2013天津高考数学文科试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试(天津卷)

数 学(文史类)

第Ⅰ卷

一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}|2A x R x =∈≤,{}|1B x R x =∈≤,则A B =

(A )(,2]-∞ (B )[1,2] (C )[2,2]- (D )[2,1]-

2.设变量x ,y 满足约束条件360,20,30,x y x y y +-≥⎧⎪

--≤⎨⎪-≤⎩

则目标函数2z y x =-的最小值为

(A )7- (B )4- (C )

1 (D )

2 3.阅读右边的程序框图, 运行相应的程序, 则输出n 的值为

(A) 7

(B) 6

(C) 5

(D) 4

4.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 (A) 充分而不必要条件 (B) 必要而不充分条件

(C) 充要条件 (D) 既不充分也不必要条件

5.已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =

(A) 12

-

(B) 1 (C) 2 (D)

12

6.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤

⎢⎥⎣⎦

上的最小值是

(A) 1- (B) 2

2

-

(C)

22

(D) 0

7.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212

(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是

(A) [1,2]

(B) 10,2⎛⎤

⎥⎝⎦

(C) 1,22⎡⎤⎢⎥⎣⎦

(D) (0,2]

8.设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 (A) ()0()g a f b << (B) ()0()f b g a <<

(C) 0()()g a f b <<

(D) ()()0f b g a <<

二.填空题: 本大题共6小题, 每小题5分, 共30分.

9.i 是虚数单位. 复数(3 + i )(1-2i ) = .

10.已知一个正方体的所有顶点在一个球面上. 若球的体积为92

π

, 则正方体的棱长为 .

11.已知抛物线2

8y x =的准线过双曲线22

221(0,0)x y a b a b

-=>>的一个焦点, 且双曲线的离

心率为2, 则该双曲线的方程为 .

12.在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·

1AC BE =, 则AB 的长为 .

13.如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .

E

D

C

B A

14.设a + b = 2, b >0, 则

1||2||a a b

+的最小值为 . 三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.

15.(本小题满分13分)某产品的三个质量指标分别为x ,y ,z ,用综合指标S x y z =++评价该产品的等级.若4S ≤,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号 1A

2A

3A

4A

5A

质量指标(,,)x y z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号 6A

7A

8A

9A

10A

质量指标(,,)x y z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(I )利用上表提供的样本数据估计该批产品的一等品率; (II )在该样本的一等品中,随机抽取2件产品,

(i )用产品编号列出所有可能的结果;

(ii )设事件B 为“在取出的2件产品中,每件产品的综合指标S 都等于4”,求事件B 发生的概率. 16.(本小题满分13分)在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3, 2

cos 3

B =

. (Ⅰ) 求b 的值; (Ⅱ) 求sin 23B π⎛

⎫- ⎪⎝

⎭的值.

17. (本小题满分13分) 如图,三棱柱111ABC A B C -中,侧棱1A A

⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,11AC 的中点.

(I )证明://EF 平面1ACD ; (II )证明:平面1

ACD ⊥平面11A ABB ; (III )求直线BC 与平面1

ACD 所成角的正弦值. C 1

B 1

A 1

A

B

C D

E

F

18.(本小题满分13分) 设椭圆22221x y a b +=(0)a b >>的左焦点为F ,离心率为3

3

,过

点F 且与x 轴垂直的直线被椭圆截得的线段长为43

3

相关文档
最新文档