三维地质建模方法概述
三维地质建模在岩土工程勘察中的应用分析
三维地质建模技术在岩土工程 勘察中的实践经验与建议
实践经验总结
实践经验:三维地质建模技术在岩土工程勘察中具有重要作用,能够提高勘察精度和效率。
经验总结:在实践中,需要注意数据采集和处理、模型建立和验证等方面的问题,并采取相应的 措施解决。
建议:为了更好地应用三维地质建模技术,需要加强技术培训和交流,提高技术人员的技术水平 和实践经验。
案例三:某隧道 施工中,采用三 维地质建模技术, 对隧道施工区域 的地质条件进行 模拟,提前预测 和解决施工中的 地质问题。
案例四:某水库 大坝建设中,通 过三维地质建模, 模拟了大坝对周 边岩土的影响, 为水库大坝的稳 定性和安全性提 供了保障。
三维地质建模在岩土工程勘察中的效果评估
提高勘察精度:通过三维地质建模,能够更准确地反映地质构造和岩土性质,减少误差。
跨领域应用:三维地质建模技术将拓展至更多领域,如环境评估、城市规划等
智能化趋势:随着人工智能技术的发展,三维地质建模将更加智能化,提高建模效率和精 度
三维地质建模技术的实际应用 价值
提高岩土工程勘察的精度和效率
三维地质建模技术能够更准确地反映地质构造和地层结构,减少勘察误差。
通过三维地质建模,可以更快速地分析地质数据,提高勘察效率。 三维地质建模技术能够为岩土工程设计提供更精确的地质资料,降低工程 风险。 三维地质建模技术能够实现可视化分析,更好地指导岩土工程施工。
数据采集包括钻孔数据、地球物理勘探数据等,数据处理包括数据预处理和数据转换等。
模型建立包括地层界面拟合、地层厚度计算、岩土体物性参数赋值等,模型应用包括岩土工程勘 察、设计、施工等方面。
技术优势
提高地质勘察精度和可靠性 降低勘察成本和风险 实现地质数据可视化,便于分析和决策 提高岩土工程设计和施工效率
三维地质建模方法及规范
5、地质建模的步骤:
相控参数建模:应采用“相控建模”或“二步建模”方法,即首先建立沉积相,然后根据不 同沉积相的储层参数定量分布规律,分相进行井间插值或随机模拟,建立储层参数分布模型。
数据变换可分为如下步骤: 第一步:通过统计直方图查看建模数据的原始分布,一般会对数据分布的前后端进行截断, 目的是滤掉不合理的奇异值(截断变换),使数据近似成正态分布; 第二步:对过滤了奇异值的数据进行地质趋势分析,一般包括压垂向压实成岩趋势、垂向沉 积趋势、平面横向趋势、地质体内部趋势以及三维体趋势等(趋势变换)等; 第三步:对减去趋势后的数据进行统计分析,并根据建模算法的需要对数据进行变换。例如 序贯高斯模拟算法要求数据服从标准正态分布,对渗透率参数建模时,就需要对数据做对数和标 准正态分布变换。 一般数理统计方法:三角网插值法、距离反比法、多重网格收敛法、径向基函数法、离散 光滑插值法等,均可用于储层参数的平面或三维插值。 克里金插值法:通过协方差或变差函数表达了对储层参数的空间相关性。插值方法包括基 本克里金插值方法(简单与普通克里金)、具有趋势的克里金方同位协同克里金插值方法等。 储层参数随机建模:目前常用的方法为序贯高斯模拟。
复杂断块油藏三维地质建模思路
5、地质建模的步骤:
第四:声波时差标准化及测井参数二次解释 突出声波时差曲线的质量检查、在“四性关系”基础上建立测井参数解释模型,为参 数建模提供消除系统误差、统一刻度下的孔渗参数。其目的是提高三维模型的质量,为 数值模拟提供更加符合实际的参数模型。 第五:流体分布受岩性、构造、断层三大因素控制 油气水分布规律要满足岩性控制、构造高部位是油及低部位是水、断层对油水的控制。 第六:地质储量复算 突出各小层地质储量的复算,并与上报地质储量进行对比,找出储量变化的原因。同时 加强三维模型地质储量的计算结果与二维储量的对比。 第七:三维建模网格设计提前与数值模拟人员结合 突出网格方向与主断层走向平行,或者与物源方向一致。
地质 三维 数据结构模型
地质三维数据结构模型(实用版)目录一、引言二、地质三维数据结构模型的概述1.地质数据的重要性2.三维数据结构模型的优势三、地质三维数据结构模型的构建1.数据采集与处理2.数据结构设计3.模型构建与优化四、地质三维数据结构模型的应用1.地质勘探2.矿产资源开发3.地质灾害预测五、地质三维数据结构模型的发展趋势与挑战1.技术发展趋势2.面临的挑战与对策六、结论正文一、引言地质学作为地球科学的一个重要分支,对于研究地球表层和内部构造具有重要意义。
随着科技的发展,地质学研究逐渐从二维向三维转变,以更加真实地反映地球表层和内部的地质结构。
地质三维数据结构模型在这种背景下应运而生,为地质学研究提供了强大的支持。
二、地质三维数据结构模型的概述1.地质数据的重要性地质数据是地质学研究的基础,包括地层、构造、岩性、矿产等多种信息。
这些数据对于揭示地球表层和内部的结构、演化及地质过程具有重要意义。
2.三维数据结构模型的优势传统的二维地质数据模型无法全面反映地球表层和内部的三维结构,而地质三维数据结构模型则可以较好地解决这一问题。
它具有以下优势:(1)能够直观地展示地质体的三维空间分布;(2)有利于分析地质体的空间关系和相互作用;(3)为地质过程的研究提供更加真实的模型基础。
三、地质三维数据结构模型的构建1.数据采集与处理地质三维数据结构模型的构建首先需要大量的地质数据,包括地层、构造、岩性等信息。
这些数据可以通过野外地质调查、钻孔、物探等多种手段获取。
获取到的数据需要进行处理,包括数据清洗、格式转换等工作,以满足模型构建的需要。
2.数据结构设计数据结构设计是地质三维数据结构模型构建的关键环节。
根据地质数据的特点和需求,选择合适的数据结构类型,如点、线、面等,以及它们之间的关系,如连接、包含等。
3.模型构建与优化在数据结构设计的基础上,利用地理信息系统(GIS)等软件,构建地质三维数据结构模型。
为了提高模型的准确性和实用性,还需要对模型进行优化,如数据插值、模型简化等。
GOCAD 软件三维地质建模方法
GOCAD 软件三维地质建模方法1建模方法GOCAD 三维地质建模主要包括两类:一类是构造模型(structural modeling)建模,一类是三维储层栅格结构(3D Reservoir Grid Construction)建模。
(1)构造模型(structural modeling)建模建立地质体构造模型具有非常重要的意义。
通过建立构造模型能够模拟地层面、断层面的形态、位置和相互关系;结合反映地质体的各种属性模型的可视化图形,还能够用于辅助设计钻井轨迹。
此外,构造模型还是地震勘探过程中地震反演的重要手段。
(2)三维储层栅格结构(3D Reservoir Grid Construction)建模根据建立的构造模型,在3D Reservoir Grid Construction 中可以建立其体模型;同时地质体含有多种反映岩层岩性、资源分布等特性的参数,如岩层的孔隙度、渗透率等,可对这些物性参数进行计算和综合分析,得到地质体的物性参数模型。
当采样值在地质体内密集、规则分布时,可以直接建立采样值到应用模型的映射关系,把对采样值的处理转化为对物性参数的处理,这样可以充分利用计算机的存储量大、计算速度快的特点。
当采样值呈散乱分布,并且数据量有限时,需要采用数学插值方法,拟合出连续的数据分布,充分利用由采样值所隐含的数据场的内部联系,精确的模拟模型中属性场的分布。
图1-1孔隙度参数模型分布图2 建模流程2.1数据分析(1)钻孔、测井分布及数据分析支持三维建模的数据主要为钻孔和测井。
由于对区域范围和建立三维地质建模的精度要求不同,得对所得到的钻孔、测井的分布和根据其取得的数据进行分析和处理是的必要。
根据钻孔、测井的分布范围和稠密程度可以大致确定地层的分布界限,对钻孔较少区域采取补充钻探或者采用其它方法进行处理。
图2-1由二维地质剖面图形成的三维连井剖面图(2)地质剖面对于建立三维地质模型,只根据钻孔和测井是不够的,在长期的地质勘探中形成的地质剖面图,对建立三维地质模型具有重要的作用。
三维地质建模(全)
模拟退火(simulated annealing)
模拟退火类似金属冷 却和退火。高温状态 下分子分布紊乱而无 序,但随着温度缓慢 地降低,分子有序排 列形成晶体。 模拟退火的基本思路 是对于一个初始的图 象,连续地进行扰 动,直到它与一些预 先定义的包含在目标 函数内的特征相吻合
目标函数
表达了模拟实现空间特性与希望得到的空间特性 之间的差别。
理)
基于目标的随机建模方法 (object-based)
布尔模拟
标点过程 (示性点过程)
基于目标的方法与 建立目标模型(离 散变量模型)的方 法有差别,很多人 混淆了这种差别
基于象元的随机建模方法 (pixel-based) pixel : Picture element, 象元、象素
高斯模拟 (连续)
(简单克里金、普通克里金、
具有趋势的 克里金、 同位协同克里金)
(综合地震信息)
P
P
Mean St.Dev.
φ
(cdf)
(ccdf) φ
随机模拟: 从条件概率分布函数(ccdf)中随机地提
取分位数便可得到模拟实现。
序贯高斯模拟 Sequential Gaussian Simulation (SGS) 概率场高斯模拟 P-field Gaussian Simulation
③克里金插值法(包括其它任何插值方法) 只产生一个储层模型,因而不能了解和 评价模型中的不确定性,而随机模拟则 产生许多可选的模型,各种模型之间的 差别正是空间不确定性的反映。
(克里金作为部分随机建模方法的基础)
第一节 随机模拟原理
随机模拟以随机函数理论为基础。 随机函数由区域化变量的分布函数
和协方差函数来表征。
第三讲
三维地质建模技术方法及实现步骤ppt课件
(二) 、建立层模型技术
正在攻关的方向及内容
地震、测井结合高分辨率层序地层学 测井约束下的地震反演;
沉积学:在野外露头精细解剖各类沉积体的建筑 结构要素,识别界面特征;
计算机自动对比:有模拟手工对比,有地质统计对 比(见一些报导)。
20
(二) 、建立层模型技术
目前的实际应用:
在建立本区“岩—电”关系的基础上,用测 井
三维地质建模技术方法及实现步骤
阴国锋
2007.10.22
1
目录
一、三维地质建模的意义 二、三维地质建模技术发展的现状 三、三维地质建模的发展动向 四、三维地质建模技术方法及实现
2
一、建模意义 建模的意义:
最大程度地集成多种资料信息, 最大程度地减少储层预测的不确定性。
3
二、地质建模技术发展的现状
16
(二) 、建立层模型技术
现有成熟和流行技术:
河流砂体小层对比,应用“等高程”,“切片” 等方法:现已比较广泛应用,但仍为有待深化的技术;
地震横向追踪技术:有待提高分辨率; 高分辨率层序地层学:露头—岩心—测井—地 震综合,力争把准层序缩小到“十米级”。
17
(二) 、建立层模型技术
正在攻关的方向及内容:
最重要的是新测井技术的发展和完善:
成像测井; 过套管测井; 随钻测井。
13
(二) 、建立层模型技术
目的:
建立储集体格架:把每口井中的每个地质单 元通过井间等时对比联接起来——把多个一维柱 状剖面构筑成三维地质体,建成储集体的空间格 架。
关键点:
正确地进行小单元的等时对比,即要实现单 个砂层的正确对比。可对比单元愈小,建立的储 集体格架愈细。对于陆相沉积难度更大。
隧道工程中的三维地质建模与分析
隧道工程中的三维地质建模与分析在现代隧道工程中,三维地质建模与分析是不可或缺的一环。
通过对隧道区域的地质进行三维建模和分析,可以为隧道施工提供重要的支持和保障。
下面将从三维地质建模方法、应用及优势等方面来探讨隧道工程中的三维地质建模与分析。
一、三维地质建模方法在隧道工程中,三维地质建模主要通过地质调查、地质勘探、地质资料分析及地质模型构建等方式实现。
首先进行的是地质调查和地质勘探,该过程主要是为了了解地下环境的物理和化学属性,包括地质构造、岩性、褶皱、断层、水文地质条件等。
其次是地质资料分析,该过程主要是将地质资料转化为数字格式以进行简化和分析,包括地质剖面、地质图、地图时序影像和地层描述等信息。
最后是地质模型构建,该过程主要是将地质信息进行数值化计算,以构建三维地质模型。
三维地质模型基于地质资料的分析和建模,提供了高精度和可视化的地下信息,以供隧道施工各阶段的工程设计和施工过程中的风险评估。
二、三维地质建模的应用目前,三维地质建模主要应用于隧道工程的各个方面,包括土层和岩石的勘探和评价、隧道掘进设计、地面和地下水流动模拟、爆破振动分析等。
在隧道设计阶段,三维地质模型可以提供有关地下物理和化学属性的大量详细信息,以协助工程师进行隧道设计。
隧道施工期,三维地质模型将面临大量的爆破振动、地面和地下水流入及坍塌等难题,该模型可以帮助隧道技术人员进行风险评估,优化隧道设计,提高隧道施工的效率和安全性。
三、三维地质建模的优势相对于二维和传统的三维地质建模,三维地质建模具有以下明显优势:(1)高精度性:三维地质模型提供了高精度和可视化的地下信息,为工程师和隧道技术人员提供更准确的数据来源。
(2)更自然地模拟地下环境:三维地质模型可以更好地模拟复杂的地下物理和化学环境,如褶皱、断层、岩性和土层结构等,更好地反映了地下的真实环境。
(3)强大的综合应用能力:三维地质模型可以支持多种应用精度,例如大规模的施工模拟,地下水流动模拟以及岩石或土层稳定性评估等。
矿区三维地质建模方法研究及深部综合找矿预测
67找矿技术P rospecting technology矿区三维地质建模方法研究及深部综合找矿预测王霄霄(河北省地质矿产勘查开发局第一地质大队,河北 邯郸 056001)摘 要:本论文将从矿区三维地质建模方法、三维可视化与分析技术、地质信息集成与分析、模型与算法应用,以及深部矿产资源评价与优选等几个方面进行探讨。
通过对这些关键环节的详细分析和研究,旨在全面展示深部综合找矿预测的理论基础、方法体系以及应用前景,为矿业领域的科学研究和实际应用提供有益的参考和借鉴。
关键词:矿区;三维地质;找矿预测中图分类号:P628 文献标识码:A 文章编号:1002-5065(2023)17-0067-3Research on 3D Geological Modeling Methods and Deep Comprehensive Prospecting Prediction in Mining AreasWANG Xiao-xiao(The First Geological Brigade of the Geological and Mineral Exploration and Development Bureau of Hebei Province,Handan 056001,China)Abstract: This paper will explore several aspects of mining area 3D geological modeling methods, 3D visualization and analysis techniques, geological information integration and analysis, model and algorithm applications, and deep mineral resource evaluation and optimization. Through detailed analysis and research on these key links, the aim is to comprehensively demonstrate the theoretical basis, methodological system, and application prospects of deep comprehensive ore exploration prediction, providing beneficial references and references for scientific research and practical applications in the mining field.Keywords: mining area; 3D geology; Prospecting prediction收稿日期:2023-06作者简介:王霄霄,女,生于1992年,汉族,河北邯郸人,本科,学士学位,矿产地质工程师,研究方向:矿产地质勘查,三维地质建模,地质大数据。
三维地质建模1
地震信息的确定性转换
储层地震学方法
应用地震资料研究储层的几何形态、 ★ 应用地震资料研究储层的几何形态、岩性及储层 参数的分布。 参数的分布。
确定性转换
地震属性
地质参数
注意:
地震资料不仅用于确定性建模, 也可以随机建模
步骤: 步骤:
提取地震属性 优选地震属性 建立地震属性与地质参数的关系 地震属性的确定性转换
相控插值
2. 自动插值(数学插值) 自动插值(数学插值)
(1)传统数学插值 )
如:三角剖分法(三角网方法)、 三角剖分法(三角网方法)、 距离反比加权法等
将变量视为纯随机变量, 将变量视为纯随机变量, 未考虑变量的空间结构性 仅考虑待估点位置与已知数 考虑待估点位置与 待估点位置 据位置的相互关系 的相互关系。 据位置的相互关系。
概率分布模型(100%概率)
应用随机模拟方法, 应用随机模拟方法, 对井间未知区给出 多种可能的预Байду номын сангаас结果。 多种可能的预测结果。
确定性建模
对井间未知区给出确定性的预测结果。 对井间未知区给出确定性的预测结果。
地震资料的确定性转换
(储层地震学方法) 储层地震学方法)
插值方法
手工插值(储层沉积学方法) 手工插值(储层沉积学方法) 自动插值(数学插值) 自动插值(数学插值)
•不仅考虑待估点位置与
z * (x 0 ) =
∑ λ z (x )
i =1 i i
n
已知数据位置的相互关 系,而且还考虑变量的 空间相关性。 空间相关性。 因此, 因此,更能反映客观地 质规律,估值精度较高。 质规律,估值精度较高。
井眼
局限性
储层本身是确定的,但是, 储层本身是确定的,但是,在 资料不完备以及储层结构空间配置 资料不完备以及储层结构空间配置 和储层参数空间变化复杂的情况下, 空间变化复杂的情况下 和储层参数空间变化复杂的情况下, 人们难于掌握任一尺度下储层的确定的且真实的 特征或性质,也就是说, 特征或性质,也就是说,在确定性模型中存在着 不确定性,亦即随机性。 不确定性,亦即随机性。
三维地质建模技术方法及实现步骤
建模范围
三维断层模型
构造建模 采用确定 性建模, 因为构造 基本是确 定的,没 有随机性
三维断层模型 (Fault Modeling)
三维油组框架模型
Make-Horizons
三维地质结构模型
Make-zones 三维地质结构模型
三维垂向网格剖分模型
Layering
垂向平均网格厚度0.5米
从模拟单元的角度来分,随机模拟可以分为:
基于目标(Object-based)和 基于象元(Pixel-based) 基于目标随机模型其基本模拟单元为目标物体(即是离散 性质的地质特征,如沉积相、流动单元等),主要方法为标点 过程。 基于象元的随机模型以象元(相当于储层网格化后的单个 网格)为基本模拟单元,既可用于连续性储层参数的模拟,也 可用于离散地质体的模拟。
(二) 、建立层模型技术
现有成熟和流行技术:
“旋回对比、分级控制”;
河流砂体小层对比,应用“等高程”,“切 片”
等方法; 地震横向追踪技术; 高分辨率层序地层学。
(二) 、建立层模型技术
现有成熟和流行技术:
“旋回对比、分级控制”: 对于湖相沉积是相当有效的; 对于冲积相沉积、划分和对比砂组一般是 有效的;连续沉积井段过长时难于控制。
目录
一、三维地质建模的意义 二、三维地质建模技术发展的现状 三、三维地质建模的发展动向 四、三维地质建模技术方法及实现
一、建模意义
建模的意义:
最大程度地集成多种资料信息, 最大程度地减少储层预测的不确定性。
二、地质建模技术发展的现状
二步建模或相控建模,即首先建立沉积相、储层结构或流动 单元模型,然后根据不同沉积相(砂体类型或流动单元)的储层 参数定量分布规律,分相(砂体类型或流动单元)进行井间插值 或随即模拟,建立储层参数分布模型。
基于3DMine的矿山三维地质建模研究
基于3DMine的矿山三维地质建模研究基于3DMine的矿山三维地质建模研究概述:矿山地质建模在矿山规划、矿山设计以及矿产资源评价中具有重要意义。
随着计算机技术的不断发展,三维地质建模成为了矿山地质学领域的一个重要研究方向。
本文将介绍基于3DMine的矿山三维地质建模的原理和方法,并探讨其在矿山地质学领域的应用。
一、3DMine地质建模原理3DMine是一种基于三维地质建模技术的软件工具,它可以将地质数据转化为三维地质模型。
其原理主要分为以下几个步骤: 1. 数据获取:通过采集矿区的地质数据,包括钻孔数据、地质剖面、地质地貌图等。
2. 数据预处理:对采集到的地质数据进行处理和整理,包括数据清洗、数据匹配等。
3. 数据插值:通过插值算法将不完整的地质数据填补完整,得到连续的地质属性数据。
4. 地质属性分析:对地质数据进行统计分析,确定地质属性的空间分布规律。
5. 地质模型构建:将地质数据转化为三维地质模型,包括地层模型、矿体模型、蚀变带模型等。
6. 地质模型评估:通过对地质模型的评估,确定矿产资源量、品位分布等。
二、3DMine地质建模方法基于3DMine的矿山三维地质建模主要采用以下方法:1. 插值方法:常用的插值方法有Kriging插值、反距离权重插值等。
这些方法可以根据地质数据的空间分布规律,对缺失的地质数据进行插补。
2. 地质属性分析方法:利用统计学方法对地质数据进行分析,包括变差函数、方差分析等,以确定地质属性的空间分布规律。
3. 地质模型构建方法:根据地质数据的特点,选择合适的模型构建方法,包括等值线法、网格法、隐函数法等。
这些方法可以将地质数据转化为具有空间信息的地质模型。
4. 地质模型评估方法:通过对地质模型的评估,确定矿产资源量、品位分布等。
评估方法主要包括统计学方法、模拟方法、多元分析等。
三、3DMine在矿山地质学中的应用基于3DMine的矿山三维地质建模在矿山地质学领域具有广泛的应用前景。
油藏三维地质建模原理和方法
三维油藏地质建模的原理和方法现代油藏描述以建立定量三维油藏地质模型为最终目标。
这是计算机技术在油藏描述中广泛应用的结果,也是提高油藏模拟和开采动态预测精度的要求。
由于计算机技术的发展,地质和数学更进一步的结合,以及地质工作本身向定量化的深入发展,使过去只能以各种二维图件来表现油藏地质面貌的传统地质工作方法已逐步被应用计算机技术建立和显示三维的、定量的地质模型所代替,各种建模技术和计算机软件、不断地问世,成为近十几年来油藏描述向油藏表征推进的主要标志。
一、油藏地质模型的类别一个完整的油藏地质模型应包括:构造模型:油藏构造形态及断层分布;储层模型:储层建筑结构及各种属性的空间分布;流体模型:储层内油气水分布,即各种流体饱和度分布和流体性质的空间变化。
根据油田不同开发阶段的任务,对油藏地质模型的精细程度要求不同,依此通常可以把油藏地质模型分为三类。
概念模型:把所描述的油藏的各种地质特征,特别是储层,典型化、概念化,抽象成具有代表性的地质模型。
只追求油藏总的地质特征和关键性的地质特征的描述,基本符合实际,并不追求每一局部的客观描述。
这祥的地质摸型可供研究油田开发中的战略指导路线,或进行开采机理研究。
静态模型:也称实体模型,把所描述的油藏地质面貌,依据资料控制点实测的数据,加以如实地描述,并不追求控制点间的预测精度。
建立这样的地质模型必须有一定密度的资料控制点--井网密度,才有意义。
一般是开发井网完成后进行,为油田开发早期生产服务,过去油田实际应用的静态资料即属这一类型。
预测模型:预测模型不仅忠实于资料控制点的实测数据,而且追求控制点间的内插外推值有相当的精确度,即对无资料点有一定的预测能力。
实际上这是追求高精细度的油藏地质模型,一般为二次采油中后期调整及三次采油实施所需求。
依据油藏描述规模的地质模型分类。
为配合油藏模拟进行不同开发问题的研究,实际工作经常需要建立不同规模的地质模型,常用的有:①一维单井地质模型②二维砂体剖面模型③二维砂体平面模型④三维砂体模型⑤二维层系剖面模型⑥三维井组模型⑦三维油藏整体摸型⑧二维层内隔层模型⑨三维层内隔层模型二、通常的建模原理和方法地下地质工作中,油藏地质模型建模技术中的关键点,是如何根据已知的控制点资料内插、外推资料点间及以外的油藏特性。
三维地质建模
假设把n个城市看作图的n个顶点,边表示两个城市之间的线 路,每条边上的权值表示铺设该线路所需造价。铺设线路连接n 个城市,但不形成回路,这实际上就是图的生成树,而以最少 的线路铺设造价连接各个城市,即求线路铺设造价最优问题, 实际上就是在图的生成树中选择权值之和最小的生成树。构造 最小生成树的算法有很多,下面分别介绍克鲁斯卡尔(Kruskal) 算法和普里姆(Prim)算法。
区采用较大的体元,在异质区不断细分直至各子区内均是
同质体元为止。 八叉树模型的数据结构是是将所要表示的三维空间 V按X、Y、Z三个方向从中间进行分割,把V分割成八个 立方体,然后根据每个立方体中所含的目标来决定是否对
各立方体继续进行八等分的划分,一直划分到每个立方体
被一个目标所充满,或没有目标,或其大小已成为预先定 义的不可再分的体素为止。是三维栅格数据的压缩形式。
点的内插
点的内插法可以采用:
移动平均法; 局部函数法;
克里格(Kriging)内插法。
移动平均法
在局部范围(或称窗口)内计算n个 数据点的平均值.
窗口的大小对内插的结果有决定性的影响。 小窗口将增强近距离数据的影响; 大窗口将增强远距离数据的影响,减小近距离数据的 影响。
局部函数法
线的抽稀与加密—剖面方向的统一
(2)初始地质界面的构建
(3)地质体的封闭
(4)拓扑关系的构建 (5)地质界面加密与插值 (6)三维模型的局部修正
5、基于任意剖面多约束三维地质建模
所解决的问题: (1)避免了近平行剖面选取纵向或横向单一剖面构建三
维地质模型的局限性;
(2)对于两个剖面之间距离较大时产生的“空白区域”,
4.2 褶 皱
NJUT
地质建模方法
地质建模方法
地质建模的方法包括但不限于以下几种:
1. 多元数据融合:基于信息技术和大数据技术的全新建模技术,将地质勘探数据和建模所需数据进行优化整合,统一管理,并建立对应的数据库结构,为后期的建模工作提供高效精准的信息服务,从而全面提高建模效率以及建模精度。
2. 地质界面构建:三维地质建模的核心环节,通过点、线、面、向量等元素,完成三维地质曲面的构建,构建方法主要有三角剖分、轮廓线表面重建等几种。
3. 地质空间插值:主要用于对未采样位置的高程值以及属性值的初步预测,以及降噪工作,提高地质界面的真实感以及可视化效果。
4. 地质界面交切处理。
此外,还有Civil 3D地质建模方法等,此方法主要应用于道路、管线设计。
如需更多信息,建议阅读相关论文或请教专业人士。
三维地质建模技术方法及实现步骤
三维地质建模技术方法及实现步骤三维地质建模是基于实地采集的地质数据,通过计算机技术和地质知识,将地质对象在计算机环境中进行模拟和可视化呈现的过程。
它主要用于地质勘探、资源评价和地质灾害预测等领域。
下面将介绍三维地质建模技术的方法以及实现步骤。
一、三维地质建模技术方法1.数据采集:通过地质勘探和测量技术,获取地质数据,包括地质剖面、地下水位、岩性、构造等。
数据采集应选择合适的刻度、密度和时刻,以保证三维模型的准确性和真实性。
2.数据预处理:对采集到的地质数据进行预处理,主要包括数据清洗、数据调整和数据融合等。
数据清洗是指对数据中的异常值和噪声进行处理,以保证数据的可靠性。
数据调整是指对不同数据之间的尺度、坐标和分辨率进行调整,以便进行统一处理。
数据融合是指将不同类型的数据进行整合,获得更准确和全面的地质信息。
3.数据分析与处理:根据采集到的地质数据,利用地质统计学、地质物理学和地质学模拟方法等进行数据的分析与处理,以获得地质对象的空间分布特征和属性参数。
这些分析和处理的方法包括:无标度变异函数、地质统计学插值方法和多点模拟等。
4.三维网格建模:根据地质数据的特征和属性,选择适当的三维网格建模方法。
常用的三维网格建模方法包括地形插值、体素网格建模、几何模型和随机模型等。
其中,体素网格建模是最常用的方法之一,它将地质对象分割成一系列的体素元素,用来表达地质体的几何和属性特征。
5.模型验证与修正:通过与实际地质观测数据进行比对,验证三维地质模型的准确性和可靠性。
如果发现模型存在误差或不合理之处,需要通过调整和修正模型,使之与实际情况相符。
6.可视化与分析:利用计算机技术和三维可视化软件,将三维地质模型进行可视化呈现。
通过对模型进行旋转、放大和镜像等操作,可以观察和分析地质对象的空间形态和内部结构,以提供决策依据和技术支持。
二、三维地质建模实现步骤1.数据采集:根据实际的地质勘探任务,选择合适的地质探测技术和设备,进行野外地质数据的采集。
地质 三维 数据结构模型
地质三维数据结构模型(原创实用版)目录一、引言二、地质三维数据结构模型的概述1.地质三维数据结构模型的定义2.地质三维数据结构模型的重要性三、地质三维数据结构模型的构建方法1.数据获取2.数据处理3.数据建模四、地质三维数据结构模型的应用1.地质勘探2.矿产资源开发3.地质灾害预测五、地质三维数据结构模型的发展趋势六、结论正文一、引言随着科技的发展,计算机技术在地质领域的应用越来越广泛。
地质三维数据结构模型作为一种重要的数据处理方法,对于地质勘探、矿产资源开发和地质灾害预测等方面具有重要的意义。
本文将对地质三维数据结构模型进行详细的介绍,包括其定义、构建方法以及应用和未来发展趋势。
二、地质三维数据结构模型的概述1.地质三维数据结构模型的定义地质三维数据结构模型是指通过计算机技术,将地质体的空间位置、属性和相互关系等信息进行数字化建模,形成一个能够反映地质体真实状态的三维模型。
这个模型可以包括地质体的形状、大小、位置、属性等多种信息,能够为地质研究提供直观、准确的数据支持。
2.地质三维数据结构模型的重要性地质三维数据结构模型在地质领域具有重要的意义。
首先,它可以为地质研究提供直观、准确的数据支持,提高地质研究的效率和准确性。
其次,它可以为地质勘探、矿产资源开发和地质灾害预测等方面提供重要的依据。
最后,地质三维数据结构模型可以作为地质信息系统的基础,实现地质信息的数字化、网络化和智能化管理。
三、地质三维数据结构模型的构建方法地质三维数据结构模型的构建需要经过数据获取、数据处理和数据建模三个阶段。
1.数据获取数据获取是地质三维数据结构模型构建的第一步。
数据可以通过野外地质调查、遥感技术、钻孔资料等多种途径获取。
2.数据处理数据处理是地质三维数据结构模型构建的关键环节。
主要包括数据清洗、数据转换、数据优化等内容。
3.数据建模数据建模是地质三维数据结构模型构建的最后一步。
主要包括三维建模、属性建模和模型优化等内容。
三维地形建模
5.实时绘制的实现 主要方法: 实时消隐技术
细节层次模型(LOD模型)
模块化
三、几种常见的地形模型
• • • • • • 陆地场景建模 海洋场景建模 天空场景建模 空间场景建模 传感器场景建模 特殊效果建模 不同场景的建模有其特殊性,要根据需求来进行 建模,以得到简化的有效模型。
三维地形建模技术
一、对三维地形建模的几点认识
• 三维地形建模是建立描述某一部分地球表 面及其特征的曲面模型。(基本概念) • 建立在三维空间里。 • 能够真实的反映地表特征和地表现象。 • 建立的是一个曲面模型。 特征:具有立体感和真实感,以及地理属性
二、三维地形建模的过程和主要应用的技术 1.确定地表模型 建立一个表现地表几何形状的模型 主要方法: 区域插M模型、TIN地形模型、 数学曲面的地形模型
2.实现地形真实感和立体感 实现地形真实感和立体感 主要方法: 分层设色 光照模型 纹理设计
3.地物生成 主要方法: 纹理映射:将三维地形数据与对应地区 的地形图、各种遥感影像或专题地图融合, 即将图像数据映射到地形模型上。
另外考虑的因素:关照、阴影
4.三位地形的简化 主要方法: 精细法:由粗到细的简化 典型: 贪婪插入法 删繁法:由细到粗的简化
三维地质建模标准
三维地质建模标准一、建模方法1.1概述三维地质建模是一种通过对地质数据进行分析、理解和模拟,以构建三维地质模型的方法。
该方法广泛应用于地质勘探、矿产资源评价、地质灾害预测等领域。
1.2建模过程三维地质建模过程一般包括以下步骤:(1)数据收集:收集与地质相关的数据,如地形地貌、地质构造、岩石类型、矿产分布等。
(2)数据预处理:对收集的数据进行清洗、整理、转换等操作,以满足建模需要。
(3)模型建立:利用专业软件,根据处理后的数据建立三维地质模型。
(4)模型质量评估:对建立的模型进行质量评估,包括准确性、精度、完整性等方面。
(5)模型应用:将建立的模型应用于实际工程中,如矿产资源评价、地质灾害预测等。
二、数据规范2.1数据来源三维地质建模所需的数据来源应可靠、准确、完整,包括但不限于以下来源:(1)实地勘测数据;(2)地球物理数据;(3)地质调查数据;(4)遥感影像数据;(5)矿产资源数据等。
2.2数据格式三维地质建模所需的数据格式应统一、规范,包括以下格式:(1)GeoTIFF;(2)ESRIShapefile;(3)AutoCADDXF等。
三、模型质量评估3.1准确性评估模型准确性的评估应基于实际地质情况和建模数据进行对比和分析,一般采用专家评审、实地考察、统计检验等方法进行评估。
3.2精度评估模型精度的评估应采用专业的测量和计算方法,对模型的细节和整体进行评估,一般包括平面精度和高度精度两个方面。
3.3完整性评估模型完整性的评估应考虑模型的覆盖范围、模型特征的完整性和地质特征的完整性等方面,以确保模型能够全面反映地质情况。
四、模型应用标准4.1矿产资源评价利用三维地质模型可以精确预测矿产资源的分布和储量,为矿业开发提供科学依据。
应用标准包括矿产资源的类型、分布范围、储量估算等。
4.2地质灾害预测三维地质模型可以揭示地质构造特征和岩体结构特征,能够预测和评估地质灾害的风险和影响,为灾害防治提供参考。
三维地质建模方法概述
GNT International,Inc
FastTracker
★建模目的
80年代以后,国外利用计算机技术,逐 步发展出一套利用计算机存储和显示的三维 储层模型,即把储层三维网块化(3D griding) 后,对各个网块(grid)赋以各自的参数值,按 三维空间分布位置存入计算机内,形成了三 维数据体,这样就可以进行储层的三维显示, 可以任意切片和切剖面(不同层位、不同方向 剖面),以及进行各种运算和分析。
FastTracker
★建模目的
与传统的二维储层研究相比,三维储层建 模具有以下明显的优势:
(1)能更客观地描述储层,克服了用二维图 件描述三维储层的局限性。三维储层建摸可从 三维空间上定量地表征储层的非均质性,从而 有利于油田勘探开发工作者进行合理的油藏评 价及开发管理。
GNT International,Inc
FastTracker
建模步骤
数据准备 构造建模 储层建模
图形显示
模型粗化 油藏模拟
体积计算
GNT International,Inc
FastTracker
2. 构造建模
★建模步骤
构造模型反映储层的空间格架。因此,在 建立储层属性的空间分布之前,应进行构造建 模。
构造模型由断层模型和层面模型组成。
GNT International,Inc
FastTracker
★建模步骤
(2)数据集成及质量检查
数据集成是多学科综合一体化储层表征和 建模的重要前提。集成各种不同比例尺、不同 来源的数据(井数据、地震数据、试井数据、 二维图形数据等),形成统一的储层建模数据 库,以便于综合利用各种资料对储层进行一体 化分析和建模。
GNT International,Inc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型精度:可建立精度较高的储层模型,但 油藏开发生产对储层模型的精度 要求更高。
储层预测模型
2020/3/23
储层预测模型
预测模型是比静态模型精度更高的储层地 质模型。它要求对控制点间(井间)及以外地区 的储层参数能作一定精度的内插和外推预测。
精度要求:要求在开发井网条件下将井间数十米甚至 数米级规模的储层参数的变化及其绝对值预测出来。 目的意义:剩余油分布预测
图形显示
模型粗化 油藏模拟
体积计算
2020/3/23
1.数据准备
★建模步骤
(1) 数据类型
数据来源:岩心、测井、地震、试井、开 发动态
从建模内容来看,基本数据类型包括以下 四类:
坐标数据 分层数据 断层数据 储层数据
2020/3/23
★建模步骤
储层数据
井眼储层数据:岩心分析和测井解释---硬数据 (hard data),包括井内相、砂体、隔夹层、孔隙 度、渗透率、含油饱和度等数据,即井模型。
(1)能更客观地描述储层,克服了用二维图 件描述三维储层的局限性。三维储层建摸可从 三维空间上定量地表征储层的非均质性,从而 有利于油田勘探开发工作者进行合理的油藏评 价及开发管理。
2020/3/23
★建模目的
(3)有利于三维油藏数值模拟。三维油藏 数值模拟要求一个把油藏各项特征参数在三维 空间上的分布定量表征出来的地质模型。 粗化 的三维储层地质模型可直接作为油藏数值模拟 的输入,而油藏数值模拟成败的关键在很大程 度上取决于三维储层地质模型的准确性。
2020/3/23
★建模目的
80年代以后,国外利用计算机技术,逐 步发展出一套利用计算机存储和显示的三维 储层模型,即把储层三维网块化(3D griding) 后,对各个网块(grid) 赋以各自的参数值,按 三维空间分布位置存入计算机内,形成了三 维数据体,这样就可以进行储层的三维显示, 可以任意切片和切剖面(不同层位、不同方向 剖面),以及进行各种运算和分析。
★建模步骤
(2) 数据集成及质量检查
数据集成是多学科综合一体化储层表征和 建模的重要前提。集成各种不同比例尺、不同 来源的数据(井数据、地震数据、试井数据、 二维图形数据等),形成统一的储层建模数据 库,以便于综合利用各种资料对储层进行一体 化分析和建模。
2020/3/23
★建模步骤
对不同来源的数据进行质量检查亦是储层建模 的十分重要的环节。为了提高储层建模精度,必须 尽量保证用于建模的原始数据特别是硬数据的准确 可靠性,而应用错误的原始数据进行建模不可能得 到符合地质实际的储层模型
目的意义:主要为优化开发实施方案及调整方 案服务,如确定注采井别、射孔方案、作业施 工、配产配注及油田开发动态分析等,以提高 油田开发效益及油田采收率。
2020/3/23
★不同勘探开发阶 段的储层建模
3. 注水开发中后期及三次采油阶段
基础资料:加密井、检查井 + 动态资料(如多井 试井、示踪剂地层测试及生产动态资料)
粗网格的静态模型 概念模型
2020/3/23
储层概念模型
针对某一种沉积类型或成因类型的储层, 把它具代表性的特征抽象出来,加以典型化 和概念化,建立一个对这类储层在研究区内 具有普遍代表意义的储层地质模型,即所谓 的概念模型。
可满足勘探阶段油藏评价和开发设计的要求, 对评价井设计、储量计算、开发可行性评价以及 优化油田开发方案具有较大的意义。
2020/3/23
★建模目的
三维储层建模不等同于储层的三维图形显示。 从本质上讲,三维储层建模是从三维的角度对 储 层进行定量的研究并建立其三维模型。
核心是对井间储层进行多学科综合一体化、 三维定量化及可视化的预测。
2020/3/23
★建模目的
与传统的二维储层研究相比,三维储层建 模具有以下明显的优势:
优化注水开发调整挖潜及三次采油方案
2020/3/23
储层非均质 地质模型
2020/3/23
油田规模地质模型 油藏规模地质模型 砂体规模地质模型
层规模地质模型 孔隙规模地质模型
建模骤
数据准备 构造建模 储层建模
图形显示
模型粗化 油藏模拟
体积计算
2020/3/23
建模步骤
数据准备 构造建模 储层建模
2020/3/23
★不同勘探开发阶 段的储层建模
2. 开发方案实施及油藏管理阶段
基础资料: 开发井网+评价井+地震资料 模型精度:所建储层模型精度较高
储层静态模型
2020/3/23
储层静态模型
针对某一具体油田(或开发区)的一个(或) 一套储层,将其储层特征在三维空间上的变 化和分布如实地加以描述而建立的地质模型, 称为储层静态模型。
2020/3/23
不同勘探开发阶段的储层建模
储层 地质模型
储层概念模型 储层静态模型 储层预测模型
油藏评价阶段及 开发设计阶段
开发方案实施及油 藏管理阶段
注水开发中后期及 三次采油阶段
2020/3/23
★不同勘探开发阶 段的储层建模
1. 油藏评价阶段及开发设计阶段
基础资料:大井距的探井和评价井资料(岩心、测 井、测试资料)及地震资料。 模型精度:所建模型的分辨率相对较低(主要是垂 向分辨率相对较低)
三维地质建模方法
2020/3/23
2019年4月
★建模目的
地下储层是在三维空间分布的。 人们习惯于用二维图形(各种小层平面图、 油层剖面图)及准三维图件(栅状图)来描述 三维储层,如用平面渗透率等值线图来描述 一 套(或一层)储层的渗透率分布。 显然,这种描述存在一定的局限性,关键 是掩盖了储层的层内非均质性乃至平面非均质 性。
2020/3/23
建模步骤
数据准备 构造建模 储层建模
图形显示
模型粗化 油藏模拟
体积计算
2020/3/23
★建模步骤
2. 构造建模
构造模型反映储层的空间格架。因此,在 建立储层属性的空间分布之前,应进行构造建 模。
地震储层数据:主要为速度、波阻抗、频率等,为 储层建模的软数据(soft data)。
2020/3/23
★建模步骤
试井(包括地层测试)储层数据: 其一为储层连通性信息,可作为储层建模
的硬数据, 其二为储层参数数据,因其为井筒周围一
定范围内的渗透率平均值,精度相对较低,一 般作为储层建模的软数据
2020/3/23