枕头坝一级水电站工程枢纽布置设计

枕头坝一级水电站工程枢纽布置设计
枕头坝一级水电站工程枢纽布置设计

水电站大坝工程施工总布置方案

水电站大坝工程施工总布置方案 1.1 施工总布置特点 (1)某电站已开工较长时间,前期设施完善,交通系统、生活营地、施工设施区场地、供料及吊物平台、砂石加工系统和混凝土拌和系统均已基本形成,施工布置的总体条件较好。 (2)坝肩开挖边坡陡峭,根据施工需要,坝肩、边坡及坝顶平台需布置部分生产设施,布置干扰较大。施工场地狭窄,部分生产设施(如冷水站)需采用移动结构。 (3)部分施工设施区距施工现场较远,如布置在420沟中部和下游侧的钢衬加工厂和金结加工厂距大坝超过6km。设施区较为分散,统一管理有一定难度。 1.2 施工布置原则 根据招标文件和左岸现有的场地条件,结合场内场外交通线路,分区规划,按紧凑实用、施工方便、经济合理、节约用地的原则布置。

(1)充分利用业主提供的场地及设施,结合自有条件和施工要求,本着利于生产,方便生活,易于管理的原则进行布置。 (2)施工布置做到能充分发挥施工工厂设备的生产能力,满足施工总进度和施工高峰强度的要求。 (3)在满足施工强度的前提下,尽可能缩小各生产辅助设施规模,减少建筑面积和占地面积。 (4)主要施工企业力求集中布置,设置排水系统,满足场内排水要求。 (5)各施工场地及营地均按要求配置足够可靠的环保设施及消防设施,避免施工对公众利益的损害,并考虑为其它承包人提供方便。 1.3 施工场地规划 根据招标文件,业主提供六个施工设施区,即左岸上游左-Ⅳ渣场公路附近、左岸上游回头弯、左-0号弃渣场顶部,左岸上游存渣场、420沟中部和420沟下游侧(靠近油库方

向)。该六块场地特性见表4-1,主要生产设施均集中布置在这六块场地内。 表4-1 发包人提供的施工设施区特性表 另根据大坝施工需要,在左岸中线公路与坝肩下游结合处布置制浆站和供风站。在左岸坝肩边坡布置前方值班室、

某水电站施工方案

第1章概述 1.1 编制依据 施工组织设计编制依据如下: (1)本工程招标文件中规定的合同范围、工作内容和工程量、工期要求、施工条件、技术条款及招标图纸; (2)招标文件补充通知; (3)现场踏勘及标前会所掌握的情况; (4)在招标文件中明确要求执行的施工技术规程、规范及技术要求; (5)本承包商在同类工程施工中的成功经验及资源。 1.2 工程概况 广西左江山秀水电站位于左江下游河段、扶绥县城上游14km处,是左江综合利用规划中的第三梯级,以发电为主,兼有航运、电灌、养殖、旅游等综合效益的项目,坝址以上集雨面积29562km2,坝址多年平均流量600m3/s,多年平均径流量为189.3亿m3,正常水位86.5m,死水位85m,水库总库容 6.063亿m3,电站装机容量3×26MW=78MW,年利用小时数4522h,多年平均发电量3.527亿kW.h。船闸通航标准为Ⅴ级船闸—顶2 300t分节驳船队,水库蓄水后可渠化河道130km。 本工程枢纽建筑物由河床式厂房、溢流闸坝、船闸、两岸接头重力坝、右岸接头土坝等主要建筑物组成,与河流流向垂直。从右至左依次布置各个挡水建筑物:0+000~0+76.26为右岸接头土坝、0+76.26~0+110.26为右岸连接重力坝、0+110.28~0+184.32为厂房、0+184.34~0+342.94为闸坝、0+342.96~0+370.96为船闸、0+370.98~0+435.98为左岸接头重力坝。坝顶总长435.98m,坝顶高程99m。 1.3 工程施工条件 (1)水文气象条件 左江是珠江流域西江水系的主要支流之一,流域位于广西西南部,集雨面积32068km2,坝址以上集雨面积为29562 km2。左江干流从龙州自西向东蜿蜒而下,至龙州县上金镇有明江自右岸汇入,至崇左县驮怀村附近有黑水河自左岸汇入,经崇左、扶绥、邕宁等县,在邕宁县宋村附近与右江汇合后称郁江,再流经约30km就到广西的

某水电站施工组织设计报告

8 施工组织设计 8.1 施工条件 (1) 8.1.1 工程条件 (1) 8.1.2 自然条件 (3) 8.1.3 市场条件 (4) 8.2 天然建筑材料 (4) 8.2.1 混凝土骨料 (4) 8.2.2 块石料 (1) 8.3 施工导流 (1) 8.3.1 首部枢纽施工导流 (1) 8.3.2 压力管道过河段施工导流....................... 错误!未定义书签。 8.3.3 厂区施工导流................................. 错误!未定义书签。 8.4 主体工程施工 (4) 8.4.1 首部枢纽工程施工 (4) 8.4.2 引水隧洞施工 (5) 8.4.3 调压井施工 (8) 8.4.4 压力管道施工 (9) 8.4.5 厂房工程施工 (10) 8.5 施工交通运输 (10) 8.5.1 对外交通 (10) 8.5.2 场内交通运输 (11) 8.6 施工工厂设施 (12) 8.6.1 砂石加工系统 (12) 8.6.2 砼拌和系统 (12) 8.6.3 风、水、电及通讯 (12) 8.6.4 其它施工工厂 (15) 8.7 施工总布置 (16)

8.7.1 施工布置条件 (16) 8.7.2 施工总布置原则 (16) 8.7.3 施工分区规划 (16) 8.7.4 弃碴规划 (18) 8.7.5 施工占地 (18) 8.8 施工总进度 (19) 8.8.1 设计依据 (19) 8.8.2 施工分期 (19) 8.8.3 工程准备期 (19) 8.8.4 主体工程施工期 (20) 8.8.5 工程完建期 (21) 8.8.7 施工强度及高峰人数 (21) 8.9主要技术供应 (21) 8.9.1 主要施工建筑材料 (21) 8.9.2 主要施工机械设备 (22)

广西桂江巴江口水电站枢纽总体布置方案设计

广西桂江巴江口水电站枢纽总体布置方案设计 广西水利电力勘测设计研究院周万文 摘要: 本文结合桂江巴江口水电站的实际,在水电站枢纽总体布置方案设计,充分结合工程特点和具体条件,协调好永久工程与临时工程之间的关系,充分利用坝址处河中沙洲有利地形,合理考虑永临结合,围绕力求布局合理美观、工程具有良好运行条件、节省工程投资、妥善解决施工导流和施工通航、利于加快施工进度、工程能及早发挥效益等问题进行研究和比选,合理确定枢纽各建筑物布局及各专业之间的衔接关系,选定了一个布置紧凑、协调美观、具有良好运行条件、方便管理的枢纽总体布置方案,为本工程顺利实施及使工程获得更大整体效益奠定了基础。也为同类电站设计提供了可借鉴的经验。 关键词:巴江口水电站总体布置设计 1.工程概况 桂江巴江口水电站是桂江干流综合利用规划(平乐以下河段)6个梯级中的第一个梯级,是一座以发电为主,兼顾航运及其他的综合利用工程。坝址位于桂江中游平乐县巴江村上游 1.5km处,坝址以上集雨面积12621km2,多年平均流量417m3/s,多年平均径流量131.5亿m3。水库正常蓄水位97.6m,总库容2.163亿m3;电站装机容量3×30MW,多年平均发电量427.57GW.h;船闸设计一次通过能力2×100吨,为Ⅵ级船闸,设计年过坝货运量80万吨。枢纽工程属Ⅱ等工程,主要永久建筑物按二级建筑物设计,设计洪水标准为P=1%,相应洪峰流量16500m3/s,设计洪水位为96.98m,坝下水位为87.96m;校核洪水标准为P=0.1%,相应洪峰流量21700m3/s,校核洪水位为100.02m,坝下水位为92.00m。 坝址岩层以砂岩为主夹页岩,地质构造简单,为倾向南西的单斜地层,无大的断裂构造通过枢纽区。工程区地震动峰值加速度<0.05g,反应谱特征周期为0.35s。对应地震基本烈度低于Ⅵ度。

水电站设计方案.doc

坝后式水电站毕业设计 5.1 设计内容 5.1.1 基本内容 5.1.1.1 枢纽布置 (1) 依据水能规划设计成果和规范确定工程等级及主要建筑物的级别; (2) 依据给定的地形、地质、水文及施工方面的资料,论证坝轴线位置,进行坝型选择; (3) 论证厂房型式及位置; (4) 进行水库枢纽建筑物的布置(各主要建筑物的相对位置及形式,划分坝段),并绘制枢纽布置图。 5.1.1.2 水轮发电机组选择 (1) 选择机组台数、单机容量及水轮机型号; (2) 确定水轮机的尺寸(包括水轮机标称直径D1、转速n、吸出高度Hs、安装高程Za); (3) 选择蜗壳型式、包角、进口尺寸,并绘制蜗売单线图; (4) 选择尾水管的型伏及尺寸; (5) 选择相应发电机型号、尺寸,调速器及油压装置。 5.1.1.3厂区枢纽及电站厂房的布置设计 (1) 根据地形、地质条件、水文等资料,进行分析比较确定厂房枢纽布置方案; (2) 核据水轮发甴机的资料,选择相应的辅助设备,进行主厂房的各层布置设计; (3) 确定主厂房尺寸; (4) 副厂房的布置设计; (5) 绘制主厂房横剖面图、发电机层平面图、水轮机层和蜗壳层平面图各?张。 5.1.0 选作内容 5.1.2.1 引水系统设计 (1) 进水口设计。确定进水口高程、型式及轮廓尺寸; (2) 压力管道的布置设计。确定压力管道的直径;确定压力管道的布置方式和各段尺寸;

5.2 基本资料 本水电站在MD江的下游,位于木兰集村下游2km处。坝址以上流域控制面积30200km2。 本工程是一个发电为主,兼顾防洪、灌溉、航运及养鱼等综合利用的水利枢纽。电站投入运行后将承担黑龙江东部电网的峰荷,以缓解系统内缺乏水电进行调峰能力差的局面。 本工程所在地点交通比较方便,建筑材料比较丰富,是建设本工程的有利条件。电站地理位置图见图5-1。

舟坝水电站大坝工程施工组织设计方案(全套)

舟坝水电站大坝工程项目施工组织设计方案

目录 第一章概述 (1) 第二章施工总进度与网络计划 (6) 第三章施工总平面布置 (9) 第四章砂石骨料生产 (21) 第五章施工期水流控制方法及说明 (27) 第六章土石方开挖工程施工 (39) 第七章锚索和锚杆喷锚工程施工 (56) 第八章砼工程施工 (66) 第九章灌浆工程施工 (102) 第十章浆砌石工程施工 (119) 第十一章原型观测工程施工 (128) 第十二章闸门和启闭机工程 (141) 第十三章投入工程施工主要机械设备 (159) 第十四章质量保证体系文件 (164) 第十五章保证施工安全的技术措施及组织措施 (167) 第十六章环境保护与文明施工措施 (171)

第一章概述 1.1 工程概况 舟坝水电站位于**市沐川县舟坝镇境内的马边河干流上,系马边河干流梯级开发的第5级电站。与沐川县城沙湾、**及下游的黄丹水电站均有公路相通。距沐川县城50km,距沙湾67km,经沙湾至**共105km,至下游在建的黄丹电站13km,已建的大渡河铜街子电站在至沙湾的公路上,距本电站约37km。成昆铁路在沙湾通过,交通较方便。 本电站装机2台,单机容量51MW,总装机容量102MW。电站枢纽由拦河大坝、进水口、引水隧洞、压力管道及地面厂房等建筑物组成。工程等级为Ⅱ等工程,永久性主要水工建筑物为2级,次要建筑物为3级。 拦河大坝位于舟坝大桥上游250m处,为碾压砼重力坝,坝顶高程433.50m,坝顶轴线长172.00m,最大坝高72.5m(不含齿槽深度8.00m),坝身设置5个溢流表孔,溢流堰顶高程413.00m,孔口净宽12.00m。 1.2 水文气象和工程地质 1.2.1 水文和气象条件 马边河流域地处盆地与高山过渡带,属亚热带季风气候。由于域内高差悬殊,气候变化显著,上游河源地区,为高山气候,较为寒冷潮湿,中下游特点是冬暖夏热、湿润多雨。舟坝地区多年平均降雨量为1270.4mm,一日最大降雨量为147.5mm,多年平均降雨天数192天。根据犍为和沐川(与坝址直线距离分别为28km和24km)两个气象站资料统计,年平均气温分别为17.5℃和17.3℃,历年极端最高气温为38.2℃和37.9℃,极端最低气温为-2.6℃和-3.9℃,年平均相对湿度为81%和84%,历年最小相对湿度均为18%,年平均蒸发量为1096.5mm和957.6mm,多年平均风速1.5m/s,瞬时最大风速31.0m/s,相应风向NW,据清溪站统计,多年平均水温15.8℃,最高水温26.9℃,最低水温6.3℃。 马边河径流主要来源降水。洪水由暴雨形成,径流年际变化较小,年内分配不均,主汛期为6~9月,其中7~8月最为集中。舟坝电站多年平均流量125m3/s。马边河属山区性河流,山高坡陡,集流迅速,洪水涨落快,

AAA水电站枢纽布置设计毕业论文

AAA水电站枢纽布置设计毕业论文 目录 第一章综合说明 (3) 1.1 流域概况 (3) 1.2 水文气象 (3) 1.2.1 水文及气象 (3) 1.2.2水文气象及径流条件 (3) 第二章工程地质及工程任务和规模 (4) 2.1地形地质 (4) 2.1.1库区工程地质情况 (4) 2.2 区域及水库地质 (5) 2.2.1地形地貌 (5) 第4章第三章坝址、坝轴线、坝型选择及枢纽布置 (6) 3.1坝址的选择 (6) 3.1 坝轴线的选择 (7) 3.1.1坝轴线的选择原则 (7) 3.1.2 坝轴线的选择 (8) 3.2 坝型选择 (8) 通过上述比较,我认为选择重力坝比较适合,因此我选择的是混凝土重力坝。 (8) 3.3枢纽布置 (8) 3.3.1布置原则: (8) 3.3.2枢纽的总体布置 (9) 3.3.3布置方案 (9) 第4章第四章工程布置及建筑物 (10) 4.1 非溢流坝段设计 (10) 4.1.1 坝体断面设计 (10) 4.1.2确定坝顶高程 (11) 4.1.3坝顶宽度的拟订 (14) 4.1.4坝坡的拟订 (15) 4.1.5上、下游起坡点位置的确定 (15) 4.2剖面设计 (15) 4.3重力坝非溢流坝段主要荷载及计算 (15) 4.3.1 (15) 4.3.2抗滑稳定性极限状态 (22) 4.3.3坝体应力计算 (27) 4.4溢流重力坝的设计 (41) 4.4.1堰顶高程的确定 (41) 4.4.2计算 (41)

4.5消能设计及计算 (45) 4.5.1、消能防冲设计 (45) 4.5.2挑流鼻坎的设计 (46) 4.5.3水舌挑射距离和冲刷坑深度的计算 (46) 4.5进水口段的确定 (48) 4.6引水管道的确定 (50) 4.7水电站厂房的布置设计 (50) 4.6.1主厂房的平面设计 (51) 4.6.2主厂房长度的确定 (51) 4.6.3主厂房的高程、高度设计 (52) 4.6.4主厂房的宽度设计 (54) 4.6.5副厂房的平面设计 (54) 4.6.76 主变压器场 (54) 4.6.7 开关站 (54) 第五章施工组织设计 (55) 5.1 概述 (55) 5.2施工导流方法 (55) 5.3 围堰设计 (55) 第六章结束语 (56)

水电站厂房设计

第十一章水电站地面厂房布置设计 第一节水电站厂房的任务、组成及类型 一、水电站厂房的任务 水电站厂房是水能转为电能的生产场所,也是运行人员进行生产和活动的场所。其任务是通过一系列工程措施,将水流平顺地引入水轮机,使水能转换成为可供用户使用的电能,并将各种必需的机电设备安置在恰当的位置,创造良好的安装、检修及运行条件,为运行人员提供良好的工作环境。 水电站厂房是水工建筑物、机械及电气设备的综合体,在厂房的设计、施工、安装和运行中需要各专业人员通力协作。 二、水电站厂房的组成 水电站厂房的组成可从不同角度划分。 (一)从设备布置和运行要求的空间划分 (1)主厂房。水能转化为机械能是由水轮机实现的,机械转化为电能是由发电机来完成的,二者之间由传递功率装置连接,组成水轮发电机组。水轮发电机组和各种辅助设备安装在主厂房内,是水电站厂房的主要组成部分。 (2)副厂房。安置各种运行控制和检修管理设备的房间及运行管理人员工作和生活用房。 (3)主变压器场。装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。 (4)开关站(户外配电装置)。为了按需要分配功率及保证正常工作和检修,发电机和变压器之间以及变压器与输电线路之间有不同电压的配电装置。发电机侧的配电装置,通常设在厂房内,而其高压侧的配电装置一般布置在户外,称高压开关站。装设高压开关、高压母线和保护设施,高压输电线由此将电能输送给电力用户。 水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二)从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1)水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2)电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。 (3)电气控制设备系统。即电气二次回路系统,包括机旁盘、厉磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统,如图11-1所示。

水电站大坝工程主要安全技术措施详细版

文件编号:GD/FS-8802 (解决方案范本系列) 水电站大坝工程主要安全技术措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

水电站大坝工程主要安全技术措施 详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1 土石开挖与爆破作业 1.1 开挖自上而下分层作业,若有不安全因素,必须及时处理。 1.2 开挖进行处理时,应遵守下列规定: (1)严禁站在石块滑落的方向撬挖或上下层同时撬挖。 (2)在撬挖工作面下方严禁通行,并有专人监护。 (3)撬挖人员应有适当间距。在悬崖、陡坡上应系好安全绳,配戴安全带,一般应在白天作业。 1.3 开挖前,必须对边坡岩体进行鉴定,确认稳

定或采取措施后方可开挖。 1.4 每次放炮后,应清除浮石,若发现非撬挖所能排除的险情时,应果断地采取措施处理。处理时,应有专人监护,及时观察险石动态。 1.5 爆破作业,必须统一指挥,统一信号,划定安全警戒区,并明确安全警戒人员,在装药联线开始前,无关人员一律退出作业区。 1.6 爆破前,现场施工人员一律退到安全地点隐蔽,爆破后,经检查确认安全后,方可进行其它工作。 2 运输车辆 2.1 必须执行公安部制订的交通规则,严禁无证驾驶、酒后开车、无令开车。 2.2 自卸汽车、装载机除驾驶室外,不准乘人。驾驶室不准超额坐人。

水电站施工方案

第一章编制综合说明 1.1编制依据 1、本施工组织设计根据云南省腾冲县永兴河一、二级水电站首部枢纽、压力前池、厂区枢纽及压力管道土建和安装工程《招标文件》和《招标图纸》; 2、现行水利水电工程建设的技术规范、验收标准和有关规定; 3、国家及当地政府的相关法规、条例和政策; 4、现场调查资料及我单位施工能力及以往类似工程施工经验; 5、我局拟为本工程配备的人员、机械设备、测量检测设备等资源配置情况; 1.2工程概况 永兴河梯级电站位于腾冲县猴桥镇永兴村, 永兴河(又名松山河)属槟榔江左岸一级支流。永兴河梯级水电站工程由新塘河调节水库、一级电站和二级电站组成。新塘河水库为季调节水库,位于永兴河支流新塘河上,坝址河道高程约1915m,坝址以上径流面积16.73km2。新塘河水库由面板堆石坝、溢洪道、竖井、输水隧洞组成。面板堆石坝最大坝高69.65m,坝顶高程1972.65m,校核洪水位1971.81m(P=0.1%),正常蓄水位1970m,有效调节库容量约612.8万m3;溢洪道为有闸控制宽顶堰,堰宽5m,堰顶高程1966.50m;竖井内径5.5m,井内设弧形闸门,竖井前设一道平板检修闸门;输水隧洞长461.00m,进口底板高程为1930.00m,隧洞出口高程1929.54m,库水被输送到邻谷(小干河),于高程约1902m处汇入崩麻河。 永兴河一级水电站首部枢纽位于马房园口,河床高程1898.00m,河道顺直,坡降为7%,河床覆盖层为冲洪积漂石混卵石砾岩堆积,下伏基岩为弱风化花岗闪长岩,岩体致密坚硬,渗漏弱、完整性好、强度高,基本不存在深层抗滑稳定问题,为较好的天然坝基。由闸坝、溢流坝,取水口,无压隧洞,压力前池、压力管道、厂房等建筑物组成。 永兴河二级电站取水口位于一级厂房下游,压力隧洞穿杨梅坡拦门山,沿河道左岸布设,压力管道沿杨梅坡敷设,引水线路总长2138.00m,其中压力隧洞长1138.00m,压力钢管长约1000m厂房位于老寨村大窝子田,利用水头412.30m,机组设计流量6.0m3/S,装机容量2×10MW,安装两台立轴冲击式水轮发电机组永兴河二级水电站由大坝,取水口,有压隧洞,压力管道、厂区等建筑物组成。 云南省腾冲县永兴河一、二级水电站首部枢纽、压力前池、厂区枢纽及压力管道土建和安装工程规定的开工日期为2012年10月1日,本标段完工日期为2013年12月31日,本标段施工总工期为15个月。 1.3水文、气象条件及工程地质 水文气象及工程地质资料详见《参考资料》。 永兴河一级水电站首部枢纽位于马房园口,河床高程1898.00m,河道顺直,坡降为7%,河床覆盖层为冲洪积漂石混卵石砾岩堆积,下伏基岩为弱风化花岗闪长岩,岩体致密坚硬,渗漏弱、完整性好、强度高,基本不存在深层抗滑稳定问题,为较好的天然坝基。 永兴河一级水电站厂区枢纽布置于“矛草坡”脚,永兴河右岸I级阶地,呈狭长条状,顺河向长60~80m,宽10~15m;高程1510.0~1513.2m,阶面比河水面高出1~4m。河流在此的走势为左岸侵蚀、右岸沉积,于厂房所在的阶地稳定有利。 永兴河二级水电站首部枢纽位于永兴河一级水电站的下游100m处的矛草坡脚拦门山,河床高程约1501.80m,河道顺直,坡降为12.7%,河床覆盖层为冲洪积漂石混卵石砾岩堆积,下伏基岩为花岗闪长岩。岩体致密坚硬,渗漏弱、完整性好、强度高,基本不存在深层抗滑稳定问题,为较好的天然坝基。 1.4施工交通条件 1.4.1对外交通条件

某水电站施工组织设计完整版

(此文档为word格式,下载后您可任意编辑修改!) 某水电站施工组织设计 第一章工程概况 1.1 工程概况 1.1.1概况 (1)枢纽布置 某水电站坝址位于修河某峡谷出口下游约500m,坝址距修水县城14.5km。枢纽建筑物主要由混凝土坝、土坝、引水发电系统等组成,本标为引水发电系统。 引水发电系统布置于右岸,由引水明渠、发电厂房和尾水渠组成。引水渠前清库段长718.39m,引水渠长218.95m,渠底宽度35m;厂房布置在冲沟出口,其长度为65.4m、宽度为14m、高度为39.41m,厂房内安装2台单机容量为20MW的贯流式发电机组尾水渠长度590.06m,渠底宽15~56m。 1.1.2 自然条件 (1)水文气象 修河流域位于亚热带季风气候区,暧湿多雨,气候温和,多年平均气温16.50C,多年平均降雨量1618mm(修水县气象站资料),约一半降雨量集中在4 ~6月。坝址以上集雨面积为5343km2,多年平均流量为151m3s,洪水多由暴雨形成。3月份开始涨水,4~7月份为汛期,4个月的水量占全年总水量的65.7%,全年最大洪水多出现在

6月份,5月份和7月份次之,洪峰历时一般3~5d。8月~次年2月份为枯水期,尢以10月~次年1月为最枯时段,。4个月的水量占全年水量的10.2%。 (2)工程地质 线路全长约1625m,由引水明渠,厂房和尾水明渠组成。引水线路在清库段后,由北280西转向北,经Ⅱ级阶地开挖明渠进入发电厂房,再于Ⅰ、Ⅱ级阶地形成尾水明渠,渠向由北折转为北600东入修河。 1)引水明渠。位于渡槽以北Ⅱ级阶地,地面高程一般92.00~96.00m,地形平坦。明渠冲积物厚一般为5~10m,上部主要为粘土、粉质粘土,含少量砾粒、卵粒;下部为砂卵砾石加粘土,厚1.8~3.9m,局部仅0.5m。明渠右侧丘岗地带为残坡积物覆盖,厚一般为2~4m。下伏基岩为泥质粉砂岩或粉砂质泥岩,基岩面高程83.00~86.00m,强风化下限深度一般为10~15m。 2)厂房。位于六都Ⅱ级阶地,主厂房紧邻右侧的红层丘岗。阶面高程93.00~96.00m,地形较平坦。厂址覆盖层厚度一般为10~13m,近轴线附近与其东侧覆盖层较薄,为4~10m,厂房西北角部位最厚,达19.8m。冲积物上部一般为粉质粘土、粘土,含少量卵砾石;下部为砂卵砾石夹粘土,厚度1.5~3.9m,西北角处最厚达7.95m。 下伏基岩为白垩系含砾中粗砂岩、砂砾岩,两种岩性质相间或相夹产生,岩性较不均一,强度变化较大。厂址基岩面高程一般为83.00~84.00m,西北角和东南角一低一高,高程分别为73.52、90.72m。由于岩性软弱,又不均匀,岩体风化较深且变化较大。轴线附近强风化

甘溪三级水电站枢纽布置设计

甘溪三级水电站枢纽布置设计 1工程概况 甘溪三级水电站位于浙江省临安市甘溪中游,是甘溪梯级开发的第三级水电站,属典型的中水头引水式电站。工程枢纽主要由渠首枢纽、无压输水隧洞、前池、高 压管道、发电厂房和尾水渠组成。电站装机容量2×400kW,设计水头34.6m,单机最大过流量1.5m3/s。多年平均发电量223万kW?h,年利用小 时数2788h。电站出线T接至10kV甘溪线并网,输电线路长度为500m。 甘溪是天目溪的一条支流,上游建有甘溪一级水电站和甘溪二级水电站。甘溪 一级水电站装机容量2×160kW,坝址控制流域面积19.6km2,水库总 库容214万m3。甘溪二级水电站装机容量3×500kW,利用集雨面积33.5km2。甘溪流域内雨量充沛,多年平均降雨量1625mm。多年平均气 温15.6℃,极端最高气温41.6℃,极端最低气温-13.2℃。 甘溪三级水电站渠首枢纽位于甘溪二级水电站尾水出口下游20m处,坝址控 制流域面积40.3km2,区间引水集雨面积2km2。多年平均流量1.18 m3/s,年径流量3721万m3。坝址设计洪水流量386m3/s(P=10%),校核洪水流量522m3/s(P=3.33%)。工程区地质条件简单,出露基岩 为奥陶系上统於潜组页岩和砂岩,河床处砂砾石覆盖层厚1~3m,山坡处覆盖层 厚0.5~2m,两岸台地覆盖层较厚。河道中水质清澈,泥沙含量很少。 2方案选择 2.1坝址选择 甘溪三级水电站是甘溪二级水电站的下一个梯级电站,坝址选择的原则为:1)满足与上级电站尾水位的衔接;2)满足进水闸和溢流堰的布置要求;3)不淹没

耕地和房屋;4)使渠首枢纽工程造价最低。根据地形地质条件,坝址选定在甘溪二级水电站尾水出口下游20m处,该段河床宽约35m,坝型采用浆砌石溢流坝。 2.2厂址选择 厂址位于潘家村乌浪口,电站尾水排入支流乌浪溪中。设计中对上厂址方案和下厂址方案进行比选,下厂址方案与上厂址方案相比,水头增加3.6m,电能增加23万kW?h,效益增加9万元,投资增加25.2万元,差额投资经济内部收益率35.5%,故选用下厂址方案。 2.3无压输水系统方案选择 无压输水系统有隧洞方案和明渠结合隧洞方案两种布置形式,两方案的轴线长度基本相同。明渠结合隧洞方案是进水闸后接长度为425m的浆砌石明渠,其后仍为隧洞。经过比较,隧洞方案较明渠结合隧洞方案减少投资6.2万元,隧洞方案日常维护工作量少,且不占林地,故无压输水系统选用隧洞方案。 3主要建筑物 3.1渠首枢纽 渠首枢纽由拦河堰、进水闸和拦沙坎组成。拦河堰为折线型浆砌块石实用堰,溢流段长31.1m,堰顶高程224.63m,最大堰高2.23m,堰顶宽1.5m,上游面垂直,下游面坡度1∶2。堰体采用M7.5浆砌块石砌筑,外包30cm厚C20混凝土。由于上下游水位差小,溢流堰仅设置4m长的浆砌块石护坦来消能,堰体防渗采用混凝土防渗墙。

小型水电站取水坝设计分析

小型水电站取水坝设计分析 【摘要】从我国小型水电站的建设情况就可以知道,山区性河流是小型水电站建设的地方。通常情况下,电站开发需要采用引水式水电站。在实际应用中,渠道取水坝采用堤坝取水的方式,取水坝的形状主要采用溢流坝,在汛期结束后有可能导致较为严重的泥沙淤积,使得冲砂闸门开启使用非常困难,随后就会有大量的泥沙冲进水渠。为改善这种状况就需要将溢流坝改为闸坝,这样就能保证水坝的安全运行,降低水渠沙含量。本文就小型水电站取水坝设计进行分析。 【关键词】小型水电站;取水坝;设计 引言 在经济快速发展的过程中,小型水电站的发展速度越来越快,与此同时要求越来越高。当前,小型水电站由于受到建设位置的影响,泥沙含量较高。为降低小型水电站的泥沙含量,通常都会在设计的进行排污改造。针对此种状况,进行坝后式水电站,如图1所示。但是从实际中了解到,即使小型水电站设置了排污栅,但是在取水的时候,同样会遇到多泥沙的现象。针对此种情形,在小型水电站设计的过程中,应当针对取水坝应用的实际情况展开分析,避免取水坝受到多种因素的影响。 图1 坝后式水电站布置图 1 小型水电站建设状况 相对而言,我国水资源较为丰富,除大江、大河之外,小型水电站建设居多。通常情况下,小型水电站建在主干流一级、二级之流上进行开发,而水电站所处的位置多为山区性河流,流域面积相对较小,河流不够长,河道比降较大,洪水过程呈现出徒涨徒落单峰型、汇流历时较短。河流流域的森林覆盖面积相对较小,汛期河道水流的泥沙含量相对较大,在遇到强暴雨的时候还会产生泥石流地质性灾害。现如今,小型水电站的开发普遍采用引水式电站,但是水电站的引水量相对较小,渠道取水坝通常选用无调节式的低坝取水,该种取水坝主要由进水闸、冲砂闸与溢流坝组成,在坝型选择方面采用重力式砌石坝或者是混凝土坝,冲砂闸采用单孔冲砂,采用这种冲砂闸门能够保证进水闸闸前“门前清”的运行方式。 2 小型水电站取水坝设计分析 2.1 当前水电站运行状况 引水式水电站渠首采用的是低坝取水,溢流坝的高度基本保持在3-8m的范围,另外由于河床比较陡,使得形成水库库容量较小,无任何储蓄能力,在汛期一次泥沙就可以将水库淤平,将坝前河床抬高,产生一条深槽形,使得河流主道流向改道。已经被淤平的水电站主要有橄榄河一级水电站、三江口水电站、独龙

大型水电站大坝开挖工程施工组织设计

第一章概述

第一章概述 1.1 工程概况 xxx水电站位于贵州省余庆县xxx口上游1.5km的xx上,上游距xxx水电站137km,下游距河口涪陵455km,控制流域面积43250km2,多年平均径流量226亿m3。工程开发的主要任务是发电,兼顾航运、防洪及其他综合利用。水库总库容64.51亿m3,调节库容31.54亿m3,正常蓄水位630m。电站装机容量3000MW,保证出力751.8MW,年发电量96.67亿kw·h,是贵州省和xxx干流最大的水电电源点。 xxx水电站属Ⅰ等工程,大坝、泄洪建筑物、电站厂房等主要建筑物为Ⅰ级建筑物,次要建筑物为3级建筑物。 枢纽由大坝、泄洪消能建筑物、电站厂房、航运及导流建筑物等组成。河床布置混凝土双曲拱坝,坝身表、中孔泄洪,坝下水垫塘消能;左岸布置泄洪洞作为辅助坝身泄洪的通道,并预留通航运建筑物和布置两条导流洞;右岸布置引水式地下发电厂房系统及一条导流洞,坝基防渗采用灌浆帷幕。拦河大坝采用混凝土抛物线型双曲拱坝,坝顶高程640.50m,河床建基面高程408.00m,最大坝高232.5m。 坝后设水垫塘和二道坝,水垫塘采用平底板封闭抽排方案。水垫塘净长约304m,底宽70m,断面型式为复式梯形断面。二道坝由下游RCC围堰部分拆除形成,顶高程441.00m,底高程408.00m,最大坝高33m,二道坝下游设置长约80m的防冲护坦。 泄洪洞布置于左岸,采用短有压进水口接明流隧洞型式,进口底高程590.00m,控制断面孔尺寸为11m×12m,泄洪洞为无压洞,洞线为直线,全长574m,出口采用挑流消能型式,预挖冲坑位于左岸1#、2#导流洞出口明渠处。 引水式地下厂房系统布置于右岸,由进水口、引水隧洞、主厂房、主变洞、尾水隧洞、调压室、尾水出口及开关站等组成,电站装机5×600MW。 上游RCC围堰、下游混凝土围堰为Ⅳ级临时建筑物,上游RCC围堰为三心圆拱围堰,堰顶高程488.50m,顶宽6m,下游混凝土围堰为重力围堰(结合二道坝),堰顶高程464.60m,顶宽8m. 大坝开挖边坡由两岸上游侧边坡、下游侧边坡及两岸拱端边坡组成。 左岸上游边坡在高程435.00m以上边坡走向NE81?~86?,边坡走向与岩层走向交角分别为41?~46?、46?~51?,为斜交逆向坡,边坡总体稳定条件较好。高程480.00m~540.00m 高程之间为垂直边坡,其他部位边坡单级坡比在1:0.1~l:0.2之间,开挖边坡每15m高设

水电站施工组织设计毕业设计

某水电站(毕业设计) 施 工 组 织 设 计 分院 班级 专业 姓名 学号 指导教师 目录 1 施工条件 (8) 1.1 工程条件 (8) 1.1.1 工程地理位置 (8)

1.2.1 施工场地 (12) 1.2.2 水文气象条件 (12) 1.2.3 工程地质条件 (14) 1.2.4 市场条件 (16) 1.3.1 混凝土骨料 (16) 1.3.2 料场概况 (17) 1.3.3 料场选择 (18) 1.3.4 块石料 (18) 2 施工导流 (19) 2.1 导流标准 (19) 2.2 导流明渠的布置 (22) 2.2.1 明渠的线路选择和布置要求 (22) 2.2.2 明渠进、出口的布置 (23) 2.2.3 导流时段及导流设计流量 (23) 2.3 导流方式 (24) 2.4 导流方案 (25) 2.5 导流建筑物设计 (25) 2.5.1 导流明渠 (25) 2.5.2 围堰 (26) 2.5.3 围堰施工设计图 (26) 2.5.4 首部枢纽导流建筑物工程量详见表8 (27)

2.6.1 导流明渠 (28) 2.7 围堰施工 (28) 2.8 计算施工导流机械人员配置 (30) 2.8.1 导流明渠的配置计算 (30) 2.8.2 导流明渠编织袋土石填筑 (34) 2.8.3 围堰的施工配置计算 (36) 2.9 截流 (39) 2.10 基坑排水 (39) 3 主体工程施工 (41) 3.1 首部枢纽工程施工 (41) 3.1.1 工程特性 (41) 3.1.2 主要工程量 (42) 3.1.3 施工程序 (43) 3.1.4 施工方法 (43) 3.1.5 施工机械及人员配置计算 (45) 3.2 引水隧洞工程施工 (64) 3.2.1 工程概况 (64) 3.2.2 主洞洞门施工 (64) 3.2.3 主体工程施工方案 (67) 3.2.4 爆破耗药量设计 (72) 3.2.5 施工支洞布置 (73)

某水电站枢纽布置设计及深入设计部分(土石坝方向)—毕业设计资料

毕业设计资料 (土石坝方向) 学生姓名 所在班级 指导教师 昆明理工大学电力工程学院 水电教研室 2012年2月

一、枢纽任务 本枢纽工程同时兼有防洪、发电、灌溉、渔业等综合作用。 1. 发电 装机24 MW,多年平均发电量1.2亿度。 本电站装3台8MW机组。正常蓄水位为2826.8米,汛期限制水位为2826.8米,死水位为2796.0米,3台机组满发时的流量为44.1秒立米,尾水位为2752.2米。 厂房型式为引水式,厂房平面尺寸为32×13米,发电机高程为2760米,尾水管底高程为2748米,厂房顶高程为2772米。副厂房平面尺寸为32×6平方米。安装场平面尺寸为8×13平方米。开关站尺寸为32×20平方米。 2. 灌溉 增加保灌面积1.5万亩。 3. 防洪 可减轻洪水对下游两岸的威胁,过100年一遇和200年一遇洪水时,经水库调洪后,洪峰流量由原来1680秒立米和2320秒立米分别削减为537.5秒立米和600.0秒立米。要求设计洪水时最大下泄流量限制为900秒立米, 校核洪水位不超过正常蓄水位3.5米。 4. 渔业 正常蓄水位时,水库面积为15平方公里,为发展养殖业创造了有利条件。 5. 其它 引水隧洞进口底高程为2789.00 米,出口底高程为2752.30 米;引水隧洞直径为4 米,压力钢管直径 2.3 米,调压井直径为12.0 米;放空洞直径为 2.5 米。可放空水库至水位2770.00 米。 二、设计要求 (一) 基本要求 在明确设计任务及对原始资料进行综合分析的基础上,要求: 1.根据防洪要求,对水库进行洪水调节计算,确定坝顶高程及溢洪道尺寸; 2.通过分析,对可能的方案进行比较,确定枢纽组成建筑物的型式、轮廓尺寸及水利枢纽布置方案; 3.详细设计出大坝,通过比较,确定大坝的基本剖面和轮廓尺寸,拟定地基处理方案与坝身构造,进行水力、静力计算; 4.厂房平面布置,确定厂房和副厂房尺寸,确定各部分预留空间。 5.水轮机的型式、型号及装置位置,水轮机的转轮直径及转速;选择发动机型

水电站工程二级电站大坝工程工程概况

水电站工程二级电站大坝工程工程概况 1.1工程说明 河西堤是廖坊库区防护工程之一,其工程等级为Ⅳ等工程,其主要建筑物级别相应为4级,设计洪水标准50年一遇。河西堤位于盱江左岸,南城县城老城区及沿河地带,堤线长6.4km。 本次招标工程为河西堤Ⅰ标,起点为河西堤防洪墙与土堤分界点,终点与万年堤起点重合,桩号0-065~2+080和桩号2+320~3+350,堤线长度3.175km。本工程项目包括堤防加高加固以及堤顶公路等。 1.2水文气象条件 抚河流域属亚热带湿润季风气侯,降水量充沛。流域多年平均降水量约为1700m,降水量年内分配极不均匀,降水量主要集中在3~6月,约占全年的60%,7~9月降水量占全年的19%,10月至次年2月,降水量较少。多年平均蒸发量1564.3mm,多年平均气温在17.3~18.3℃之间。 抚河是雨洪式河流,洪水主要由锋面雨和台风雨形成,抚河流域暴雨、洪水多发生于4月至9月。 1.3工程地质 河西堤保护区属抚河Ⅰ级冲积阶地。阶面高程一般为65~68m。覆盖层为第四系全新统冲积层,具二元结构。上部分布为壤土、粘土;下部为中细砂、含砾中粗砂及砾卵石。下部基岩为紫红色泥质粉砂岩、粉砂岩。

1.4对外交通条件 该标段对外交通便利。河西堤位于南城县城城郊,现有公路直达施工堤段。 1.5天然建材供应情况 本标工程使用的块石、砂、卵石从当地市场购买。粘土料从钟家边土料场开采,钟家边土料场位于万坊乡钟家边村西侧,无用厚0.3m,有用层平均厚2.0m,料场距河西堤起始端4.5 km左右,现无路可通,须修建临时道路,风化料从塔山风化料场开采,塔山风化料场位于万年大桥右端山坳,距河西堤最短距离1.3km左右。

水电站工程施工组织设计

第一章工程概况 (4) 1.1工程概况 (4) 1. 3 天然建筑材料 (15) 1. 4 弃渣场 (16) 1.5对外交通条件 (16) 1.6 本合同工作范围 (17) 第二章施工组织设计编制概述 (18) 2.1 建设情况18 2.2 施工组织编制原则及编制依据18 2.3 工程总目标19 2.4 工程项目施工关键技术实施20 2.5前期组织20 2.6 施工总体部署21 2.7施工组织与管理22 第三章施工总平面布置 (24) 3.1 生产、生活用房布置24 3.2 交通布置25 3.3 风、水、电布置26 3.4 通讯系统27 3.5 施工辅助设施的布置27 附:《施工总平面布置图》30 第四章施工导流 (31) 4.1 施工导流简介31 4.3 围堰设计、施工32 4.4 施工渡汛32

第五章施工进度计划及工期保证措 施 (34) 5.1 进度计划安排原则34 5.2 施工总进度计划34 具体见:《施工总进度计划》36 5.3 工期保证措施36 5.4 缩短工期的主要措施38 5.5 进度计划承诺39第六章主体工程施工方案及关键性 技术措施 (40) 6.1 施工测量40 6.2 土石方明挖工程41 6.3 隧洞开挖工程42 6.4 砼工程49 6.4.5隧洞混凝土衬砌4 6.5 钻孔和灌浆工程8 6.6 基础防渗墙工程21 6.7 土石方填筑工程33 6.8 砌体施工36 6.9 屋面和地面建筑工程38 6.10 闸门及启闭机制造和安装工程42 6.11 压力钢管制造和安装工程44 6.11.1压力钢管制造44 6.11.8工艺流程和焊接工艺 (51) 6.11.9单个构件 (52) 6.11.10铸钢件 (52) 6.11.11锻件 (52) 6.11.12压力钢管防腐 (53) 6.11.14安装材料 (54) 6.11.15安装前设备检查 (54) 6.11.16安装前土建工作面清理 (55)

(建筑电气工程)尼日利亚某变电站电气施工组织设计

(建筑电气工程)尼日利亚某变电站电气施工组织设计

第一章工程概况及特点 1、工程概况及特点: 1.1工程概况: 1.1.1工程简述: 某330/132/33kV变电站位于M-J变电线路首端,为新建330kV变电站,三级电压,包括330kV、132kV,并连接原有33kV配电装置。 某330/132/33kV 变电站位于M-J变电线路末端,本工程是在原有某330kV变电站的基础上的扩建工程。正在运行中的某变电站,始建于二十世纪八十年代,运行至今已有20余年。本期工程的扩建端,位于原站址围墙内的西侧。 某变电站属扩建站,工作区域大部分与现运行变电站基本分开。但在电气安装与原变电站接口部分应严格注意,保证在施工中不影响运行变电站的工作。 1.1.2工程规模: 1.1. 2.1 某变电站:为一新建变电站: 最终规模为:4×150MVA主变,电压等级330/132/33kV;每组330kV母线接有1台容量为75Mvar的330kV高压并联电抗器,共2台;2×60MVA主变,电压等级132/33kV。 本期规模为:1×150MVA主变,电压等级330/132/33kV;330kV母线接有1台容量为75Mvar的330kV高压并联电抗器;1×60MVA主变,电压等级132/33kV。4回330kV 出线,即(ALIADE)UGwuaJi [NEW HAVEN 3.]出线2回,某出线2回。1回132kV出线,即Direction ALIADE出线1回。 1.1. 2.2某变电站:为一扩建变电站: 本期扩建1×150MVA主变,电压等级330/132/33kV;扩建1台330kV容量为75Mvar 的高压并联电抗器接于330kV母线。330kV某出线2回。132kV扩建1回主变进线间隔,母线扩建一组分段隔离开关。 1.2主要技术设计原则: 1.2.1 某变电站: 电气主接线:330kV采用一个半断路器接线,断路器三列式布置;132kV采用双母线断路器接线(终期一个半断路器接线),断路器三列式布置。 330kV配电装置、132kV配电装置:均采用户外敞开式布置,采用柱式断路器,断路器两侧配电流互感器,母线通流按2500A考虑。 本工程330kV、132kV线路均安装A、C两相阻波器。

相关文档
最新文档