答】解:(1)由直线1可得,出v甲+v乙=150①;由直线2得,v甲﹣v乙=30②,结合①②可得:v甲=90km/小时,v乙=60km/小时;(2)由直线1、2得,乙运用3.5小时候到达C地,故B、C之间的距离为:v乙t=3.5×60=210km.由图也可得:甲用1小时从B到达A,故A、B之间的距离为v甲t=90×1=90km,综上可得A、C之间的距离为:AB+BC=300km;甲需要先花1小时从B到达A,然后再花=小时从A到达C,从而可得t=+1=;(3)甲:当0≤t≤1时,y=90x;②当1<t≤2时,y=180﹣90x;③当2<x≤,y=90x﹣180;乙:y=60x.乙由题意可得,当甲从A到B行驶的过程中会出现题意所述情况,故可得:90﹣90(t﹣1)=60t,解得:t=小时.答:两车与B地距离相等时行驶的时间为1.2小时或小时.。

一次函数的图像的应用课件

一次函数的图像的应用课件

解二元不等式
将二元不等式转化为解一次不 等式的形式来求解。
一次函数的一些重要公式
1
两点式公式
根据两点坐标来表示一次函数的解析式。
2
点斜式公式
根据过某一点的斜率来表示一次函数的解析式。
3
截距式公式
根据截距和斜率的值来表示一次函数的解析式。
一次函数图像的变换
1 平移
通过改变截距或斜率来实现图像在平面上平移。
一次函数图像的性质
1 单调性
斜率大于0时,函数单调 递增;小于0时,函数单 调递减。
2 交点坐标
两个一次函数的交点坐标 可以通过联立两个函数得 到。
3 平移
可以通过变换截距和斜率 来使得函数图像水平或垂 直地平移。
一次函数在坐标系中的位置
1
左右方向
斜率大于0时向右倾斜;小于0时向左倾斜。
2
上下方向
预算线
表示消费者在一个给定预算内 所能购买的各种物品数量的函 数。
生产函数
将劳动和资本的投入变量与产 出的数量变量联系起来。
营销中的一次函数应用
1 价格弹性
价格弹性表示价格微小变化时需求量的变化。可以用一次函数的斜率来描述。
2 广告效果
广告效果与广告费用之间可能存在一次函数关系,以确定最佳广告费用。
一次函数的特征
斜率
斜率描述了直线的倾斜程度。公式为 Δy/Δx。
截距
截距表示了直线在y轴上的截距值。当x = 0时的纵坐 标。
如何画出一次函数图像
1
找到斜率
2
从截距处开始,沿着x轴移动单位长度,
再移动相应的单位斜率,得到直线上的
第二个点。
3
找到截距
先将x设为0,求出y轴截距。

一次函数图像及性质总结(表格)zhyane

一次函数图像及性质总结(表格)zhyane
一次函数图像及性质总结
目 录
• 一次函数图像 • 一次函数的性质 • 一次函数的实际应用 • 一次函数与其他数学知识的联系 • 一次函数的应用题解析
01 一次函数图像
图像形状
直线
一次函数的标准形式为y=kx+b,其 中k为斜率,b为截距。当k≠0时,图 像为一条直线;当k=0时,图像为y轴。
斜率决定方向
02
二次函数的最值问题可以通过求 导找到一阶导数等于0的点,这些 点就是函数的极值点,从而转化 为一次函数的问题。
与线性方程的联系
一次函数与一元一次方程紧密相关, 因为一元一次方程的解就是函数的零 点。
线性方程组的解可以通过消元法或代 入法得到,这些方法在解决一次函数 问题时也经常用到。
与三角函数的联系
详细描述
在日常生活中,我们经常面临各种选择和决策,其中最优化问题是最常见的。例如,在 购物时,我们希望找到价格和质量的最佳平衡点,这可以通过比较不同产品的价格和质
量(即一次函数的斜率和y轴上的截距)来实现。
THANKS FOR WATCHING
感谢您的观看
斜率k决定了直线的倾斜方向。当k>0 时,直线从左下到右上倾斜;当k<0 时,直线从左上到右下倾斜。
图像与坐标轴的交点
与x轴交点
令y=0,解得x的值即为与x轴的交 点。
与y轴交点
令x=0,解得y的值即为与y轴的交 点。
图像的增减性
单调性
根据斜率k的正负判断。k>0时,函数为增函数;k<0时,函数为减函数。
高度与时间的关系
总结词
高度与时间的关系也是一次函数的应用之一。
详细描述
在航空学中,高度和时间的关系通常用一次函数来表示。例如,一个物体从静止开始自由落体运动时,其高度与 时间的关系就是一次函数。

一次函数的图像的应用

一次函数的图像的应用

一次函数图象的应用一、教材分析《一次函数图象的应用》是义务教育课程标准冀教2011课标版教科书八年级下册第21章第4节《一次函数应用》的第三课时。

我在函数的应用的教学中发现学生对图像的理解运用极为困难,因此安排了这节课,目的是让学生注重从函数图象中准确获取信息,提高学生识图能力,培养数形结合的意识,从而利用一次函数的图象解决实际问题,发展形象思维能力,提高数学的应用能力。

为后面学习其它函数图像解决问题奠定良好的基础.二、教学目标1. 进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2. 在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识。

4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点:一次函数图象的应用教学难点:根据图象获取准确的信息,即良好的审题能力和读图能力以及处理和转化条件的能力。

三、教法学法在实际教学中我通过情境教学,使学生主动参与到教学过程当中,经历观察、分析、类比联想、自主探索、合作交流、启发引导、总结概括、拓展运用的教学过程,使学生在具体的情境中辨认、区分和应用,提高了学生运用所学知识解决实际问题的能力和创新能力,从而形成了探索性的教学过程。

四、教学过程:第一环节:联系实际,自然导入请同学们观察生活中函数图像的图片,让学生思考身边函数图像应用的实例,发现函数图像和我们的生活息息相关,从而引入课题.设计意图: 从学生熟悉的生活实例入手,可激起学生的学习热情,加强数学与生活的联系,让学生体会生活离不开数学,函数图像和生活息息相关.从而使学生利用自己的生活经验主动建构知识。

第二环节:回顾反思加深理解1,知识回顾1)若实数a,b满足ab<0,且a<b,则函数y=ax+b的图像可能是()2)已知一次函数y=kx-1,若y随x的增大而增大,则它的图像经过()A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限2.归纳概括一次函数的图像和性质设计意图:通过简单问题的解决和一次函数知识的概括,加深学生对一次函数图像和性质的理解, 从而形成知识网络,使学生系统掌握一次函数的图象和性质,为后面灵活运用图像奠定基础.第三环节: 实践探索 合作交流1. 某学生早上起床太晚,为避免迟到,不得不跑步到学校,但由于平时不注意锻炼身体,结果跑了一段就累了,不得不走完余下的路程。

一次函数的图像性质及其应用(一)

一次函数的图像性质及其应用(一)

一次函数的图像、性质及其应用(一)知识回顾:1. 一次函数是刻画现实世界变量间的关系的最简单的一个模型,有关计时的漏刻,计重的天平、弹簧秤都是一次函数模型.2. 形如)0(≠+=k b kx y 的函数叫做一次函数.【类型一:求一次函数的解析式】1. 已知一次函数)0(≠+=k b kx y ,当41≤≤x 时,63≤≤y ,则b 的值是 . 方法引领:(1)待定系数法是求函数解析式的常用方法,但要注意k 的符号带来的分类讨论.(2)两直线平行,暗示两直线解析式中的k 值相同.(3)交点在x 轴上,隐含交点的纵坐标为0;交点在y 轴上,隐含交点的横坐标为0.变式:2. 在平面直角坐标系中,已知点()()7,4,3,2B A ,直线()0≠-=k k kx y 与线段AB 有交点,则k 的取值范围为 .3. 设一次函数)0(≠+=k b kx y 的图像经过点)2,1(P ,它与x 轴、y 轴的正半轴分别交于B A 、两点,坐标原点为O . 若6=+OB OA ,则此函数的解析式是 .4. 已知直线)3(2a x y -+=与x 轴的交点在()()0,3,0,2B A 之间(包括B A 、两点),则a 的取值范围是 .5. 设一次函数)0(≠+=k b kx y 的图像经过()()2-,0,3,1B A 两点,试求b k ,的值.6. 已知两直线)0()0(22221111≠+=≠+=k b x k y L k b x k y L :;:,若21L L ⊥,则有121-=•k k .(1)应用:已知12+=x y 与1-=kx y 垂直,求k .(2)已知某直线经过点)3,2(A ,且与331+-=x y 垂直,求该直线的解析式.7. 某商业集团新进了40台空调机、60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店. 两个连锁店销售这两种电器每台的利润(元)如下表:y (元).(1)求y 关于x 的函数关系式,并求出x 的取值范围.(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问:该集团应如何设计调配方案,使总利润达到最大?【类型二:一次函数的图像与性质】1. 一次函数)0(≠+=k b kx y 不经过第四象限,则( ).A. 0,0>>b kB.0,0><b kC.0,0≥≥b kD.0,0≥<b k2. 已知a c b a b c b a c c b a k ++-=+-=-+=,且n n m 6952=++-,则关于自变量x 的一次函数mn kx y -=的图像一定经过的象限为( ).A. 一、二B. 三、四C. 二、三D. 一、四方法引领:根据一次函数图像与两常数b k ,的关系求解.3. 如图,直线l 经过第二、三、四象限,l 的解析式是()n x m y +-=2,则m 的取值范围在数轴上表示为( )4. 若0<abc ,直线ac x b a y -=不经过第四象限,则直线()c x b a y ++=一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5. 如图,点C B A ,,在一次函数m x y +-=2的图像上,它们的横坐标依次为2,1,1-,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A. 1B. 3C. ()13-mD. ()223-m6. 一次函数()()m x m y -+-=142和()()3-22m x m y ++=的图像分别与y 轴交于点P 和点Q ,这两点关于x 轴对称,则m 的取值是( )A. 2B. 2或1-C. 1或1-D. 1-7. 在平面直角坐标系xOy 中,点P 的坐标为()1-m 1,m +.(1)试判断点P 是否在一次函数2-=x y 的图像上,并说明理由.(2)如图,一次函数321+-=x y 的图像与x 轴、y 轴分别相交于点B A ,,若点P 在AOB ∆的内部,求m 的取值范围.。

一次函数的图像与应用

一次函数的图像与应用

一次函数的图像与应用一、引言一次函数是数学中常见且重要的一类函数类型。

它的图像呈现出一条直线的特点,具有简洁的数学表达形式和广泛的应用。

本文将分析一次函数的图像特征,并探讨其在实际问题中的应用。

二、一次函数的定义与表达形式一次函数又称为线性函数,其定义域和值域通常为实数集。

一次函数的一般表达形式为:f(x) = ax + b其中,a和b为常数,且a≠0。

函数图像为一条直线,斜率为a,截距为b。

三、一次函数的图像特征1. 斜率的意义一次函数的斜率代表了图像上每单位水平位移对应的垂直位移,即函数的变化率。

当斜率为正值时,图像呈现上升趋势;当斜率为负值时,图像呈现下降趋势;当斜率为零时,图像为水平线。

2. 截距的意义一次函数的截距代表了函数图像与y轴的交点,即当x=0时的函数值。

它反映了一次函数图像在垂直方向上的位置。

3. 变量对函数图像的影响一次函数的图像特征由斜率a和截距b决定。

增大a的绝对值会使图像更陡峭或更平缓,而改变b的值则会上下平移整个图像。

四、一次函数的应用1. 直线运动模型一次函数在直线运动模型中有着广泛的应用。

假设一个物体以固定速度运动,则其位移与时间的关系可以用一次函数表示。

斜率代表了物体的运动速度,截距则代表了物体在起点的位置。

2. 成本与收益分析在商业领域中,一次函数可以用来分析成本与收益之间的关系。

设某产品的生产成本与销售量之间呈现线性变化关系,则一次函数可以描述成本与销售量之间的关系。

商家可以通过分析这个函数来确定最大利润的销售量。

3. 折旧与资产价值在会计领域中,一次函数被用于计算资产的折旧和价值变化。

资产价值随着时间的推移而减少,这种变化可以用一次函数来描述。

斜率表示每年的折旧额,截距代表了初始价值。

4. 温度变化模型一次函数在气象学中也有重要的应用。

温度随着时间的变化通常呈现线性关系。

通过查找一次函数的斜率和截距,我们可以预测未来一段时间内的温度变化趋势。

五、总结一次函数作为一种常见的数学模型,具有简洁的形式和广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数图象的应用》教学设计
【教学目标】
●●知识与技能
能通过函数图象获取信息,发展形象思维,培养学生的数形结合意识及数学的应用能力。

●●教学思考
根据函数图象解决实际问题,发展学生的数学的应用能力。

●●解决问题
通过方程与函数关系的研究,建立良好的知识联系。

●●情感态度与价值观
通过函数图象解决实际问题,培养学生的数学的应用能力,同时,培养学生良好的环保意识和热爱生活的意识。

【重点和难点】
●●重点
一次函数图象的应用
●●难点
正确地根据函数图象获取信息
【课前准备】
投影仪
【教学设计】
创设情景:(大屏幕演示并旁白)
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间T(天)与蓄水量V(立方万米)的关系如教科书
P166图6—6所示:
回答下列问题:
1 干旱持续10天,蓄水量为多少?连续干旱23天呢?
2 蓄水量小于400完立方米时,将发生严重干旱警报,干旱多少天
后将发生严重干旱警报?
3 按照这个规律,预计持续干旱多少天水库将干涸?
组织学生先观察图象,然后讨论。

学生活动
以小组为单位,观察,讨论,选代表回答。

由以前的图象基础,多数同学都能够解答,有困难的同学,可以个别
提示,观察横,纵左标所表示的变量,及现实生活的常识来帮助他们
解决问题;也可以同学们在相互交流中,得到启发。

指导学生通过找点的坐标的形式确定
(用投影仪给出)
教科书P167例
学生活动
学生观察图象,有了上面的基础,要求学生独立完成,然后相互交流解题思路,步骤,方法,并总结在实际生活中积累的经验。

指导学生完成P168的练习。

(用投影仪给出)
小组讨论“议一议”。

学生活动
有了上面的基础,多数同学都能够解答。

老师只需在解答的规范化上作出详细的解答,纠正解答中的不足。

引导学生进行本节课小结
布置作业:
P168习题6.6的1。

相关文档
最新文档